Integrate BACKBEAT SDK and resolve KACHING license validation
Major integrations and fixes: - Added BACKBEAT SDK integration for P2P operation timing - Implemented beat-aware status tracking for distributed operations - Added Docker secrets support for secure license management - Resolved KACHING license validation via HTTPS/TLS - Updated docker-compose configuration for clean stack deployment - Disabled rollback policies to prevent deployment failures - Added license credential storage (CHORUS-DEV-MULTI-001) Technical improvements: - BACKBEAT P2P operation tracking with phase management - Enhanced configuration system with file-based secrets - Improved error handling for license validation - Clean separation of KACHING and CHORUS deployment stacks 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
671
vendor/github.com/RoaringBitmap/roaring/v2/serialization_littleendian.go
generated
vendored
Normal file
671
vendor/github.com/RoaringBitmap/roaring/v2/serialization_littleendian.go
generated
vendored
Normal file
@@ -0,0 +1,671 @@
|
||||
//go:build (386 && !appengine) || (amd64 && !appengine) || (arm && !appengine) || (arm64 && !appengine) || (ppc64le && !appengine) || (mipsle && !appengine) || (mips64le && !appengine) || (mips64p32le && !appengine) || (wasm && !appengine)
|
||||
// +build 386,!appengine amd64,!appengine arm,!appengine arm64,!appengine ppc64le,!appengine mipsle,!appengine mips64le,!appengine mips64p32le,!appengine wasm,!appengine
|
||||
|
||||
package roaring
|
||||
|
||||
import (
|
||||
"encoding/binary"
|
||||
"errors"
|
||||
"io"
|
||||
"reflect"
|
||||
"runtime"
|
||||
"unsafe"
|
||||
)
|
||||
|
||||
func (ac *arrayContainer) writeTo(stream io.Writer) (int, error) {
|
||||
buf := uint16SliceAsByteSlice(ac.content)
|
||||
return stream.Write(buf)
|
||||
}
|
||||
|
||||
func (bc *bitmapContainer) writeTo(stream io.Writer) (int, error) {
|
||||
if bc.cardinality <= arrayDefaultMaxSize {
|
||||
return 0, errors.New("refusing to write bitmap container with cardinality of array container")
|
||||
}
|
||||
buf := uint64SliceAsByteSlice(bc.bitmap)
|
||||
return stream.Write(buf)
|
||||
}
|
||||
|
||||
func uint64SliceAsByteSlice(slice []uint64) []byte {
|
||||
// make a new slice header
|
||||
header := *(*reflect.SliceHeader)(unsafe.Pointer(&slice))
|
||||
|
||||
// update its capacity and length
|
||||
header.Len *= 8
|
||||
header.Cap *= 8
|
||||
|
||||
// instantiate result and use KeepAlive so data isn't unmapped.
|
||||
result := *(*[]byte)(unsafe.Pointer(&header))
|
||||
runtime.KeepAlive(&slice)
|
||||
|
||||
// return it
|
||||
return result
|
||||
}
|
||||
|
||||
func uint16SliceAsByteSlice(slice []uint16) []byte {
|
||||
// make a new slice header
|
||||
header := *(*reflect.SliceHeader)(unsafe.Pointer(&slice))
|
||||
|
||||
// update its capacity and length
|
||||
header.Len *= 2
|
||||
header.Cap *= 2
|
||||
|
||||
// instantiate result and use KeepAlive so data isn't unmapped.
|
||||
result := *(*[]byte)(unsafe.Pointer(&header))
|
||||
runtime.KeepAlive(&slice)
|
||||
|
||||
// return it
|
||||
return result
|
||||
}
|
||||
|
||||
func interval16SliceAsByteSlice(slice []interval16) []byte {
|
||||
// make a new slice header
|
||||
header := *(*reflect.SliceHeader)(unsafe.Pointer(&slice))
|
||||
|
||||
// update its capacity and length
|
||||
header.Len *= 4
|
||||
header.Cap *= 4
|
||||
|
||||
// instantiate result and use KeepAlive so data isn't unmapped.
|
||||
result := *(*[]byte)(unsafe.Pointer(&header))
|
||||
runtime.KeepAlive(&slice)
|
||||
|
||||
// return it
|
||||
return result
|
||||
}
|
||||
|
||||
func (bc *bitmapContainer) asLittleEndianByteSlice() []byte {
|
||||
return uint64SliceAsByteSlice(bc.bitmap)
|
||||
}
|
||||
|
||||
// Deserialization code follows
|
||||
|
||||
// //
|
||||
// These methods (byteSliceAsUint16Slice,...) do not make copies,
|
||||
// they are pointer-based (unsafe). The caller is responsible to
|
||||
// ensure that the input slice does not get garbage collected, deleted
|
||||
// or modified while you hold the returned slince.
|
||||
// //
|
||||
func byteSliceAsUint16Slice(slice []byte) (result []uint16) { // here we create a new slice holder
|
||||
if len(slice)%2 != 0 {
|
||||
panic("Slice size should be divisible by 2")
|
||||
}
|
||||
// reference: https://go101.org/article/unsafe.html
|
||||
|
||||
// make a new slice header
|
||||
bHeader := (*reflect.SliceHeader)(unsafe.Pointer(&slice))
|
||||
rHeader := (*reflect.SliceHeader)(unsafe.Pointer(&result))
|
||||
|
||||
// transfer the data from the given slice to a new variable (our result)
|
||||
rHeader.Data = bHeader.Data
|
||||
rHeader.Len = bHeader.Len / 2
|
||||
rHeader.Cap = bHeader.Cap / 2
|
||||
|
||||
// instantiate result and use KeepAlive so data isn't unmapped.
|
||||
runtime.KeepAlive(&slice) // it is still crucial, GC can free it)
|
||||
|
||||
// return result
|
||||
return
|
||||
}
|
||||
|
||||
func byteSliceAsUint64Slice(slice []byte) (result []uint64) {
|
||||
if len(slice)%8 != 0 {
|
||||
panic("Slice size should be divisible by 8")
|
||||
}
|
||||
// reference: https://go101.org/article/unsafe.html
|
||||
|
||||
// make a new slice header
|
||||
bHeader := (*reflect.SliceHeader)(unsafe.Pointer(&slice))
|
||||
rHeader := (*reflect.SliceHeader)(unsafe.Pointer(&result))
|
||||
|
||||
// transfer the data from the given slice to a new variable (our result)
|
||||
rHeader.Data = bHeader.Data
|
||||
rHeader.Len = bHeader.Len / 8
|
||||
rHeader.Cap = bHeader.Cap / 8
|
||||
|
||||
// instantiate result and use KeepAlive so data isn't unmapped.
|
||||
runtime.KeepAlive(&slice) // it is still crucial, GC can free it)
|
||||
|
||||
// return result
|
||||
return
|
||||
}
|
||||
|
||||
func byteSliceAsInterval16Slice(slice []byte) (result []interval16) {
|
||||
if len(slice)%4 != 0 {
|
||||
panic("Slice size should be divisible by 4")
|
||||
}
|
||||
// reference: https://go101.org/article/unsafe.html
|
||||
|
||||
// make a new slice header
|
||||
bHeader := (*reflect.SliceHeader)(unsafe.Pointer(&slice))
|
||||
rHeader := (*reflect.SliceHeader)(unsafe.Pointer(&result))
|
||||
|
||||
// transfer the data from the given slice to a new variable (our result)
|
||||
rHeader.Data = bHeader.Data
|
||||
rHeader.Len = bHeader.Len / 4
|
||||
rHeader.Cap = bHeader.Cap / 4
|
||||
|
||||
// instantiate result and use KeepAlive so data isn't unmapped.
|
||||
runtime.KeepAlive(&slice) // it is still crucial, GC can free it)
|
||||
|
||||
// return result
|
||||
return
|
||||
}
|
||||
|
||||
func byteSliceAsContainerSlice(slice []byte) (result []container) {
|
||||
var c container
|
||||
containerSize := int(unsafe.Sizeof(c))
|
||||
|
||||
if len(slice)%containerSize != 0 {
|
||||
panic("Slice size should be divisible by unsafe.Sizeof(container)")
|
||||
}
|
||||
// reference: https://go101.org/article/unsafe.html
|
||||
|
||||
// make a new slice header
|
||||
bHeader := (*reflect.SliceHeader)(unsafe.Pointer(&slice))
|
||||
rHeader := (*reflect.SliceHeader)(unsafe.Pointer(&result))
|
||||
|
||||
// transfer the data from the given slice to a new variable (our result)
|
||||
rHeader.Data = bHeader.Data
|
||||
rHeader.Len = bHeader.Len / containerSize
|
||||
rHeader.Cap = bHeader.Cap / containerSize
|
||||
|
||||
// instantiate result and use KeepAlive so data isn't unmapped.
|
||||
runtime.KeepAlive(&slice) // it is still crucial, GC can free it)
|
||||
|
||||
// return result
|
||||
return
|
||||
}
|
||||
|
||||
func byteSliceAsBitsetSlice(slice []byte) (result []bitmapContainer) {
|
||||
bitsetSize := int(unsafe.Sizeof(bitmapContainer{}))
|
||||
if len(slice)%bitsetSize != 0 {
|
||||
panic("Slice size should be divisible by unsafe.Sizeof(bitmapContainer)")
|
||||
}
|
||||
// reference: https://go101.org/article/unsafe.html
|
||||
|
||||
// make a new slice header
|
||||
bHeader := (*reflect.SliceHeader)(unsafe.Pointer(&slice))
|
||||
rHeader := (*reflect.SliceHeader)(unsafe.Pointer(&result))
|
||||
|
||||
// transfer the data from the given slice to a new variable (our result)
|
||||
rHeader.Data = bHeader.Data
|
||||
rHeader.Len = bHeader.Len / bitsetSize
|
||||
rHeader.Cap = bHeader.Cap / bitsetSize
|
||||
|
||||
// instantiate result and use KeepAlive so data isn't unmapped.
|
||||
runtime.KeepAlive(&slice) // it is still crucial, GC can free it)
|
||||
|
||||
// return result
|
||||
return
|
||||
}
|
||||
|
||||
func byteSliceAsArraySlice(slice []byte) (result []arrayContainer) {
|
||||
arraySize := int(unsafe.Sizeof(arrayContainer{}))
|
||||
if len(slice)%arraySize != 0 {
|
||||
panic("Slice size should be divisible by unsafe.Sizeof(arrayContainer)")
|
||||
}
|
||||
// reference: https://go101.org/article/unsafe.html
|
||||
|
||||
// make a new slice header
|
||||
bHeader := (*reflect.SliceHeader)(unsafe.Pointer(&slice))
|
||||
rHeader := (*reflect.SliceHeader)(unsafe.Pointer(&result))
|
||||
|
||||
// transfer the data from the given slice to a new variable (our result)
|
||||
rHeader.Data = bHeader.Data
|
||||
rHeader.Len = bHeader.Len / arraySize
|
||||
rHeader.Cap = bHeader.Cap / arraySize
|
||||
|
||||
// instantiate result and use KeepAlive so data isn't unmapped.
|
||||
runtime.KeepAlive(&slice) // it is still crucial, GC can free it)
|
||||
|
||||
// return result
|
||||
return
|
||||
}
|
||||
|
||||
func byteSliceAsRun16Slice(slice []byte) (result []runContainer16) {
|
||||
run16Size := int(unsafe.Sizeof(runContainer16{}))
|
||||
if len(slice)%run16Size != 0 {
|
||||
panic("Slice size should be divisible by unsafe.Sizeof(runContainer16)")
|
||||
}
|
||||
// reference: https://go101.org/article/unsafe.html
|
||||
|
||||
// make a new slice header
|
||||
bHeader := (*reflect.SliceHeader)(unsafe.Pointer(&slice))
|
||||
rHeader := (*reflect.SliceHeader)(unsafe.Pointer(&result))
|
||||
|
||||
// transfer the data from the given slice to a new variable (our result)
|
||||
rHeader.Data = bHeader.Data
|
||||
rHeader.Len = bHeader.Len / run16Size
|
||||
rHeader.Cap = bHeader.Cap / run16Size
|
||||
|
||||
// instantiate result and use KeepAlive so data isn't unmapped.
|
||||
runtime.KeepAlive(&slice) // it is still crucial, GC can free it)
|
||||
|
||||
// return result
|
||||
return
|
||||
}
|
||||
|
||||
func byteSliceAsBoolSlice(slice []byte) (result []bool) {
|
||||
boolSize := int(unsafe.Sizeof(true))
|
||||
if len(slice)%boolSize != 0 {
|
||||
panic("Slice size should be divisible by unsafe.Sizeof(bool)")
|
||||
}
|
||||
// reference: https://go101.org/article/unsafe.html
|
||||
|
||||
// make a new slice header
|
||||
bHeader := (*reflect.SliceHeader)(unsafe.Pointer(&slice))
|
||||
rHeader := (*reflect.SliceHeader)(unsafe.Pointer(&result))
|
||||
|
||||
// transfer the data from the given slice to a new variable (our result)
|
||||
rHeader.Data = bHeader.Data
|
||||
rHeader.Len = bHeader.Len / boolSize
|
||||
rHeader.Cap = bHeader.Cap / boolSize
|
||||
|
||||
// instantiate result and use KeepAlive so data isn't unmapped.
|
||||
runtime.KeepAlive(&slice) // it is still crucial, GC can free it)
|
||||
|
||||
// return result
|
||||
return
|
||||
}
|
||||
|
||||
// FrozenView creates a static view of a serialized bitmap stored in buf.
|
||||
// It uses CRoaring's frozen bitmap format.
|
||||
//
|
||||
// The format specification is available here:
|
||||
// https://github.com/RoaringBitmap/CRoaring/blob/2c867e9f9c9e2a3a7032791f94c4c7ae3013f6e0/src/roaring.c#L2756-L2783
|
||||
//
|
||||
// The provided byte array (buf) is expected to be a constant.
|
||||
// The function makes the best effort attempt not to copy data.
|
||||
// Only little endian is supported. The function will err if it detects a big
|
||||
// endian serialized file.
|
||||
// You should take care not to modify buff as it will likely result in
|
||||
// unexpected program behavior.
|
||||
// If said buffer comes from a memory map, it's advisable to give it read
|
||||
// only permissions, either at creation or by calling Mprotect from the
|
||||
// golang.org/x/sys/unix package.
|
||||
//
|
||||
// Resulting bitmaps are effectively immutable in the following sense:
|
||||
// a copy-on-write marker is used so that when you modify the resulting
|
||||
// bitmap, copies of selected data (containers) are made.
|
||||
// You should *not* change the copy-on-write status of the resulting
|
||||
// bitmaps (SetCopyOnWrite).
|
||||
//
|
||||
// If buf becomes unavailable, then a bitmap created with
|
||||
// FromBuffer would be effectively broken. Furthermore, any
|
||||
// bitmap derived from this bitmap (e.g., via Or, And) might
|
||||
// also be broken. Thus, before making buf unavailable, you should
|
||||
// call CloneCopyOnWriteContainers on all such bitmaps.
|
||||
func (rb *Bitmap) FrozenView(buf []byte) error {
|
||||
return rb.highlowcontainer.frozenView(buf)
|
||||
}
|
||||
|
||||
func (rb *Bitmap) MustFrozenView(buf []byte) error {
|
||||
if err := rb.FrozenView(buf); err != nil {
|
||||
return err
|
||||
}
|
||||
err := rb.Validate()
|
||||
|
||||
return err
|
||||
}
|
||||
|
||||
/* Verbatim specification from CRoaring.
|
||||
*
|
||||
* FROZEN SERIALIZATION FORMAT DESCRIPTION
|
||||
*
|
||||
* -- (beginning must be aligned by 32 bytes) --
|
||||
* <bitset_data> uint64_t[BITSET_CONTAINER_SIZE_IN_WORDS * num_bitset_containers]
|
||||
* <run_data> rle16_t[total number of rle elements in all run containers]
|
||||
* <array_data> uint16_t[total number of array elements in all array containers]
|
||||
* <keys> uint16_t[num_containers]
|
||||
* <counts> uint16_t[num_containers]
|
||||
* <typecodes> uint8_t[num_containers]
|
||||
* <header> uint32_t
|
||||
*
|
||||
* <header> is a 4-byte value which is a bit union of frozenCookie (15 bits)
|
||||
* and the number of containers (17 bits).
|
||||
*
|
||||
* <counts> stores number of elements for every container.
|
||||
* Its meaning depends on container type.
|
||||
* For array and bitset containers, this value is the container cardinality minus one.
|
||||
* For run container, it is the number of rle_t elements (n_runs).
|
||||
*
|
||||
* <bitset_data>,<array_data>,<run_data> are flat arrays of elements of
|
||||
* all containers of respective type.
|
||||
*
|
||||
* <*_data> and <keys> are kept close together because they are not accessed
|
||||
* during deserilization. This may reduce IO in case of large mmaped bitmaps.
|
||||
* All members have their native alignments during deserilization except <header>,
|
||||
* which is not guaranteed to be aligned by 4 bytes.
|
||||
*/
|
||||
const frozenCookie = 13766
|
||||
|
||||
var (
|
||||
// ErrFrozenBitmapInvalidCookie is returned when the header does not contain the frozenCookie.
|
||||
ErrFrozenBitmapInvalidCookie = errors.New("header does not contain the frozenCookie")
|
||||
// ErrFrozenBitmapBigEndian is returned when the header is big endian.
|
||||
ErrFrozenBitmapBigEndian = errors.New("loading big endian frozen bitmaps is not supported")
|
||||
// ErrFrozenBitmapIncomplete is returned when the buffer is too small to contain a frozen bitmap.
|
||||
ErrFrozenBitmapIncomplete = errors.New("input buffer too small to contain a frozen bitmap")
|
||||
// ErrFrozenBitmapOverpopulated is returned when the number of containers is too large.
|
||||
ErrFrozenBitmapOverpopulated = errors.New("too many containers")
|
||||
// ErrFrozenBitmapUnexpectedData is returned when the buffer contains unexpected data.
|
||||
ErrFrozenBitmapUnexpectedData = errors.New("spurious data in input")
|
||||
// ErrFrozenBitmapInvalidTypecode is returned when the typecode is invalid.
|
||||
ErrFrozenBitmapInvalidTypecode = errors.New("unrecognized typecode")
|
||||
// ErrFrozenBitmapBufferTooSmall is returned when the buffer is too small.
|
||||
ErrFrozenBitmapBufferTooSmall = errors.New("buffer too small")
|
||||
)
|
||||
|
||||
func (ra *roaringArray) frozenView(buf []byte) error {
|
||||
if len(buf) < 4 {
|
||||
return ErrFrozenBitmapIncomplete
|
||||
}
|
||||
|
||||
headerBE := binary.BigEndian.Uint32(buf[len(buf)-4:])
|
||||
if headerBE&0x7fff == frozenCookie {
|
||||
return ErrFrozenBitmapBigEndian
|
||||
}
|
||||
|
||||
header := binary.LittleEndian.Uint32(buf[len(buf)-4:])
|
||||
buf = buf[:len(buf)-4]
|
||||
|
||||
if header&0x7fff != frozenCookie {
|
||||
return ErrFrozenBitmapInvalidCookie
|
||||
}
|
||||
|
||||
nCont := int(header >> 15)
|
||||
if nCont > (1 << 16) {
|
||||
return ErrFrozenBitmapOverpopulated
|
||||
}
|
||||
|
||||
// 1 byte per type, 2 bytes per key, 2 bytes per count.
|
||||
if len(buf) < 5*nCont {
|
||||
return ErrFrozenBitmapIncomplete
|
||||
}
|
||||
|
||||
types := buf[len(buf)-nCont:]
|
||||
buf = buf[:len(buf)-nCont]
|
||||
|
||||
counts := byteSliceAsUint16Slice(buf[len(buf)-2*nCont:])
|
||||
buf = buf[:len(buf)-2*nCont]
|
||||
|
||||
keys := byteSliceAsUint16Slice(buf[len(buf)-2*nCont:])
|
||||
buf = buf[:len(buf)-2*nCont]
|
||||
|
||||
nBitmap, nArray, nRun := 0, 0, 0
|
||||
nArrayEl, nRunEl := 0, 0
|
||||
for i, t := range types {
|
||||
switch t {
|
||||
case 1:
|
||||
nBitmap++
|
||||
case 2:
|
||||
nArray++
|
||||
nArrayEl += int(counts[i]) + 1
|
||||
case 3:
|
||||
nRun++
|
||||
nRunEl += int(counts[i])
|
||||
default:
|
||||
return ErrFrozenBitmapInvalidTypecode
|
||||
}
|
||||
}
|
||||
|
||||
if len(buf) < (1<<13)*nBitmap+4*nRunEl+2*nArrayEl {
|
||||
return ErrFrozenBitmapIncomplete
|
||||
}
|
||||
|
||||
bitsetsArena := byteSliceAsUint64Slice(buf[:(1<<13)*nBitmap])
|
||||
buf = buf[(1<<13)*nBitmap:]
|
||||
|
||||
runsArena := byteSliceAsInterval16Slice(buf[:4*nRunEl])
|
||||
buf = buf[4*nRunEl:]
|
||||
|
||||
arraysArena := byteSliceAsUint16Slice(buf[:2*nArrayEl])
|
||||
buf = buf[2*nArrayEl:]
|
||||
|
||||
if len(buf) != 0 {
|
||||
return ErrFrozenBitmapUnexpectedData
|
||||
}
|
||||
|
||||
var c container
|
||||
containersSz := int(unsafe.Sizeof(c)) * nCont
|
||||
bitsetsSz := int(unsafe.Sizeof(bitmapContainer{})) * nBitmap
|
||||
arraysSz := int(unsafe.Sizeof(arrayContainer{})) * nArray
|
||||
runsSz := int(unsafe.Sizeof(runContainer16{})) * nRun
|
||||
needCOWSz := int(unsafe.Sizeof(true)) * nCont
|
||||
|
||||
bitmapArenaSz := containersSz + bitsetsSz + arraysSz + runsSz + needCOWSz
|
||||
bitmapArena := make([]byte, bitmapArenaSz)
|
||||
|
||||
containers := byteSliceAsContainerSlice(bitmapArena[:containersSz])
|
||||
bitmapArena = bitmapArena[containersSz:]
|
||||
|
||||
bitsets := byteSliceAsBitsetSlice(bitmapArena[:bitsetsSz])
|
||||
bitmapArena = bitmapArena[bitsetsSz:]
|
||||
|
||||
arrays := byteSliceAsArraySlice(bitmapArena[:arraysSz])
|
||||
bitmapArena = bitmapArena[arraysSz:]
|
||||
|
||||
runs := byteSliceAsRun16Slice(bitmapArena[:runsSz])
|
||||
bitmapArena = bitmapArena[runsSz:]
|
||||
|
||||
needCOW := byteSliceAsBoolSlice(bitmapArena)
|
||||
|
||||
iBitset, iArray, iRun := 0, 0, 0
|
||||
for i, t := range types {
|
||||
needCOW[i] = true
|
||||
|
||||
switch t {
|
||||
case 1:
|
||||
containers[i] = &bitsets[iBitset]
|
||||
bitsets[iBitset].cardinality = int(counts[i]) + 1
|
||||
bitsets[iBitset].bitmap = bitsetsArena[:1024]
|
||||
bitsetsArena = bitsetsArena[1024:]
|
||||
iBitset++
|
||||
case 2:
|
||||
containers[i] = &arrays[iArray]
|
||||
sz := int(counts[i]) + 1
|
||||
arrays[iArray].content = arraysArena[:sz]
|
||||
arraysArena = arraysArena[sz:]
|
||||
iArray++
|
||||
case 3:
|
||||
containers[i] = &runs[iRun]
|
||||
runs[iRun].iv = runsArena[:counts[i]]
|
||||
runsArena = runsArena[counts[i]:]
|
||||
iRun++
|
||||
}
|
||||
}
|
||||
|
||||
// Not consuming the full input is a bug.
|
||||
if iBitset != nBitmap || len(bitsetsArena) != 0 ||
|
||||
iArray != nArray || len(arraysArena) != 0 ||
|
||||
iRun != nRun || len(runsArena) != 0 {
|
||||
panic("we missed something")
|
||||
}
|
||||
|
||||
ra.keys = keys
|
||||
ra.containers = containers
|
||||
ra.needCopyOnWrite = needCOW
|
||||
ra.copyOnWrite = true
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
// GetFrozenSizeInBytes returns the size in bytes of the frozen bitmap.
|
||||
func (rb *Bitmap) GetFrozenSizeInBytes() uint64 {
|
||||
nBits, nArrayEl, nRunEl := uint64(0), uint64(0), uint64(0)
|
||||
for _, c := range rb.highlowcontainer.containers {
|
||||
switch v := c.(type) {
|
||||
case *bitmapContainer:
|
||||
nBits++
|
||||
case *arrayContainer:
|
||||
nArrayEl += uint64(len(v.content))
|
||||
case *runContainer16:
|
||||
nRunEl += uint64(len(v.iv))
|
||||
}
|
||||
}
|
||||
return 4 + 5*uint64(len(rb.highlowcontainer.containers)) +
|
||||
(nBits << 13) + 2*nArrayEl + 4*nRunEl
|
||||
}
|
||||
|
||||
// Freeze serializes the bitmap in the CRoaring's frozen format.
|
||||
func (rb *Bitmap) Freeze() ([]byte, error) {
|
||||
sz := rb.GetFrozenSizeInBytes()
|
||||
buf := make([]byte, sz)
|
||||
_, err := rb.FreezeTo(buf)
|
||||
return buf, err
|
||||
}
|
||||
|
||||
// FreezeTo serializes the bitmap in the CRoaring's frozen format.
|
||||
func (rb *Bitmap) FreezeTo(buf []byte) (int, error) {
|
||||
containers := rb.highlowcontainer.containers
|
||||
nCont := len(containers)
|
||||
|
||||
nBits, nArrayEl, nRunEl := 0, 0, 0
|
||||
for _, c := range containers {
|
||||
switch v := c.(type) {
|
||||
case *bitmapContainer:
|
||||
nBits++
|
||||
case *arrayContainer:
|
||||
nArrayEl += len(v.content)
|
||||
case *runContainer16:
|
||||
nRunEl += len(v.iv)
|
||||
}
|
||||
}
|
||||
|
||||
serialSize := 4 + 5*nCont + (1<<13)*nBits + 4*nRunEl + 2*nArrayEl
|
||||
if len(buf) < serialSize {
|
||||
return 0, ErrFrozenBitmapBufferTooSmall
|
||||
}
|
||||
|
||||
bitsArena := byteSliceAsUint64Slice(buf[:(1<<13)*nBits])
|
||||
buf = buf[(1<<13)*nBits:]
|
||||
|
||||
runsArena := byteSliceAsInterval16Slice(buf[:4*nRunEl])
|
||||
buf = buf[4*nRunEl:]
|
||||
|
||||
arraysArena := byteSliceAsUint16Slice(buf[:2*nArrayEl])
|
||||
buf = buf[2*nArrayEl:]
|
||||
|
||||
keys := byteSliceAsUint16Slice(buf[:2*nCont])
|
||||
buf = buf[2*nCont:]
|
||||
|
||||
counts := byteSliceAsUint16Slice(buf[:2*nCont])
|
||||
buf = buf[2*nCont:]
|
||||
|
||||
types := buf[:nCont]
|
||||
buf = buf[nCont:]
|
||||
|
||||
header := uint32(frozenCookie | (nCont << 15))
|
||||
binary.LittleEndian.PutUint32(buf[:4], header)
|
||||
|
||||
copy(keys, rb.highlowcontainer.keys[:])
|
||||
|
||||
for i, c := range containers {
|
||||
switch v := c.(type) {
|
||||
case *bitmapContainer:
|
||||
copy(bitsArena, v.bitmap)
|
||||
bitsArena = bitsArena[1024:]
|
||||
counts[i] = uint16(v.cardinality - 1)
|
||||
types[i] = 1
|
||||
case *arrayContainer:
|
||||
copy(arraysArena, v.content)
|
||||
arraysArena = arraysArena[len(v.content):]
|
||||
elems := len(v.content)
|
||||
counts[i] = uint16(elems - 1)
|
||||
types[i] = 2
|
||||
case *runContainer16:
|
||||
copy(runsArena, v.iv)
|
||||
runs := len(v.iv)
|
||||
runsArena = runsArena[runs:]
|
||||
counts[i] = uint16(runs)
|
||||
types[i] = 3
|
||||
}
|
||||
}
|
||||
|
||||
return serialSize, nil
|
||||
}
|
||||
|
||||
// WriteFrozenTo serializes the bitmap in the CRoaring's frozen format.
|
||||
func (rb *Bitmap) WriteFrozenTo(wr io.Writer) (int, error) {
|
||||
// FIXME: this is a naive version that iterates 4 times through the
|
||||
// containers and allocates 3*len(containers) bytes; it's quite likely
|
||||
// it can be done more efficiently.
|
||||
containers := rb.highlowcontainer.containers
|
||||
written := 0
|
||||
|
||||
for _, c := range containers {
|
||||
c, ok := c.(*bitmapContainer)
|
||||
if !ok {
|
||||
continue
|
||||
}
|
||||
n, err := wr.Write(uint64SliceAsByteSlice(c.bitmap))
|
||||
written += n
|
||||
if err != nil {
|
||||
return written, err
|
||||
}
|
||||
}
|
||||
|
||||
for _, c := range containers {
|
||||
c, ok := c.(*runContainer16)
|
||||
if !ok {
|
||||
continue
|
||||
}
|
||||
n, err := wr.Write(interval16SliceAsByteSlice(c.iv))
|
||||
written += n
|
||||
if err != nil {
|
||||
return written, err
|
||||
}
|
||||
}
|
||||
|
||||
for _, c := range containers {
|
||||
c, ok := c.(*arrayContainer)
|
||||
if !ok {
|
||||
continue
|
||||
}
|
||||
n, err := wr.Write(uint16SliceAsByteSlice(c.content))
|
||||
written += n
|
||||
if err != nil {
|
||||
return written, err
|
||||
}
|
||||
}
|
||||
|
||||
n, err := wr.Write(uint16SliceAsByteSlice(rb.highlowcontainer.keys))
|
||||
written += n
|
||||
if err != nil {
|
||||
return written, err
|
||||
}
|
||||
|
||||
countTypeBuf := make([]byte, 3*len(containers))
|
||||
counts := byteSliceAsUint16Slice(countTypeBuf[:2*len(containers)])
|
||||
types := countTypeBuf[2*len(containers):]
|
||||
|
||||
for i, c := range containers {
|
||||
switch c := c.(type) {
|
||||
case *bitmapContainer:
|
||||
counts[i] = uint16(c.cardinality - 1)
|
||||
types[i] = 1
|
||||
case *arrayContainer:
|
||||
elems := len(c.content)
|
||||
counts[i] = uint16(elems - 1)
|
||||
types[i] = 2
|
||||
case *runContainer16:
|
||||
runs := len(c.iv)
|
||||
counts[i] = uint16(runs)
|
||||
types[i] = 3
|
||||
}
|
||||
}
|
||||
|
||||
n, err = wr.Write(countTypeBuf)
|
||||
written += n
|
||||
if err != nil {
|
||||
return written, err
|
||||
}
|
||||
|
||||
header := uint32(frozenCookie | (len(containers) << 15))
|
||||
if err := binary.Write(wr, binary.LittleEndian, header); err != nil {
|
||||
return written, err
|
||||
}
|
||||
written += 4
|
||||
|
||||
return written, nil
|
||||
}
|
||||
Reference in New Issue
Block a user