backbeat: add module sources

This commit is contained in:
anthonyrawlins
2025-10-17 08:56:25 +11:00
parent 627d15b3f7
commit 4b4eb16efb
48 changed files with 11636 additions and 0 deletions

View File

@@ -0,0 +1,610 @@
# BACKBEAT Tempo Guide: Beat Timing and Performance Recommendations
This guide provides comprehensive recommendations for choosing optimal tempo settings, implementing beat processing, and achieving optimal performance in BACKBEAT-enabled CHORUS 2.0.0 services.
## Understanding BACKBEAT Tempo
### Tempo Basics
BACKBEAT tempo is measured in **Beats Per Minute (BPM)**, similar to musical tempo:
- **1 BPM** = 60-second beats (**default**, good for batch processing and recovery windows)
- **2 BPM** = 30-second beats (good for most services)
- **4 BPM** = 15-second beats (good for responsive services)
- **60 BPM** = 1-second beats (good for high-frequency operations)
### Beat Structure
Each beat consists of three equal phases:
```
Beat Duration = 60 / TempoBPM seconds
Phase Duration = Beat Duration / 3
┌─────────────┬─────────────┬─────────────┐
│ PLAN │ EXECUTE │ REVIEW │
│ Phase 1 │ Phase 2 │ Phase 3 │
└─────────────┴─────────────┴─────────────┘
│←────────── Beat Duration ──────────────→│
```
### Tempo Ranges and Use Cases
| Tempo Range | Beat Duration | Use Cases | Examples |
|-------------|---------------|-----------|----------|
| 0.1 - 0.5 BPM | 2-10 minutes | Large batch jobs, ETL | Data warehouse loads, ML training |
| 0.5 - 2 BPM | 30s - 2 minutes | Standard operations | API services, web apps |
| 2 - 10 BPM | 6-30 seconds | Responsive services | Real-time dashboards, monitoring |
| 10 - 60 BPM | 1-6 seconds | High-frequency | Trading systems, IoT data processing |
| 60+ BPM | <1 second | Ultra-high-frequency | Hardware control, real-time gaming |
## Choosing the Right Tempo
### Workload Analysis
Before selecting tempo, analyze your workload characteristics:
1. **Task Duration**: How long do typical operations take?
2. **Coordination Needs**: How often do services need to synchronize?
3. **Resource Requirements**: How much CPU/memory/I/O does work consume?
4. **Latency Tolerance**: How quickly must the system respond to changes?
5. **Error Recovery**: How quickly should the system detect and recover from failures?
### Tempo Selection Guidelines
#### Rule 1: Task Duration Constraint
```
Recommended Tempo ≤ 60 / (Average Task Duration × 3)
```
**Example**: If tasks take 5 seconds on average:
- Maximum recommended tempo = 60 / (5 × 3) = 4 BPM
- Use 2-4 BPM for safe operation
#### Rule 2: Coordination Frequency
```
Coordination Tempo = 60 / Desired Sync Interval
```
**Example**: If services should sync every 2 minutes:
- Recommended tempo = 60 / 120 = 0.5 BPM
#### Rule 3: Resource Utilization
```
Sustainable Tempo = 60 / (Task Duration + Recovery Time)
```
**Example**: 10s tasks with 5s recovery time:
- Maximum sustainable tempo = 60 / (10 + 5) = 4 BPM
### Common Tempo Patterns
#### Development/Testing: 0.1-0.5 BPM
```json
{
"tempo_bpm": 0.2,
"beat_duration": "5 minutes",
"use_case": "Development and debugging",
"advantages": ["Easy to observe", "Time to investigate issues"],
"disadvantages": ["Slow feedback", "Not production realistic"]
}
```
#### Standard Services: 1-4 BPM
```json
{
"tempo_bpm": 2.0,
"beat_duration": "30 seconds",
"use_case": "Most production services",
"advantages": ["Good balance", "Reasonable coordination", "Error recovery"],
"disadvantages": ["May be slow for real-time needs"]
}
```
#### Responsive Applications: 4-20 BPM
```json
{
"tempo_bpm": 10.0,
"beat_duration": "6 seconds",
"use_case": "Interactive applications",
"advantages": ["Quick response", "Fast error detection"],
"disadvantages": ["Higher overhead", "More network traffic"]
}
```
#### High-Frequency Systems: 20+ BPM
```json
{
"tempo_bpm": 60.0,
"beat_duration": "1 second",
"use_case": "Real-time trading, IoT",
"advantages": ["Ultra-responsive", "Immediate coordination"],
"disadvantages": ["High resource usage", "Network intensive"]
}
```
## Implementation Guidelines
### Beat Processing Architecture
#### Single-Threaded Processing
Best for low-medium tempo (≤10 BPM):
```go
type BeatProcessor struct {
currentBeat int64
phase string
workQueue chan Task
}
func (p *BeatProcessor) ProcessBeat(frame BeatFrame) {
// Update state
p.currentBeat = frame.BeatIndex
p.phase = frame.Phase
// Process phase synchronously
switch frame.Phase {
case "plan":
p.planPhase(frame)
case "execute":
p.executePhase(frame)
case "review":
p.reviewPhase(frame)
}
// Report status before deadline
p.reportStatus(frame.BeatIndex, "completed")
}
```
#### Pipelined Processing
Best for high tempo (>10 BPM):
```go
type PipelinedProcessor struct {
planQueue chan BeatFrame
executeQueue chan BeatFrame
reviewQueue chan BeatFrame
}
func (p *PipelinedProcessor) Start() {
// Separate goroutines for each phase
go p.planWorker()
go p.executeWorker()
go p.reviewWorker()
}
func (p *PipelinedProcessor) ProcessBeat(frame BeatFrame) {
switch frame.Phase {
case "plan":
p.planQueue <- frame
case "execute":
p.executeQueue <- frame
case "review":
p.reviewQueue <- frame
}
}
```
### Timing Implementation
#### Deadline Management
```go
func (p *BeatProcessor) executeWithDeadline(frame BeatFrame, work func() error) error {
// Calculate remaining time
remainingTime := time.Until(frame.DeadlineAt)
// Create timeout context
ctx, cancel := context.WithTimeout(context.Background(), remainingTime)
defer cancel()
// Execute with timeout
done := make(chan error, 1)
go func() {
done <- work()
}()
select {
case err := <-done:
return err
case <-ctx.Done():
return fmt.Errorf("work timed out after %v", remainingTime)
}
}
```
#### Adaptive Processing
```go
type AdaptiveProcessor struct {
processingTimes []time.Duration
targetUtilization float64 // 0.8 = use 80% of available time
}
func (p *AdaptiveProcessor) shouldProcessWork(frame BeatFrame) bool {
// Calculate phase time available
phaseTime := time.Duration(60/frame.TempoBPM*1000/3) * time.Millisecond
// Estimate processing time based on history
avgProcessingTime := p.calculateAverage()
// Only process if we have enough time
requiredTime := time.Duration(float64(avgProcessingTime) / p.targetUtilization)
return phaseTime >= requiredTime
}
```
### Performance Optimization
#### Batch Processing within Beats
```go
func (p *BeatProcessor) executePhase(frame BeatFrame) error {
// Calculate optimal batch size based on tempo
phaseDuration := time.Duration(60/frame.TempoBPM*1000/3) * time.Millisecond
targetTime := time.Duration(float64(phaseDuration) * 0.8) // Use 80% of time
// Process work in batches
batchSize := p.calculateOptimalBatchSize(targetTime)
for p.hasWork() && time.Until(frame.DeadlineAt) > time.Second {
batch := p.getWorkBatch(batchSize)
if err := p.processBatch(batch); err != nil {
return err
}
}
return nil
}
```
#### Caching and Pre-computation
```go
type SmartProcessor struct {
cache map[string]interface{}
precomputed map[int64]interface{} // Keyed by beat index
}
func (p *SmartProcessor) planPhase(frame BeatFrame) {
// Pre-compute work for future beats during plan phase
nextBeat := frame.BeatIndex + 1
if _, exists := p.precomputed[nextBeat]; !exists {
p.precomputed[nextBeat] = p.precomputeWork(nextBeat)
}
// Cache frequently accessed data
p.cacheRelevantData(frame)
}
func (p *SmartProcessor) executePhase(frame BeatFrame) {
// Use pre-computed results if available
if precomputed, exists := p.precomputed[frame.BeatIndex]; exists {
return p.usePrecomputedWork(precomputed)
}
// Fall back to real-time computation
return p.computeWork(frame)
}
```
## Performance Monitoring
### Key Metrics
Track these metrics for tempo optimization:
```go
type TempoMetrics struct {
// Timing metrics
BeatProcessingLatency time.Duration // How long beats take to process
PhaseCompletionRate float64 // % of phases completed on time
DeadlineMissRate float64 // % of deadlines missed
// Resource metrics
CPUUtilization float64 // CPU usage during beats
MemoryUtilization float64 // Memory usage
NetworkBandwidth int64 // Bytes/sec for BACKBEAT messages
// Throughput metrics
TasksPerBeat int // Work completed per beat
BeatsPerSecond float64 // Effective beat processing rate
TempoDriftMS float64 // How far behind/ahead we're running
}
```
### Performance Alerts
```go
func (m *TempoMetrics) checkAlerts() []Alert {
var alerts []Alert
// Beat processing taking too long
if m.BeatProcessingLatency > m.phaseDuration() * 0.9 {
alerts = append(alerts, Alert{
Level: "warning",
Message: "Beat processing approaching deadline",
Recommendation: "Consider reducing tempo or optimizing processing",
})
}
// Missing too many deadlines
if m.DeadlineMissRate > 0.05 { // 5%
alerts = append(alerts, Alert{
Level: "critical",
Message: "High deadline miss rate",
Recommendation: "Reduce tempo immediately or scale resources",
})
}
// Resource exhaustion
if m.CPUUtilization > 0.9 {
alerts = append(alerts, Alert{
Level: "warning",
Message: "High CPU utilization",
Recommendation: "Scale up or reduce workload per beat",
})
}
return alerts
}
```
### Adaptive Tempo Adjustment
```go
type TempoController struct {
currentTempo float64
targetLatency time.Duration
adjustmentRate float64 // How aggressively to adjust
}
func (tc *TempoController) adjustTempo(metrics TempoMetrics) float64 {
// Calculate desired tempo based on performance
if metrics.DeadlineMissRate > 0.02 { // 2% miss rate
// Slow down
tc.currentTempo *= (1.0 - tc.adjustmentRate)
} else if metrics.PhaseCompletionRate > 0.95 && metrics.CPUUtilization < 0.7 {
// Speed up
tc.currentTempo *= (1.0 + tc.adjustmentRate)
}
// Apply constraints
tc.currentTempo = math.Max(0.1, tc.currentTempo) // Minimum 0.1 BPM
tc.currentTempo = math.Min(1000, tc.currentTempo) // Maximum 1000 BPM
return tc.currentTempo
}
```
## Load Testing and Capacity Planning
### Beat Load Testing
```go
func TestBeatProcessingUnderLoad(t *testing.T) {
processor := NewBeatProcessor()
tempo := 10.0 // 10 BPM = 6-second beats
beatInterval := time.Duration(60/tempo) * time.Second
// Simulate sustained load
for i := 0; i < 1000; i++ {
frame := generateBeatFrame(i, tempo)
start := time.Now()
err := processor.ProcessBeat(frame)
duration := time.Since(start)
// Verify processing completed within phase duration
phaseDuration := beatInterval / 3
assert.Less(t, duration, phaseDuration)
assert.NoError(t, err)
// Wait for next beat
time.Sleep(beatInterval)
}
}
```
### Capacity Planning
```go
type CapacityPlanner struct {
maxTempo float64
resourceLimits ResourceLimits
taskCharacteristics TaskProfile
}
func (cp *CapacityPlanner) calculateMaxTempo() float64 {
// Based on CPU capacity
cpuConstrainedTempo := 60.0 / (cp.taskCharacteristics.CPUTime * 3)
// Based on memory capacity
memConstrainedTempo := cp.resourceLimits.Memory / cp.taskCharacteristics.MemoryPerBeat
// Based on I/O capacity
ioConstrainedTempo := cp.resourceLimits.IOPS / cp.taskCharacteristics.IOPerBeat
// Take the minimum (most restrictive constraint)
return math.Min(cpuConstrainedTempo, math.Min(memConstrainedTempo, ioConstrainedTempo))
}
```
## Common Patterns and Anti-Patterns
### ✅ Good Patterns
#### Progressive Backoff
```go
func (p *Processor) handleOverload() {
if p.metrics.DeadlineMissRate > 0.1 {
// Temporarily reduce work per beat
p.workPerBeat *= 0.8
log.Warn("Reducing work per beat due to overload")
}
}
```
#### Graceful Degradation
```go
func (p *Processor) executePhase(frame BeatFrame) error {
timeRemaining := time.Until(frame.DeadlineAt)
if timeRemaining < p.minimumTime {
// Skip non-essential work
return p.executeEssentialOnly(frame)
}
return p.executeFullWorkload(frame)
}
```
#### Work Prioritization
```go
func (p *Processor) planPhase(frame BeatFrame) {
// Sort work by priority and deadline
work := p.getAvailableWork()
sort.Sort(ByPriorityAndDeadline(work))
// Plan only what can be completed in time
plannedWork := p.selectWorkForTempo(work, frame.TempoBPM)
p.scheduleWork(plannedWork)
}
```
### ❌ Anti-Patterns
#### Blocking I/O in Beat Processing
```go
// DON'T: Synchronous I/O can cause deadline misses
func badExecutePhase(frame BeatFrame) error {
data := fetchFromDatabase() // Blocking call!
return processData(data)
}
// DO: Use async I/O with timeouts
func goodExecutePhase(frame BeatFrame) error {
ctx, cancel := context.WithDeadline(context.Background(), frame.DeadlineAt)
defer cancel()
data, err := fetchFromDatabaseAsync(ctx)
if err != nil {
return err
}
return processData(data)
}
```
#### Ignoring Tempo Changes
```go
// DON'T: Assume tempo is constant
func badBeatHandler(frame BeatFrame) {
// Hard-coded timing assumptions
time.Sleep(10 * time.Second) // Fails if tempo > 6 BPM!
}
// DO: Adapt to current tempo
func goodBeatHandler(frame BeatFrame) {
phaseDuration := time.Duration(60/frame.TempoBPM*1000/3) * time.Millisecond
maxWorkTime := time.Duration(float64(phaseDuration) * 0.8)
// Adapt work to available time
ctx, cancel := context.WithTimeout(context.Background(), maxWorkTime)
defer cancel()
doWork(ctx)
}
```
#### Unbounded Work Queues
```go
// DON'T: Let work queues grow infinitely
type BadProcessor struct {
workQueue chan Task // Unbounded queue
}
// DO: Use bounded queues with backpressure
type GoodProcessor struct {
workQueue chan Task // Bounded queue
metrics *TempoMetrics
}
func (p *GoodProcessor) addWork(task Task) error {
select {
case p.workQueue <- task:
return nil
default:
p.metrics.WorkRejectedCount++
return ErrQueueFull
}
}
```
## Troubleshooting Performance Issues
### Diagnostic Checklist
1. **Beat Processing Time**: Are beats completing within phase deadlines?
2. **Resource Utilization**: Is CPU/memory/I/O being over-utilized?
3. **Network Latency**: Are BACKBEAT messages arriving late?
4. **Work Distribution**: Is work evenly distributed across beats?
5. **Error Rates**: Are errors causing processing delays?
### Performance Tuning Steps
1. **Measure Current Performance**
```bash
# Monitor beat processing metrics
kubectl logs deployment/my-service | grep "beat_processing_time"
# Check resource utilization
kubectl top pods
```
2. **Identify Bottlenecks**
```go
func profileBeatProcessing(frame BeatFrame) {
defer func(start time.Time) {
log.Infof("Beat %d phase %s took %v",
frame.BeatIndex, frame.Phase, time.Since(start))
}(time.Now())
// Your beat processing code here
}
```
3. **Optimize Critical Paths**
- Cache frequently accessed data
- Use connection pooling
- Implement circuit breakers
- Add request timeouts
4. **Scale Resources**
- Increase CPU/memory limits
- Add more replicas
- Use faster storage
- Optimize network configuration
5. **Adjust Tempo**
- Reduce tempo if overloaded
- Increase tempo if under-utilized
- Consider tempo auto-scaling
## Future Enhancements
### Planned Features
1. **Dynamic Tempo Scaling**: Automatic tempo adjustment based on load
2. **Beat Prediction**: ML-based prediction of optimal tempo
3. **Resource-Aware Scheduling**: Beat scheduling based on resource availability
4. **Cross-Service Tempo Negotiation**: Services negotiate optimal cluster tempo
### Experimental Features
1. **Hierarchical Beats**: Different tempo for different service types
2. **Beat Priorities**: Critical beats get processing preference
3. **Temporal Load Balancing**: Distribute work across beat phases
4. **Beat Replay**: Replay missed beats during low-load periods
Understanding and implementing these tempo guidelines will ensure your BACKBEAT-enabled services operate efficiently and reliably across the full range of CHORUS 2.0.0 workloads.