Phase 2: Implement Execution Environment Abstraction (v0.3.0)

This commit implements Phase 2 of the CHORUS Task Execution Engine development plan,
providing a comprehensive execution environment abstraction layer with Docker
container sandboxing support.

## New Features

### Core Sandbox Interface
- Comprehensive ExecutionSandbox interface with isolated task execution
- Support for command execution, file I/O, environment management
- Resource usage monitoring and sandbox lifecycle management
- Standardized error handling with SandboxError types and categories

### Docker Container Sandbox Implementation
- Full Docker API integration with secure container creation
- Transparent repository mounting with configurable read/write access
- Advanced security policies with capability dropping and privilege controls
- Comprehensive resource limits (CPU, memory, disk, processes, file handles)
- Support for tmpfs mounts, masked paths, and read-only bind mounts
- Container lifecycle management with proper cleanup and health monitoring

### Security & Resource Management
- Configurable security policies with SELinux, AppArmor, and Seccomp support
- Fine-grained capability management with secure defaults
- Network isolation options with configurable DNS and proxy settings
- Resource monitoring with real-time CPU, memory, and network usage tracking
- Comprehensive ulimits configuration for process and file handle limits

### Repository Integration
- Seamless repository mounting from local paths to container workspaces
- Git configuration support with user credentials and global settings
- File inclusion/exclusion patterns for selective repository access
- Configurable permissions and ownership for mounted repositories

### Testing Infrastructure
- Comprehensive test suite with 60+ test cases covering all functionality
- Docker integration tests with Alpine Linux containers (skipped in short mode)
- Mock sandbox implementation for unit testing without Docker dependencies
- Security policy validation tests with read-only filesystem enforcement
- Resource usage monitoring and cleanup verification tests

## Technical Details

### Dependencies Added
- github.com/docker/docker v28.4.0+incompatible - Docker API client
- github.com/docker/go-connections v0.6.0 - Docker connection utilities
- github.com/docker/go-units v0.5.0 - Docker units and formatting
- Associated Docker API dependencies for complete container management

### Architecture
- Interface-driven design enabling multiple sandbox implementations
- Comprehensive configuration structures for all sandbox aspects
- Resource usage tracking with detailed metrics collection
- Error handling with retryable error classification
- Proper cleanup and resource management throughout sandbox lifecycle

### Compatibility
- Maintains backward compatibility with existing CHORUS architecture
- Designed for future integration with Phase 3 Core Task Execution Engine
- Extensible design supporting additional sandbox implementations (VM, process)

This Phase 2 implementation provides the foundation for secure, isolated task
execution that will be integrated with the AI model providers from Phase 1
in the upcoming Phase 3 development.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
anthonyrawlins
2025-09-25 14:28:08 +10:00
parent d1252ade69
commit 8d9b62daf3
653 changed files with 88039 additions and 3766 deletions

View File

@@ -161,7 +161,7 @@ const (
// IsValid reports whether the syntax is valid.
func (s Syntax) IsValid() bool {
switch s {
case Proto2, Proto3:
case Proto2, Proto3, Editions:
return true
default:
return false

View File

@@ -373,6 +373,8 @@ func (p *SourcePath) appendFieldOptions(b []byte) []byte {
b = p.appendRepeatedField(b, "edition_defaults", (*SourcePath).appendFieldOptions_EditionDefault)
case 21:
b = p.appendSingularField(b, "features", (*SourcePath).appendFeatureSet)
case 22:
b = p.appendSingularField(b, "feature_support", (*SourcePath).appendFieldOptions_FeatureSupport)
case 999:
b = p.appendRepeatedField(b, "uninterpreted_option", (*SourcePath).appendUninterpretedOption)
}
@@ -483,6 +485,8 @@ func (p *SourcePath) appendEnumValueOptions(b []byte) []byte {
b = p.appendSingularField(b, "features", (*SourcePath).appendFeatureSet)
case 3:
b = p.appendSingularField(b, "debug_redact", nil)
case 4:
b = p.appendSingularField(b, "feature_support", (*SourcePath).appendFieldOptions_FeatureSupport)
case 999:
b = p.appendRepeatedField(b, "uninterpreted_option", (*SourcePath).appendUninterpretedOption)
}
@@ -519,6 +523,23 @@ func (p *SourcePath) appendFieldOptions_EditionDefault(b []byte) []byte {
return b
}
func (p *SourcePath) appendFieldOptions_FeatureSupport(b []byte) []byte {
if len(*p) == 0 {
return b
}
switch (*p)[0] {
case 1:
b = p.appendSingularField(b, "edition_introduced", nil)
case 2:
b = p.appendSingularField(b, "edition_deprecated", nil)
case 3:
b = p.appendSingularField(b, "deprecation_warning", nil)
case 4:
b = p.appendSingularField(b, "edition_removed", nil)
}
return b
}
func (p *SourcePath) appendUninterpretedOption_NamePart(b []byte) []byte {
if len(*p) == 0 {
return b

View File

@@ -510,7 +510,7 @@ type ExtensionType interface {
//
// ValueOf is more extensive than protoreflect.ValueOf for a given field's
// value as it has more type information available.
ValueOf(interface{}) Value
ValueOf(any) Value
// InterfaceOf completely unwraps the Value to the underlying Go type.
// InterfaceOf panics if the input is nil or does not represent the
@@ -519,13 +519,13 @@ type ExtensionType interface {
//
// InterfaceOf is able to unwrap the Value further than Value.Interface
// as it has more type information available.
InterfaceOf(Value) interface{}
InterfaceOf(Value) any
// IsValidValue reports whether the Value is valid to assign to the field.
IsValidValue(Value) bool
// IsValidInterface reports whether the input is valid to assign to the field.
IsValidInterface(interface{}) bool
IsValidInterface(any) bool
}
// EnumDescriptor describes an enum and
@@ -544,6 +544,12 @@ type EnumDescriptor interface {
// ReservedRanges is a list of reserved ranges of enum numbers.
ReservedRanges() EnumRanges
// IsClosed reports whether this enum uses closed semantics.
// See https://protobuf.dev/programming-guides/enum/#definitions.
// Note: the Go protobuf implementation is not spec compliant and treats
// all enums as open enums.
IsClosed() bool
isEnumDescriptor
}
type isEnumDescriptor interface{ ProtoType(EnumDescriptor) }

View File

@@ -32,11 +32,11 @@ const (
type value struct {
pragma.DoNotCompare // 0B
typ valueType // 8B
num uint64 // 8B
str string // 16B
bin []byte // 24B
iface interface{} // 16B
typ valueType // 8B
num uint64 // 8B
str string // 16B
bin []byte // 24B
iface any // 16B
}
func valueOfString(v string) Value {
@@ -45,7 +45,7 @@ func valueOfString(v string) Value {
func valueOfBytes(v []byte) Value {
return Value{typ: bytesType, bin: v}
}
func valueOfIface(v interface{}) Value {
func valueOfIface(v any) Value {
return Value{typ: ifaceType, iface: v}
}
@@ -55,6 +55,6 @@ func (v Value) getString() string {
func (v Value) getBytes() []byte {
return v.bin
}
func (v Value) getIface() interface{} {
func (v Value) getIface() any {
return v.iface
}

View File

@@ -69,8 +69,8 @@ import (
// composite Value. Modifying an empty, read-only value panics.
type Value value
// The protoreflect API uses a custom Value union type instead of interface{}
// to keep the future open for performance optimizations. Using an interface{}
// The protoreflect API uses a custom Value union type instead of any
// to keep the future open for performance optimizations. Using an any
// always incurs an allocation for primitives (e.g., int64) since it needs to
// be boxed on the heap (as interfaces can only contain pointers natively).
// Instead, we represent the Value union as a flat struct that internally keeps
@@ -85,7 +85,7 @@ type Value value
// ValueOf returns a Value initialized with the concrete value stored in v.
// This panics if the type does not match one of the allowed types in the
// Value union.
func ValueOf(v interface{}) Value {
func ValueOf(v any) Value {
switch v := v.(type) {
case nil:
return Value{}
@@ -192,10 +192,10 @@ func (v Value) IsValid() bool {
return v.typ != nilType
}
// Interface returns v as an interface{}.
// Interface returns v as an any.
//
// Invariant: v == ValueOf(v).Interface()
func (v Value) Interface() interface{} {
func (v Value) Interface() any {
switch v.typ {
case nilType:
return nil
@@ -406,8 +406,8 @@ func (k MapKey) IsValid() bool {
return Value(k).IsValid()
}
// Interface returns k as an interface{}.
func (k MapKey) Interface() interface{} {
// Interface returns k as an any.
func (k MapKey) Interface() any {
return Value(k).Interface()
}

View File

@@ -45,7 +45,7 @@ var (
// typeOf returns a pointer to the Go type information.
// The pointer is comparable and equal if and only if the types are identical.
func typeOf(t interface{}) unsafe.Pointer {
func typeOf(t any) unsafe.Pointer {
return (*ifaceHeader)(unsafe.Pointer(&t)).Type
}
@@ -80,7 +80,7 @@ func valueOfBytes(v []byte) Value {
p := (*sliceHeader)(unsafe.Pointer(&v))
return Value{typ: bytesType, ptr: p.Data, num: uint64(len(v))}
}
func valueOfIface(v interface{}) Value {
func valueOfIface(v any) Value {
p := (*ifaceHeader)(unsafe.Pointer(&v))
return Value{typ: p.Type, ptr: p.Data}
}
@@ -93,7 +93,7 @@ func (v Value) getBytes() (x []byte) {
*(*sliceHeader)(unsafe.Pointer(&x)) = sliceHeader{Data: v.ptr, Len: int(v.num), Cap: int(v.num)}
return x
}
func (v Value) getIface() (x interface{}) {
func (v Value) getIface() (x any) {
*(*ifaceHeader)(unsafe.Pointer(&x)) = ifaceHeader{Type: v.typ, Data: v.ptr}
return x
}

View File

@@ -15,7 +15,7 @@ import (
type (
ifaceHeader struct {
_ [0]interface{} // if interfaces have greater alignment than unsafe.Pointer, this will enforce it.
_ [0]any // if interfaces have greater alignment than unsafe.Pointer, this will enforce it.
Type unsafe.Pointer
Data unsafe.Pointer
}
@@ -37,7 +37,7 @@ var (
// typeOf returns a pointer to the Go type information.
// The pointer is comparable and equal if and only if the types are identical.
func typeOf(t interface{}) unsafe.Pointer {
func typeOf(t any) unsafe.Pointer {
return (*ifaceHeader)(unsafe.Pointer(&t)).Type
}
@@ -70,7 +70,7 @@ func valueOfString(v string) Value {
func valueOfBytes(v []byte) Value {
return Value{typ: bytesType, ptr: unsafe.Pointer(unsafe.SliceData(v)), num: uint64(len(v))}
}
func valueOfIface(v interface{}) Value {
func valueOfIface(v any) Value {
p := (*ifaceHeader)(unsafe.Pointer(&v))
return Value{typ: p.Type, ptr: p.Data}
}
@@ -81,7 +81,7 @@ func (v Value) getString() string {
func (v Value) getBytes() []byte {
return unsafe.Slice((*byte)(v.ptr), v.num)
}
func (v Value) getIface() (x interface{}) {
func (v Value) getIface() (x any) {
*(*ifaceHeader)(unsafe.Pointer(&x)) = ifaceHeader{Type: v.typ, Data: v.ptr}
return x
}