Phase 2: Implement Execution Environment Abstraction (v0.3.0)

This commit implements Phase 2 of the CHORUS Task Execution Engine development plan,
providing a comprehensive execution environment abstraction layer with Docker
container sandboxing support.

## New Features

### Core Sandbox Interface
- Comprehensive ExecutionSandbox interface with isolated task execution
- Support for command execution, file I/O, environment management
- Resource usage monitoring and sandbox lifecycle management
- Standardized error handling with SandboxError types and categories

### Docker Container Sandbox Implementation
- Full Docker API integration with secure container creation
- Transparent repository mounting with configurable read/write access
- Advanced security policies with capability dropping and privilege controls
- Comprehensive resource limits (CPU, memory, disk, processes, file handles)
- Support for tmpfs mounts, masked paths, and read-only bind mounts
- Container lifecycle management with proper cleanup and health monitoring

### Security & Resource Management
- Configurable security policies with SELinux, AppArmor, and Seccomp support
- Fine-grained capability management with secure defaults
- Network isolation options with configurable DNS and proxy settings
- Resource monitoring with real-time CPU, memory, and network usage tracking
- Comprehensive ulimits configuration for process and file handle limits

### Repository Integration
- Seamless repository mounting from local paths to container workspaces
- Git configuration support with user credentials and global settings
- File inclusion/exclusion patterns for selective repository access
- Configurable permissions and ownership for mounted repositories

### Testing Infrastructure
- Comprehensive test suite with 60+ test cases covering all functionality
- Docker integration tests with Alpine Linux containers (skipped in short mode)
- Mock sandbox implementation for unit testing without Docker dependencies
- Security policy validation tests with read-only filesystem enforcement
- Resource usage monitoring and cleanup verification tests

## Technical Details

### Dependencies Added
- github.com/docker/docker v28.4.0+incompatible - Docker API client
- github.com/docker/go-connections v0.6.0 - Docker connection utilities
- github.com/docker/go-units v0.5.0 - Docker units and formatting
- Associated Docker API dependencies for complete container management

### Architecture
- Interface-driven design enabling multiple sandbox implementations
- Comprehensive configuration structures for all sandbox aspects
- Resource usage tracking with detailed metrics collection
- Error handling with retryable error classification
- Proper cleanup and resource management throughout sandbox lifecycle

### Compatibility
- Maintains backward compatibility with existing CHORUS architecture
- Designed for future integration with Phase 3 Core Task Execution Engine
- Extensible design supporting additional sandbox implementations (VM, process)

This Phase 2 implementation provides the foundation for secure, isolated task
execution that will be integrated with the AI model providers from Phase 1
in the upcoming Phase 3 development.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
anthonyrawlins
2025-09-25 14:28:08 +10:00
parent d1252ade69
commit 8d9b62daf3
653 changed files with 88039 additions and 3766 deletions

View File

@@ -13,6 +13,7 @@ package unix
import (
"encoding/binary"
"slices"
"strconv"
"syscall"
"time"
@@ -417,7 +418,7 @@ func (sa *SockaddrUnix) sockaddr() (unsafe.Pointer, _Socklen, error) {
return nil, 0, EINVAL
}
sa.raw.Family = AF_UNIX
for i := 0; i < n; i++ {
for i := range n {
sa.raw.Path[i] = int8(name[i])
}
// length is family (uint16), name, NUL.
@@ -507,7 +508,7 @@ func (sa *SockaddrL2) sockaddr() (unsafe.Pointer, _Socklen, error) {
psm := (*[2]byte)(unsafe.Pointer(&sa.raw.Psm))
psm[0] = byte(sa.PSM)
psm[1] = byte(sa.PSM >> 8)
for i := 0; i < len(sa.Addr); i++ {
for i := range len(sa.Addr) {
sa.raw.Bdaddr[i] = sa.Addr[len(sa.Addr)-1-i]
}
cid := (*[2]byte)(unsafe.Pointer(&sa.raw.Cid))
@@ -589,11 +590,11 @@ func (sa *SockaddrCAN) sockaddr() (unsafe.Pointer, _Socklen, error) {
sa.raw.Family = AF_CAN
sa.raw.Ifindex = int32(sa.Ifindex)
rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
for i := 0; i < 4; i++ {
for i := range 4 {
sa.raw.Addr[i] = rx[i]
}
tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
for i := 0; i < 4; i++ {
for i := range 4 {
sa.raw.Addr[i+4] = tx[i]
}
return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
@@ -618,11 +619,11 @@ func (sa *SockaddrCANJ1939) sockaddr() (unsafe.Pointer, _Socklen, error) {
sa.raw.Family = AF_CAN
sa.raw.Ifindex = int32(sa.Ifindex)
n := (*[8]byte)(unsafe.Pointer(&sa.Name))
for i := 0; i < 8; i++ {
for i := range 8 {
sa.raw.Addr[i] = n[i]
}
p := (*[4]byte)(unsafe.Pointer(&sa.PGN))
for i := 0; i < 4; i++ {
for i := range 4 {
sa.raw.Addr[i+8] = p[i]
}
sa.raw.Addr[12] = sa.Addr
@@ -911,7 +912,7 @@ func (sa *SockaddrIUCV) sockaddr() (unsafe.Pointer, _Socklen, error) {
// These are EBCDIC encoded by the kernel, but we still need to pad them
// with blanks. Initializing with blanks allows the caller to feed in either
// a padded or an unpadded string.
for i := 0; i < 8; i++ {
for i := range 8 {
sa.raw.Nodeid[i] = ' '
sa.raw.User_id[i] = ' '
sa.raw.Name[i] = ' '
@@ -1148,7 +1149,7 @@ func anyToSockaddr(fd int, rsa *RawSockaddrAny) (Sockaddr, error) {
var user [8]byte
var name [8]byte
for i := 0; i < 8; i++ {
for i := range 8 {
user[i] = byte(pp.User_id[i])
name[i] = byte(pp.Name[i])
}
@@ -1173,11 +1174,11 @@ func anyToSockaddr(fd int, rsa *RawSockaddrAny) (Sockaddr, error) {
Ifindex: int(pp.Ifindex),
}
name := (*[8]byte)(unsafe.Pointer(&sa.Name))
for i := 0; i < 8; i++ {
for i := range 8 {
name[i] = pp.Addr[i]
}
pgn := (*[4]byte)(unsafe.Pointer(&sa.PGN))
for i := 0; i < 4; i++ {
for i := range 4 {
pgn[i] = pp.Addr[i+8]
}
addr := (*[1]byte)(unsafe.Pointer(&sa.Addr))
@@ -1188,11 +1189,11 @@ func anyToSockaddr(fd int, rsa *RawSockaddrAny) (Sockaddr, error) {
Ifindex: int(pp.Ifindex),
}
rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
for i := 0; i < 4; i++ {
for i := range 4 {
rx[i] = pp.Addr[i]
}
tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
for i := 0; i < 4; i++ {
for i := range 4 {
tx[i] = pp.Addr[i+4]
}
return sa, nil
@@ -2216,10 +2217,7 @@ func readvRacedetect(iovecs []Iovec, n int, err error) {
return
}
for i := 0; n > 0 && i < len(iovecs); i++ {
m := int(iovecs[i].Len)
if m > n {
m = n
}
m := min(int(iovecs[i].Len), n)
n -= m
if m > 0 {
raceWriteRange(unsafe.Pointer(iovecs[i].Base), m)
@@ -2270,10 +2268,7 @@ func writevRacedetect(iovecs []Iovec, n int) {
return
}
for i := 0; n > 0 && i < len(iovecs); i++ {
m := int(iovecs[i].Len)
if m > n {
m = n
}
m := min(int(iovecs[i].Len), n)
n -= m
if m > 0 {
raceReadRange(unsafe.Pointer(iovecs[i].Base), m)
@@ -2320,12 +2315,7 @@ func isGroupMember(gid int) bool {
return false
}
for _, g := range groups {
if g == gid {
return true
}
}
return false
return slices.Contains(groups, gid)
}
func isCapDacOverrideSet() bool {