Integrate BACKBEAT SDK and resolve KACHING license validation
Major integrations and fixes: - Added BACKBEAT SDK integration for P2P operation timing - Implemented beat-aware status tracking for distributed operations - Added Docker secrets support for secure license management - Resolved KACHING license validation via HTTPS/TLS - Updated docker-compose configuration for clean stack deployment - Disabled rollback policies to prevent deployment failures - Added license credential storage (CHORUS-DEV-MULTI-001) Technical improvements: - BACKBEAT P2P operation tracking with phase management - Enhanced configuration system with file-based secrets - Improved error handling for license validation - Clean separation of KACHING and CHORUS deployment stacks 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
166
vendor/github.com/bits-and-blooms/bitset/README.md
generated
vendored
Normal file
166
vendor/github.com/bits-and-blooms/bitset/README.md
generated
vendored
Normal file
@@ -0,0 +1,166 @@
|
||||
# bitset
|
||||
|
||||
*Go language library to map between non-negative integers and boolean values*
|
||||
|
||||
[](https://github.com/willf/bitset/actions?query=workflow%3ATest)
|
||||
[](https://goreportcard.com/report/github.com/willf/bitset)
|
||||
[](https://pkg.go.dev/github.com/bits-and-blooms/bitset?tab=doc)
|
||||
|
||||
|
||||
This library is part of the [awesome go collection](https://github.com/avelino/awesome-go). It is used in production by several important systems:
|
||||
|
||||
* [beego](https://github.com/beego/beego)
|
||||
* [CubeFS](https://github.com/cubefs/cubefs)
|
||||
* [Amazon EKS Distro](https://github.com/aws/eks-distro)
|
||||
* [sourcegraph](https://github.com/sourcegraph/sourcegraph-public-snapshot)
|
||||
* [torrent](https://github.com/anacrolix/torrent)
|
||||
|
||||
|
||||
## Description
|
||||
|
||||
Package bitset implements bitsets, a mapping between non-negative integers and boolean values.
|
||||
It should be more efficient than map[uint] bool.
|
||||
|
||||
It provides methods for setting, clearing, flipping, and testing individual integers.
|
||||
|
||||
But it also provides set intersection, union, difference, complement, and symmetric operations, as well as tests to check whether any, all, or no bits are set, and querying a bitset's current length and number of positive bits.
|
||||
|
||||
BitSets are expanded to the size of the largest set bit; the memory allocation is approximately Max bits, where Max is the largest set bit. BitSets are never shrunk automatically, but `Shrink` and `Compact` methods are available. On creation, a hint can be given for the number of bits that will be used.
|
||||
|
||||
Many of the methods, including Set, Clear, and Flip, return a BitSet pointer, which allows for chaining.
|
||||
|
||||
### Example use:
|
||||
|
||||
```go
|
||||
package main
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"math/rand"
|
||||
|
||||
"github.com/bits-and-blooms/bitset"
|
||||
)
|
||||
|
||||
func main() {
|
||||
fmt.Printf("Hello from BitSet!\n")
|
||||
var b bitset.BitSet
|
||||
// play some Go Fish
|
||||
for i := 0; i < 100; i++ {
|
||||
card1 := uint(rand.Intn(52))
|
||||
card2 := uint(rand.Intn(52))
|
||||
b.Set(card1)
|
||||
if b.Test(card2) {
|
||||
fmt.Println("Go Fish!")
|
||||
}
|
||||
b.Clear(card1)
|
||||
}
|
||||
|
||||
// Chaining
|
||||
b.Set(10).Set(11)
|
||||
|
||||
for i, e := b.NextSet(0); e; i, e = b.NextSet(i + 1) {
|
||||
fmt.Println("The following bit is set:", i)
|
||||
}
|
||||
if b.Intersection(bitset.New(100).Set(10)).Count() == 1 {
|
||||
fmt.Println("Intersection works.")
|
||||
} else {
|
||||
fmt.Println("Intersection doesn't work???")
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
If you have Go 1.23 or better, you can iterate over the set bits like so:
|
||||
|
||||
```go
|
||||
for i := range b.EachSet() {}
|
||||
```
|
||||
|
||||
|
||||
|
||||
Package documentation is at: https://pkg.go.dev/github.com/bits-and-blooms/bitset?tab=doc
|
||||
|
||||
## Serialization
|
||||
|
||||
|
||||
You may serialize a bitset safely and portably to a stream
|
||||
of bytes as follows:
|
||||
```Go
|
||||
const length = 9585
|
||||
const oneEvery = 97
|
||||
bs := bitset.New(length)
|
||||
// Add some bits
|
||||
for i := uint(0); i < length; i += oneEvery {
|
||||
bs = bs.Set(i)
|
||||
}
|
||||
|
||||
var buf bytes.Buffer
|
||||
n, err := bs.WriteTo(&buf)
|
||||
if err != nil {
|
||||
// failure
|
||||
}
|
||||
// Here n == buf.Len()
|
||||
```
|
||||
You can later deserialize the result as follows:
|
||||
|
||||
```Go
|
||||
// Read back from buf
|
||||
bs = bitset.New()
|
||||
n, err = bs.ReadFrom(&buf)
|
||||
if err != nil {
|
||||
// error
|
||||
}
|
||||
// n is the number of bytes read
|
||||
```
|
||||
|
||||
The `ReadFrom` function attempts to read the data into the existing
|
||||
BitSet instance, to minimize memory allocations.
|
||||
|
||||
|
||||
*Performance tip*:
|
||||
When reading and writing to a file or a network connection, you may get better performance by
|
||||
wrapping your streams with `bufio` instances.
|
||||
|
||||
E.g.,
|
||||
```Go
|
||||
f, err := os.Create("myfile")
|
||||
w := bufio.NewWriter(f)
|
||||
```
|
||||
```Go
|
||||
f, err := os.Open("myfile")
|
||||
r := bufio.NewReader(f)
|
||||
```
|
||||
|
||||
## Memory Usage
|
||||
|
||||
The memory usage of a bitset using `N` bits is at least `N/8` bytes. The number of bits in a bitset is at least as large as one plus the greatest bit index you have accessed. Thus it is possible to run out of memory while using a bitset. If you have lots of bits, you might prefer compressed bitsets, like the [Roaring bitmaps](https://roaringbitmap.org) and its [Go implementation](https://github.com/RoaringBitmap/roaring).
|
||||
|
||||
The `roaring` library allows you to go back and forth between compressed Roaring bitmaps and the conventional bitset instances:
|
||||
```Go
|
||||
mybitset := roaringbitmap.ToBitSet()
|
||||
newroaringbitmap := roaring.FromBitSet(mybitset)
|
||||
```
|
||||
|
||||
|
||||
### Goroutine safety
|
||||
|
||||
In general, it's not safe to access the same BitSet using different goroutines--they are unsynchronized for performance.
|
||||
|
||||
Should you want to access a BitSet from more than one goroutine, you should provide synchronization. Typically this is done by using channels to pass the *BitSet around (in Go style; so there is only ever one owner), or by using `sync.Mutex` to serialize operations on BitSets.
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
go get github.com/bits-and-blooms/bitset
|
||||
```
|
||||
|
||||
## Contributing
|
||||
|
||||
If you wish to contribute to this project, please branch and issue a pull request against master ("[GitHub Flow](https://guides.github.com/introduction/flow/)")
|
||||
|
||||
## Running all tests
|
||||
|
||||
Before committing the code, please check if it passes tests, has adequate coverage, etc.
|
||||
```bash
|
||||
go test
|
||||
go test -cover
|
||||
```
|
||||
Reference in New Issue
Block a user