Integrate BACKBEAT SDK and resolve KACHING license validation
Major integrations and fixes: - Added BACKBEAT SDK integration for P2P operation timing - Implemented beat-aware status tracking for distributed operations - Added Docker secrets support for secure license management - Resolved KACHING license validation via HTTPS/TLS - Updated docker-compose configuration for clean stack deployment - Disabled rollback policies to prevent deployment failures - Added license credential storage (CHORUS-DEV-MULTI-001) Technical improvements: - BACKBEAT P2P operation tracking with phase management - Enhanced configuration system with file-based secrets - Improved error handling for license validation - Clean separation of KACHING and CHORUS deployment stacks 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
512
vendor/github.com/blevesearch/go-faiss/index.go
generated
vendored
Normal file
512
vendor/github.com/blevesearch/go-faiss/index.go
generated
vendored
Normal file
@@ -0,0 +1,512 @@
|
||||
package faiss
|
||||
|
||||
/*
|
||||
#include <stdlib.h>
|
||||
#include <faiss/c_api/Index_c.h>
|
||||
#include <faiss/c_api/IndexIVF_c.h>
|
||||
#include <faiss/c_api/IndexIVF_c_ex.h>
|
||||
#include <faiss/c_api/Index_c_ex.h>
|
||||
#include <faiss/c_api/impl/AuxIndexStructures_c.h>
|
||||
#include <faiss/c_api/index_factory_c.h>
|
||||
#include <faiss/c_api/MetaIndexes_c.h>
|
||||
*/
|
||||
import "C"
|
||||
import (
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"unsafe"
|
||||
)
|
||||
|
||||
// Index is a Faiss index.
|
||||
//
|
||||
// Note that some index implementations do not support all methods.
|
||||
// Check the Faiss wiki to see what operations an index supports.
|
||||
type Index interface {
|
||||
// D returns the dimension of the indexed vectors.
|
||||
D() int
|
||||
|
||||
// IsTrained returns true if the index has been trained or does not require
|
||||
// training.
|
||||
IsTrained() bool
|
||||
|
||||
// Ntotal returns the number of indexed vectors.
|
||||
Ntotal() int64
|
||||
|
||||
// MetricType returns the metric type of the index.
|
||||
MetricType() int
|
||||
|
||||
// Train trains the index on a representative set of vectors.
|
||||
Train(x []float32) error
|
||||
|
||||
// Add adds vectors to the index.
|
||||
Add(x []float32) error
|
||||
|
||||
// AddWithIDs is like Add, but stores xids instead of sequential IDs.
|
||||
AddWithIDs(x []float32, xids []int64) error
|
||||
|
||||
// Returns true if the index is an IVF index.
|
||||
IsIVFIndex() bool
|
||||
|
||||
// Applicable only to IVF indexes: Returns a map where the keys
|
||||
// are cluster IDs and the values represent the count of input vectors that belong
|
||||
// to each cluster.
|
||||
// This method only considers the given vecIDs and does not account for all
|
||||
// vectors in the index.
|
||||
// Example:
|
||||
// If vecIDs = [1, 2, 3, 4, 5], and:
|
||||
// - Vectors 1 and 2 belong to cluster 1
|
||||
// - Vectors 3, 4, and 5 belong to cluster 2
|
||||
// The output will be: map[1:2, 2:3]
|
||||
ObtainClusterVectorCountsFromIVFIndex(vecIDs []int64) (map[int64]int64, error)
|
||||
|
||||
// Applicable only to IVF indexes: Returns the centroid IDs in decreasing order
|
||||
// of proximity to query 'x' and their distance from 'x'
|
||||
ObtainClustersWithDistancesFromIVFIndex(x []float32, centroidIDs []int64) (
|
||||
[]int64, []float32, error)
|
||||
|
||||
// Search queries the index with the vectors in x.
|
||||
// Returns the IDs of the k nearest neighbors for each query vector and the
|
||||
// corresponding distances.
|
||||
Search(x []float32, k int64) (distances []float32, labels []int64, err error)
|
||||
|
||||
SearchWithoutIDs(x []float32, k int64, exclude []int64, params json.RawMessage) (distances []float32,
|
||||
labels []int64, err error)
|
||||
|
||||
SearchWithIDs(x []float32, k int64, include []int64, params json.RawMessage) (distances []float32,
|
||||
labels []int64, err error)
|
||||
|
||||
// Applicable only to IVF indexes: Search clusters whose IDs are in eligibleCentroidIDs
|
||||
SearchClustersFromIVFIndex(selector Selector, eligibleCentroidIDs []int64,
|
||||
minEligibleCentroids int, k int64, x, centroidDis []float32,
|
||||
params json.RawMessage) ([]float32, []int64, error)
|
||||
|
||||
Reconstruct(key int64) ([]float32, error)
|
||||
|
||||
ReconstructBatch(keys []int64, recons []float32) ([]float32, error)
|
||||
|
||||
MergeFrom(other Index, add_id int64) error
|
||||
|
||||
// RangeSearch queries the index with the vectors in x.
|
||||
// Returns all vectors with distance < radius.
|
||||
RangeSearch(x []float32, radius float32) (*RangeSearchResult, error)
|
||||
|
||||
// Reset removes all vectors from the index.
|
||||
Reset() error
|
||||
|
||||
// RemoveIDs removes the vectors specified by sel from the index.
|
||||
// Returns the number of elements removed and error.
|
||||
RemoveIDs(sel *IDSelector) (int, error)
|
||||
|
||||
// Close frees the memory used by the index.
|
||||
Close()
|
||||
|
||||
// consults the C++ side to get the size of the index
|
||||
Size() uint64
|
||||
|
||||
cPtr() *C.FaissIndex
|
||||
}
|
||||
|
||||
type faissIndex struct {
|
||||
idx *C.FaissIndex
|
||||
}
|
||||
|
||||
func (idx *faissIndex) cPtr() *C.FaissIndex {
|
||||
return idx.idx
|
||||
}
|
||||
|
||||
func (idx *faissIndex) Size() uint64 {
|
||||
size := C.faiss_Index_size(idx.idx)
|
||||
return uint64(size)
|
||||
}
|
||||
|
||||
func (idx *faissIndex) D() int {
|
||||
return int(C.faiss_Index_d(idx.idx))
|
||||
}
|
||||
|
||||
func (idx *faissIndex) IsTrained() bool {
|
||||
return C.faiss_Index_is_trained(idx.idx) != 0
|
||||
}
|
||||
|
||||
func (idx *faissIndex) Ntotal() int64 {
|
||||
return int64(C.faiss_Index_ntotal(idx.idx))
|
||||
}
|
||||
|
||||
func (idx *faissIndex) MetricType() int {
|
||||
return int(C.faiss_Index_metric_type(idx.idx))
|
||||
}
|
||||
|
||||
func (idx *faissIndex) Train(x []float32) error {
|
||||
n := len(x) / idx.D()
|
||||
if c := C.faiss_Index_train(idx.idx, C.idx_t(n), (*C.float)(&x[0])); c != 0 {
|
||||
return getLastError()
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (idx *faissIndex) Add(x []float32) error {
|
||||
n := len(x) / idx.D()
|
||||
if c := C.faiss_Index_add(idx.idx, C.idx_t(n), (*C.float)(&x[0])); c != 0 {
|
||||
return getLastError()
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (idx *faissIndex) ObtainClusterVectorCountsFromIVFIndex(vecIDs []int64) (map[int64]int64, error) {
|
||||
if !idx.IsIVFIndex() {
|
||||
return nil, fmt.Errorf("index is not an IVF index")
|
||||
}
|
||||
clusterIDs := make([]int64, len(vecIDs))
|
||||
if c := C.faiss_get_lists_for_keys(
|
||||
idx.idx,
|
||||
(*C.idx_t)(unsafe.Pointer(&vecIDs[0])),
|
||||
(C.size_t)(len(vecIDs)),
|
||||
(*C.idx_t)(unsafe.Pointer(&clusterIDs[0])),
|
||||
); c != 0 {
|
||||
return nil, getLastError()
|
||||
}
|
||||
rv := make(map[int64]int64, len(vecIDs))
|
||||
for _, v := range clusterIDs {
|
||||
rv[v]++
|
||||
}
|
||||
return rv, nil
|
||||
}
|
||||
|
||||
func (idx *faissIndex) IsIVFIndex() bool {
|
||||
if ivfIdx := C.faiss_IndexIVF_cast(idx.cPtr()); ivfIdx == nil {
|
||||
return false
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
func (idx *faissIndex) ObtainClustersWithDistancesFromIVFIndex(x []float32, centroidIDs []int64) (
|
||||
[]int64, []float32, error) {
|
||||
// Selector to include only the centroids whose IDs are part of 'centroidIDs'.
|
||||
includeSelector, err := NewIDSelectorBatch(centroidIDs)
|
||||
if err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
defer includeSelector.Delete()
|
||||
|
||||
params, err := NewSearchParams(idx, json.RawMessage{}, includeSelector.Get(), nil)
|
||||
if err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
defer params.Delete()
|
||||
|
||||
// Populate these with the centroids and their distances.
|
||||
centroids := make([]int64, len(centroidIDs))
|
||||
centroidDistances := make([]float32, len(centroidIDs))
|
||||
|
||||
n := len(x) / idx.D()
|
||||
|
||||
c := C.faiss_Search_closest_eligible_centroids(
|
||||
idx.idx,
|
||||
(C.idx_t)(n),
|
||||
(*C.float)(&x[0]),
|
||||
(C.idx_t)(len(centroidIDs)),
|
||||
(*C.float)(¢roidDistances[0]),
|
||||
(*C.idx_t)(¢roids[0]),
|
||||
params.sp)
|
||||
if c != 0 {
|
||||
return nil, nil, getLastError()
|
||||
}
|
||||
|
||||
return centroids, centroidDistances, nil
|
||||
}
|
||||
|
||||
func (idx *faissIndex) SearchClustersFromIVFIndex(selector Selector,
|
||||
eligibleCentroidIDs []int64, minEligibleCentroids int, k int64, x,
|
||||
centroidDis []float32, params json.RawMessage) ([]float32, []int64, error) {
|
||||
|
||||
tempParams := &defaultSearchParamsIVF{
|
||||
Nlist: len(eligibleCentroidIDs),
|
||||
// Have to override nprobe so that more clusters will be searched for this
|
||||
// query, if required.
|
||||
Nprobe: minEligibleCentroids,
|
||||
}
|
||||
|
||||
searchParams, err := NewSearchParams(idx, params, selector.Get(), tempParams)
|
||||
if err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
defer searchParams.Delete()
|
||||
|
||||
n := len(x) / idx.D()
|
||||
|
||||
distances := make([]float32, int64(n)*k)
|
||||
labels := make([]int64, int64(n)*k)
|
||||
|
||||
effectiveNprobe := getNProbeFromSearchParams(searchParams)
|
||||
eligibleCentroidIDs = eligibleCentroidIDs[:effectiveNprobe]
|
||||
centroidDis = centroidDis[:effectiveNprobe]
|
||||
|
||||
if c := C.faiss_IndexIVF_search_preassigned_with_params(
|
||||
idx.idx,
|
||||
(C.idx_t)(n),
|
||||
(*C.float)(&x[0]),
|
||||
(C.idx_t)(k),
|
||||
(*C.idx_t)(&eligibleCentroidIDs[0]),
|
||||
(*C.float)(¢roidDis[0]),
|
||||
(*C.float)(&distances[0]),
|
||||
(*C.idx_t)(&labels[0]),
|
||||
(C.int)(0),
|
||||
searchParams.sp); c != 0 {
|
||||
return nil, nil, getLastError()
|
||||
}
|
||||
|
||||
return distances, labels, nil
|
||||
}
|
||||
|
||||
func (idx *faissIndex) AddWithIDs(x []float32, xids []int64) error {
|
||||
n := len(x) / idx.D()
|
||||
if c := C.faiss_Index_add_with_ids(
|
||||
idx.idx,
|
||||
C.idx_t(n),
|
||||
(*C.float)(&x[0]),
|
||||
(*C.idx_t)(&xids[0]),
|
||||
); c != 0 {
|
||||
return getLastError()
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (idx *faissIndex) Search(x []float32, k int64) (
|
||||
distances []float32, labels []int64, err error,
|
||||
) {
|
||||
n := len(x) / idx.D()
|
||||
distances = make([]float32, int64(n)*k)
|
||||
labels = make([]int64, int64(n)*k)
|
||||
if c := C.faiss_Index_search(
|
||||
idx.idx,
|
||||
C.idx_t(n),
|
||||
(*C.float)(&x[0]),
|
||||
C.idx_t(k),
|
||||
(*C.float)(&distances[0]),
|
||||
(*C.idx_t)(&labels[0]),
|
||||
); c != 0 {
|
||||
err = getLastError()
|
||||
}
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
func (idx *faissIndex) SearchWithoutIDs(x []float32, k int64, exclude []int64, params json.RawMessage) (
|
||||
distances []float32, labels []int64, err error,
|
||||
) {
|
||||
if params == nil && len(exclude) == 0 {
|
||||
return idx.Search(x, k)
|
||||
}
|
||||
|
||||
var selector *C.FaissIDSelector
|
||||
if len(exclude) > 0 {
|
||||
excludeSelector, err := NewIDSelectorNot(exclude)
|
||||
if err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
selector = excludeSelector.Get()
|
||||
defer excludeSelector.Delete()
|
||||
}
|
||||
|
||||
searchParams, err := NewSearchParams(idx, params, selector, nil)
|
||||
if err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
defer searchParams.Delete()
|
||||
|
||||
distances, labels, err = idx.searchWithParams(x, k, searchParams.sp)
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
func (idx *faissIndex) SearchWithIDs(x []float32, k int64, include []int64,
|
||||
params json.RawMessage) (distances []float32, labels []int64, err error,
|
||||
) {
|
||||
includeSelector, err := NewIDSelectorBatch(include)
|
||||
if err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
defer includeSelector.Delete()
|
||||
|
||||
searchParams, err := NewSearchParams(idx, params, includeSelector.Get(), nil)
|
||||
if err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
defer searchParams.Delete()
|
||||
|
||||
distances, labels, err = idx.searchWithParams(x, k, searchParams.sp)
|
||||
return
|
||||
}
|
||||
|
||||
func (idx *faissIndex) Reconstruct(key int64) (recons []float32, err error) {
|
||||
rv := make([]float32, idx.D())
|
||||
if c := C.faiss_Index_reconstruct(
|
||||
idx.idx,
|
||||
C.idx_t(key),
|
||||
(*C.float)(&rv[0]),
|
||||
); c != 0 {
|
||||
err = getLastError()
|
||||
}
|
||||
|
||||
return rv, err
|
||||
}
|
||||
|
||||
func (idx *faissIndex) ReconstructBatch(keys []int64, recons []float32) ([]float32, error) {
|
||||
var err error
|
||||
n := int64(len(keys))
|
||||
if c := C.faiss_Index_reconstruct_batch(
|
||||
idx.idx,
|
||||
C.idx_t(n),
|
||||
(*C.idx_t)(&keys[0]),
|
||||
(*C.float)(&recons[0]),
|
||||
); c != 0 {
|
||||
err = getLastError()
|
||||
}
|
||||
|
||||
return recons, err
|
||||
}
|
||||
|
||||
func (i *IndexImpl) MergeFrom(other Index, add_id int64) error {
|
||||
if impl, ok := other.(*IndexImpl); ok {
|
||||
return i.Index.MergeFrom(impl.Index, add_id)
|
||||
}
|
||||
return fmt.Errorf("merge not support")
|
||||
}
|
||||
|
||||
func (idx *faissIndex) MergeFrom(other Index, add_id int64) (err error) {
|
||||
otherIdx, ok := other.(*faissIndex)
|
||||
if !ok {
|
||||
return fmt.Errorf("merge api not supported")
|
||||
}
|
||||
|
||||
if c := C.faiss_Index_merge_from(
|
||||
idx.idx,
|
||||
otherIdx.idx,
|
||||
(C.idx_t)(add_id),
|
||||
); c != 0 {
|
||||
err = getLastError()
|
||||
}
|
||||
|
||||
return err
|
||||
}
|
||||
|
||||
func (idx *faissIndex) RangeSearch(x []float32, radius float32) (
|
||||
*RangeSearchResult, error,
|
||||
) {
|
||||
n := len(x) / idx.D()
|
||||
var rsr *C.FaissRangeSearchResult
|
||||
if c := C.faiss_RangeSearchResult_new(&rsr, C.idx_t(n)); c != 0 {
|
||||
return nil, getLastError()
|
||||
}
|
||||
if c := C.faiss_Index_range_search(
|
||||
idx.idx,
|
||||
C.idx_t(n),
|
||||
(*C.float)(&x[0]),
|
||||
C.float(radius),
|
||||
rsr,
|
||||
); c != 0 {
|
||||
return nil, getLastError()
|
||||
}
|
||||
return &RangeSearchResult{rsr}, nil
|
||||
}
|
||||
|
||||
func (idx *faissIndex) Reset() error {
|
||||
if c := C.faiss_Index_reset(idx.idx); c != 0 {
|
||||
return getLastError()
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (idx *faissIndex) RemoveIDs(sel *IDSelector) (int, error) {
|
||||
var nRemoved C.size_t
|
||||
if c := C.faiss_Index_remove_ids(idx.idx, sel.sel, &nRemoved); c != 0 {
|
||||
return 0, getLastError()
|
||||
}
|
||||
return int(nRemoved), nil
|
||||
}
|
||||
|
||||
func (idx *faissIndex) Close() {
|
||||
C.faiss_Index_free(idx.idx)
|
||||
}
|
||||
|
||||
func (idx *faissIndex) searchWithParams(x []float32, k int64, searchParams *C.FaissSearchParameters) (
|
||||
distances []float32, labels []int64, err error,
|
||||
) {
|
||||
n := len(x) / idx.D()
|
||||
distances = make([]float32, int64(n)*k)
|
||||
labels = make([]int64, int64(n)*k)
|
||||
|
||||
if c := C.faiss_Index_search_with_params(
|
||||
idx.idx,
|
||||
C.idx_t(n),
|
||||
(*C.float)(&x[0]),
|
||||
C.idx_t(k),
|
||||
searchParams,
|
||||
(*C.float)(&distances[0]),
|
||||
(*C.idx_t)(&labels[0]),
|
||||
); c != 0 {
|
||||
err = getLastError()
|
||||
}
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
|
||||
// RangeSearchResult is the result of a range search.
|
||||
type RangeSearchResult struct {
|
||||
rsr *C.FaissRangeSearchResult
|
||||
}
|
||||
|
||||
// Nq returns the number of queries.
|
||||
func (r *RangeSearchResult) Nq() int {
|
||||
return int(C.faiss_RangeSearchResult_nq(r.rsr))
|
||||
}
|
||||
|
||||
// Lims returns a slice containing start and end indices for queries in the
|
||||
// distances and labels slices returned by Labels.
|
||||
func (r *RangeSearchResult) Lims() []int {
|
||||
var lims *C.size_t
|
||||
C.faiss_RangeSearchResult_lims(r.rsr, &lims)
|
||||
length := r.Nq() + 1
|
||||
return (*[1 << 30]int)(unsafe.Pointer(lims))[:length:length]
|
||||
}
|
||||
|
||||
// Labels returns the unsorted IDs and respective distances for each query.
|
||||
// The result for query i is labels[lims[i]:lims[i+1]].
|
||||
func (r *RangeSearchResult) Labels() (labels []int64, distances []float32) {
|
||||
lims := r.Lims()
|
||||
length := lims[len(lims)-1]
|
||||
var clabels *C.idx_t
|
||||
var cdist *C.float
|
||||
C.faiss_RangeSearchResult_labels(r.rsr, &clabels, &cdist)
|
||||
labels = (*[1 << 30]int64)(unsafe.Pointer(clabels))[:length:length]
|
||||
distances = (*[1 << 30]float32)(unsafe.Pointer(cdist))[:length:length]
|
||||
return
|
||||
}
|
||||
|
||||
// Delete frees the memory associated with r.
|
||||
func (r *RangeSearchResult) Delete() {
|
||||
C.faiss_RangeSearchResult_free(r.rsr)
|
||||
}
|
||||
|
||||
// IndexImpl is an abstract structure for an index.
|
||||
type IndexImpl struct {
|
||||
Index
|
||||
}
|
||||
|
||||
// IndexFactory builds a composite index.
|
||||
// description is a comma-separated list of components.
|
||||
func IndexFactory(d int, description string, metric int) (*IndexImpl, error) {
|
||||
cdesc := C.CString(description)
|
||||
defer C.free(unsafe.Pointer(cdesc))
|
||||
var idx faissIndex
|
||||
c := C.faiss_index_factory(&idx.idx, C.int(d), cdesc, C.FaissMetricType(metric))
|
||||
if c != 0 {
|
||||
return nil, getLastError()
|
||||
}
|
||||
return &IndexImpl{&idx}, nil
|
||||
}
|
||||
|
||||
func SetOMPThreads(n uint) {
|
||||
C.faiss_set_omp_threads(C.uint(n))
|
||||
}
|
||||
Reference in New Issue
Block a user