Integrate BACKBEAT SDK and resolve KACHING license validation

Major integrations and fixes:
- Added BACKBEAT SDK integration for P2P operation timing
- Implemented beat-aware status tracking for distributed operations
- Added Docker secrets support for secure license management
- Resolved KACHING license validation via HTTPS/TLS
- Updated docker-compose configuration for clean stack deployment
- Disabled rollback policies to prevent deployment failures
- Added license credential storage (CHORUS-DEV-MULTI-001)

Technical improvements:
- BACKBEAT P2P operation tracking with phase management
- Enhanced configuration system with file-based secrets
- Improved error handling for license validation
- Clean separation of KACHING and CHORUS deployment stacks

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
anthonyrawlins
2025-09-06 07:56:26 +10:00
parent 543ab216f9
commit 9bdcbe0447
4730 changed files with 1480093 additions and 1916 deletions

634
vendor/golang.org/x/tools/go/ast/astutil/enclosing.go generated vendored Normal file
View File

@@ -0,0 +1,634 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package astutil
// This file defines utilities for working with source positions.
import (
"fmt"
"go/ast"
"go/token"
"sort"
)
// PathEnclosingInterval returns the node that encloses the source
// interval [start, end), and all its ancestors up to the AST root.
//
// The definition of "enclosing" used by this function considers
// additional whitespace abutting a node to be enclosed by it.
// In this example:
//
// z := x + y // add them
// <-A->
// <----B----->
//
// the ast.BinaryExpr(+) node is considered to enclose interval B
// even though its [Pos()..End()) is actually only interval A.
// This behaviour makes user interfaces more tolerant of imperfect
// input.
//
// This function treats tokens as nodes, though they are not included
// in the result. e.g. PathEnclosingInterval("+") returns the
// enclosing ast.BinaryExpr("x + y").
//
// If start==end, the 1-char interval following start is used instead.
//
// The 'exact' result is true if the interval contains only path[0]
// and perhaps some adjacent whitespace. It is false if the interval
// overlaps multiple children of path[0], or if it contains only
// interior whitespace of path[0].
// In this example:
//
// z := x + y // add them
// <--C--> <---E-->
// ^
// D
//
// intervals C, D and E are inexact. C is contained by the
// z-assignment statement, because it spans three of its children (:=,
// x, +). So too is the 1-char interval D, because it contains only
// interior whitespace of the assignment. E is considered interior
// whitespace of the BlockStmt containing the assignment.
//
// The resulting path is never empty; it always contains at least the
// 'root' *ast.File. Ideally PathEnclosingInterval would reject
// intervals that lie wholly or partially outside the range of the
// file, but unfortunately ast.File records only the token.Pos of
// the 'package' keyword, but not of the start of the file itself.
func PathEnclosingInterval(root *ast.File, start, end token.Pos) (path []ast.Node, exact bool) {
// fmt.Printf("EnclosingInterval %d %d\n", start, end) // debugging
// Precondition: node.[Pos..End) and adjoining whitespace contain [start, end).
var visit func(node ast.Node) bool
visit = func(node ast.Node) bool {
path = append(path, node)
nodePos := node.Pos()
nodeEnd := node.End()
// fmt.Printf("visit(%T, %d, %d)\n", node, nodePos, nodeEnd) // debugging
// Intersect [start, end) with interval of node.
if start < nodePos {
start = nodePos
}
if end > nodeEnd {
end = nodeEnd
}
// Find sole child that contains [start, end).
children := childrenOf(node)
l := len(children)
for i, child := range children {
// [childPos, childEnd) is unaugmented interval of child.
childPos := child.Pos()
childEnd := child.End()
// [augPos, augEnd) is whitespace-augmented interval of child.
augPos := childPos
augEnd := childEnd
if i > 0 {
augPos = children[i-1].End() // start of preceding whitespace
}
if i < l-1 {
nextChildPos := children[i+1].Pos()
// Does [start, end) lie between child and next child?
if start >= augEnd && end <= nextChildPos {
return false // inexact match
}
augEnd = nextChildPos // end of following whitespace
}
// fmt.Printf("\tchild %d: [%d..%d)\tcontains interval [%d..%d)?\n",
// i, augPos, augEnd, start, end) // debugging
// Does augmented child strictly contain [start, end)?
if augPos <= start && end <= augEnd {
_, isToken := child.(tokenNode)
return isToken || visit(child)
}
// Does [start, end) overlap multiple children?
// i.e. left-augmented child contains start
// but LR-augmented child does not contain end.
if start < childEnd && end > augEnd {
break
}
}
// No single child contained [start, end),
// so node is the result. Is it exact?
// (It's tempting to put this condition before the
// child loop, but it gives the wrong result in the
// case where a node (e.g. ExprStmt) and its sole
// child have equal intervals.)
if start == nodePos && end == nodeEnd {
return true // exact match
}
return false // inexact: overlaps multiple children
}
// Ensure [start,end) is nondecreasing.
if start > end {
start, end = end, start
}
if start < root.End() && end > root.Pos() {
if start == end {
end = start + 1 // empty interval => interval of size 1
}
exact = visit(root)
// Reverse the path:
for i, l := 0, len(path); i < l/2; i++ {
path[i], path[l-1-i] = path[l-1-i], path[i]
}
} else {
// Selection lies within whitespace preceding the
// first (or following the last) declaration in the file.
// The result nonetheless always includes the ast.File.
path = append(path, root)
}
return
}
// tokenNode is a dummy implementation of ast.Node for a single token.
// They are used transiently by PathEnclosingInterval but never escape
// this package.
type tokenNode struct {
pos token.Pos
end token.Pos
}
func (n tokenNode) Pos() token.Pos {
return n.pos
}
func (n tokenNode) End() token.Pos {
return n.end
}
func tok(pos token.Pos, len int) ast.Node {
return tokenNode{pos, pos + token.Pos(len)}
}
// childrenOf returns the direct non-nil children of ast.Node n.
// It may include fake ast.Node implementations for bare tokens.
// it is not safe to call (e.g.) ast.Walk on such nodes.
func childrenOf(n ast.Node) []ast.Node {
var children []ast.Node
// First add nodes for all true subtrees.
ast.Inspect(n, func(node ast.Node) bool {
if node == n { // push n
return true // recur
}
if node != nil { // push child
children = append(children, node)
}
return false // no recursion
})
// Then add fake Nodes for bare tokens.
switch n := n.(type) {
case *ast.ArrayType:
children = append(children,
tok(n.Lbrack, len("[")),
tok(n.Elt.End(), len("]")))
case *ast.AssignStmt:
children = append(children,
tok(n.TokPos, len(n.Tok.String())))
case *ast.BasicLit:
children = append(children,
tok(n.ValuePos, len(n.Value)))
case *ast.BinaryExpr:
children = append(children, tok(n.OpPos, len(n.Op.String())))
case *ast.BlockStmt:
children = append(children,
tok(n.Lbrace, len("{")),
tok(n.Rbrace, len("}")))
case *ast.BranchStmt:
children = append(children,
tok(n.TokPos, len(n.Tok.String())))
case *ast.CallExpr:
children = append(children,
tok(n.Lparen, len("(")),
tok(n.Rparen, len(")")))
if n.Ellipsis != 0 {
children = append(children, tok(n.Ellipsis, len("...")))
}
case *ast.CaseClause:
if n.List == nil {
children = append(children,
tok(n.Case, len("default")))
} else {
children = append(children,
tok(n.Case, len("case")))
}
children = append(children, tok(n.Colon, len(":")))
case *ast.ChanType:
switch n.Dir {
case ast.RECV:
children = append(children, tok(n.Begin, len("<-chan")))
case ast.SEND:
children = append(children, tok(n.Begin, len("chan<-")))
case ast.RECV | ast.SEND:
children = append(children, tok(n.Begin, len("chan")))
}
case *ast.CommClause:
if n.Comm == nil {
children = append(children,
tok(n.Case, len("default")))
} else {
children = append(children,
tok(n.Case, len("case")))
}
children = append(children, tok(n.Colon, len(":")))
case *ast.Comment:
// nop
case *ast.CommentGroup:
// nop
case *ast.CompositeLit:
children = append(children,
tok(n.Lbrace, len("{")),
tok(n.Rbrace, len("{")))
case *ast.DeclStmt:
// nop
case *ast.DeferStmt:
children = append(children,
tok(n.Defer, len("defer")))
case *ast.Ellipsis:
children = append(children,
tok(n.Ellipsis, len("...")))
case *ast.EmptyStmt:
// nop
case *ast.ExprStmt:
// nop
case *ast.Field:
// TODO(adonovan): Field.{Doc,Comment,Tag}?
case *ast.FieldList:
children = append(children,
tok(n.Opening, len("(")), // or len("[")
tok(n.Closing, len(")"))) // or len("]")
case *ast.File:
// TODO test: Doc
children = append(children,
tok(n.Package, len("package")))
case *ast.ForStmt:
children = append(children,
tok(n.For, len("for")))
case *ast.FuncDecl:
// TODO(adonovan): FuncDecl.Comment?
// Uniquely, FuncDecl breaks the invariant that
// preorder traversal yields tokens in lexical order:
// in fact, FuncDecl.Recv precedes FuncDecl.Type.Func.
//
// As a workaround, we inline the case for FuncType
// here and order things correctly.
//
children = nil // discard ast.Walk(FuncDecl) info subtrees
children = append(children, tok(n.Type.Func, len("func")))
if n.Recv != nil {
children = append(children, n.Recv)
}
children = append(children, n.Name)
if tparams := n.Type.TypeParams; tparams != nil {
children = append(children, tparams)
}
if n.Type.Params != nil {
children = append(children, n.Type.Params)
}
if n.Type.Results != nil {
children = append(children, n.Type.Results)
}
if n.Body != nil {
children = append(children, n.Body)
}
case *ast.FuncLit:
// nop
case *ast.FuncType:
if n.Func != 0 {
children = append(children,
tok(n.Func, len("func")))
}
case *ast.GenDecl:
children = append(children,
tok(n.TokPos, len(n.Tok.String())))
if n.Lparen != 0 {
children = append(children,
tok(n.Lparen, len("(")),
tok(n.Rparen, len(")")))
}
case *ast.GoStmt:
children = append(children,
tok(n.Go, len("go")))
case *ast.Ident:
children = append(children,
tok(n.NamePos, len(n.Name)))
case *ast.IfStmt:
children = append(children,
tok(n.If, len("if")))
case *ast.ImportSpec:
// TODO(adonovan): ImportSpec.{Doc,EndPos}?
case *ast.IncDecStmt:
children = append(children,
tok(n.TokPos, len(n.Tok.String())))
case *ast.IndexExpr:
children = append(children,
tok(n.Lbrack, len("[")),
tok(n.Rbrack, len("]")))
case *ast.IndexListExpr:
children = append(children,
tok(n.Lbrack, len("[")),
tok(n.Rbrack, len("]")))
case *ast.InterfaceType:
children = append(children,
tok(n.Interface, len("interface")))
case *ast.KeyValueExpr:
children = append(children,
tok(n.Colon, len(":")))
case *ast.LabeledStmt:
children = append(children,
tok(n.Colon, len(":")))
case *ast.MapType:
children = append(children,
tok(n.Map, len("map")))
case *ast.ParenExpr:
children = append(children,
tok(n.Lparen, len("(")),
tok(n.Rparen, len(")")))
case *ast.RangeStmt:
children = append(children,
tok(n.For, len("for")),
tok(n.TokPos, len(n.Tok.String())))
case *ast.ReturnStmt:
children = append(children,
tok(n.Return, len("return")))
case *ast.SelectStmt:
children = append(children,
tok(n.Select, len("select")))
case *ast.SelectorExpr:
// nop
case *ast.SendStmt:
children = append(children,
tok(n.Arrow, len("<-")))
case *ast.SliceExpr:
children = append(children,
tok(n.Lbrack, len("[")),
tok(n.Rbrack, len("]")))
case *ast.StarExpr:
children = append(children, tok(n.Star, len("*")))
case *ast.StructType:
children = append(children, tok(n.Struct, len("struct")))
case *ast.SwitchStmt:
children = append(children, tok(n.Switch, len("switch")))
case *ast.TypeAssertExpr:
children = append(children,
tok(n.Lparen-1, len(".")),
tok(n.Lparen, len("(")),
tok(n.Rparen, len(")")))
case *ast.TypeSpec:
// TODO(adonovan): TypeSpec.{Doc,Comment}?
case *ast.TypeSwitchStmt:
children = append(children, tok(n.Switch, len("switch")))
case *ast.UnaryExpr:
children = append(children, tok(n.OpPos, len(n.Op.String())))
case *ast.ValueSpec:
// TODO(adonovan): ValueSpec.{Doc,Comment}?
case *ast.BadDecl, *ast.BadExpr, *ast.BadStmt:
// nop
}
// TODO(adonovan): opt: merge the logic of ast.Inspect() into
// the switch above so we can make interleaved callbacks for
// both Nodes and Tokens in the right order and avoid the need
// to sort.
sort.Sort(byPos(children))
return children
}
type byPos []ast.Node
func (sl byPos) Len() int {
return len(sl)
}
func (sl byPos) Less(i, j int) bool {
return sl[i].Pos() < sl[j].Pos()
}
func (sl byPos) Swap(i, j int) {
sl[i], sl[j] = sl[j], sl[i]
}
// NodeDescription returns a description of the concrete type of n suitable
// for a user interface.
//
// TODO(adonovan): in some cases (e.g. Field, FieldList, Ident,
// StarExpr) we could be much more specific given the path to the AST
// root. Perhaps we should do that.
func NodeDescription(n ast.Node) string {
switch n := n.(type) {
case *ast.ArrayType:
return "array type"
case *ast.AssignStmt:
return "assignment"
case *ast.BadDecl:
return "bad declaration"
case *ast.BadExpr:
return "bad expression"
case *ast.BadStmt:
return "bad statement"
case *ast.BasicLit:
return "basic literal"
case *ast.BinaryExpr:
return fmt.Sprintf("binary %s operation", n.Op)
case *ast.BlockStmt:
return "block"
case *ast.BranchStmt:
switch n.Tok {
case token.BREAK:
return "break statement"
case token.CONTINUE:
return "continue statement"
case token.GOTO:
return "goto statement"
case token.FALLTHROUGH:
return "fall-through statement"
}
case *ast.CallExpr:
if len(n.Args) == 1 && !n.Ellipsis.IsValid() {
return "function call (or conversion)"
}
return "function call"
case *ast.CaseClause:
return "case clause"
case *ast.ChanType:
return "channel type"
case *ast.CommClause:
return "communication clause"
case *ast.Comment:
return "comment"
case *ast.CommentGroup:
return "comment group"
case *ast.CompositeLit:
return "composite literal"
case *ast.DeclStmt:
return NodeDescription(n.Decl) + " statement"
case *ast.DeferStmt:
return "defer statement"
case *ast.Ellipsis:
return "ellipsis"
case *ast.EmptyStmt:
return "empty statement"
case *ast.ExprStmt:
return "expression statement"
case *ast.Field:
// Can be any of these:
// struct {x, y int} -- struct field(s)
// struct {T} -- anon struct field
// interface {I} -- interface embedding
// interface {f()} -- interface method
// func (A) func(B) C -- receiver, param(s), result(s)
return "field/method/parameter"
case *ast.FieldList:
return "field/method/parameter list"
case *ast.File:
return "source file"
case *ast.ForStmt:
return "for loop"
case *ast.FuncDecl:
return "function declaration"
case *ast.FuncLit:
return "function literal"
case *ast.FuncType:
return "function type"
case *ast.GenDecl:
switch n.Tok {
case token.IMPORT:
return "import declaration"
case token.CONST:
return "constant declaration"
case token.TYPE:
return "type declaration"
case token.VAR:
return "variable declaration"
}
case *ast.GoStmt:
return "go statement"
case *ast.Ident:
return "identifier"
case *ast.IfStmt:
return "if statement"
case *ast.ImportSpec:
return "import specification"
case *ast.IncDecStmt:
if n.Tok == token.INC {
return "increment statement"
}
return "decrement statement"
case *ast.IndexExpr:
return "index expression"
case *ast.IndexListExpr:
return "index list expression"
case *ast.InterfaceType:
return "interface type"
case *ast.KeyValueExpr:
return "key/value association"
case *ast.LabeledStmt:
return "statement label"
case *ast.MapType:
return "map type"
case *ast.Package:
return "package"
case *ast.ParenExpr:
return "parenthesized " + NodeDescription(n.X)
case *ast.RangeStmt:
return "range loop"
case *ast.ReturnStmt:
return "return statement"
case *ast.SelectStmt:
return "select statement"
case *ast.SelectorExpr:
return "selector"
case *ast.SendStmt:
return "channel send"
case *ast.SliceExpr:
return "slice expression"
case *ast.StarExpr:
return "*-operation" // load/store expr or pointer type
case *ast.StructType:
return "struct type"
case *ast.SwitchStmt:
return "switch statement"
case *ast.TypeAssertExpr:
return "type assertion"
case *ast.TypeSpec:
return "type specification"
case *ast.TypeSwitchStmt:
return "type switch"
case *ast.UnaryExpr:
return fmt.Sprintf("unary %s operation", n.Op)
case *ast.ValueSpec:
return "value specification"
}
panic(fmt.Sprintf("unexpected node type: %T", n))
}

485
vendor/golang.org/x/tools/go/ast/astutil/imports.go generated vendored Normal file
View File

@@ -0,0 +1,485 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package astutil contains common utilities for working with the Go AST.
package astutil // import "golang.org/x/tools/go/ast/astutil"
import (
"fmt"
"go/ast"
"go/token"
"strconv"
"strings"
)
// AddImport adds the import path to the file f, if absent.
func AddImport(fset *token.FileSet, f *ast.File, path string) (added bool) {
return AddNamedImport(fset, f, "", path)
}
// AddNamedImport adds the import with the given name and path to the file f, if absent.
// If name is not empty, it is used to rename the import.
//
// For example, calling
//
// AddNamedImport(fset, f, "pathpkg", "path")
//
// adds
//
// import pathpkg "path"
func AddNamedImport(fset *token.FileSet, f *ast.File, name, path string) (added bool) {
if imports(f, name, path) {
return false
}
newImport := &ast.ImportSpec{
Path: &ast.BasicLit{
Kind: token.STRING,
Value: strconv.Quote(path),
},
}
if name != "" {
newImport.Name = &ast.Ident{Name: name}
}
// Find an import decl to add to.
// The goal is to find an existing import
// whose import path has the longest shared
// prefix with path.
var (
bestMatch = -1 // length of longest shared prefix
lastImport = -1 // index in f.Decls of the file's final import decl
impDecl *ast.GenDecl // import decl containing the best match
impIndex = -1 // spec index in impDecl containing the best match
isThirdPartyPath = isThirdParty(path)
)
for i, decl := range f.Decls {
gen, ok := decl.(*ast.GenDecl)
if ok && gen.Tok == token.IMPORT {
lastImport = i
// Do not add to import "C", to avoid disrupting the
// association with its doc comment, breaking cgo.
if declImports(gen, "C") {
continue
}
// Match an empty import decl if that's all that is available.
if len(gen.Specs) == 0 && bestMatch == -1 {
impDecl = gen
}
// Compute longest shared prefix with imports in this group and find best
// matched import spec.
// 1. Always prefer import spec with longest shared prefix.
// 2. While match length is 0,
// - for stdlib package: prefer first import spec.
// - for third party package: prefer first third party import spec.
// We cannot use last import spec as best match for third party package
// because grouped imports are usually placed last by goimports -local
// flag.
// See issue #19190.
seenAnyThirdParty := false
for j, spec := range gen.Specs {
impspec := spec.(*ast.ImportSpec)
p := importPath(impspec)
n := matchLen(p, path)
if n > bestMatch || (bestMatch == 0 && !seenAnyThirdParty && isThirdPartyPath) {
bestMatch = n
impDecl = gen
impIndex = j
}
seenAnyThirdParty = seenAnyThirdParty || isThirdParty(p)
}
}
}
// If no import decl found, add one after the last import.
if impDecl == nil {
impDecl = &ast.GenDecl{
Tok: token.IMPORT,
}
if lastImport >= 0 {
impDecl.TokPos = f.Decls[lastImport].End()
} else {
// There are no existing imports.
// Our new import, preceded by a blank line, goes after the package declaration
// and after the comment, if any, that starts on the same line as the
// package declaration.
impDecl.TokPos = f.Package
file := fset.File(f.Package)
pkgLine := file.Line(f.Package)
for _, c := range f.Comments {
if file.Line(c.Pos()) > pkgLine {
break
}
// +2 for a blank line
impDecl.TokPos = c.End() + 2
}
}
f.Decls = append(f.Decls, nil)
copy(f.Decls[lastImport+2:], f.Decls[lastImport+1:])
f.Decls[lastImport+1] = impDecl
}
// Insert new import at insertAt.
insertAt := 0
if impIndex >= 0 {
// insert after the found import
insertAt = impIndex + 1
}
impDecl.Specs = append(impDecl.Specs, nil)
copy(impDecl.Specs[insertAt+1:], impDecl.Specs[insertAt:])
impDecl.Specs[insertAt] = newImport
pos := impDecl.Pos()
if insertAt > 0 {
// If there is a comment after an existing import, preserve the comment
// position by adding the new import after the comment.
if spec, ok := impDecl.Specs[insertAt-1].(*ast.ImportSpec); ok && spec.Comment != nil {
pos = spec.Comment.End()
} else {
// Assign same position as the previous import,
// so that the sorter sees it as being in the same block.
pos = impDecl.Specs[insertAt-1].Pos()
}
}
if newImport.Name != nil {
newImport.Name.NamePos = pos
}
newImport.Path.ValuePos = pos
newImport.EndPos = pos
// Clean up parens. impDecl contains at least one spec.
if len(impDecl.Specs) == 1 {
// Remove unneeded parens.
impDecl.Lparen = token.NoPos
} else if !impDecl.Lparen.IsValid() {
// impDecl needs parens added.
impDecl.Lparen = impDecl.Specs[0].Pos()
}
f.Imports = append(f.Imports, newImport)
if len(f.Decls) <= 1 {
return true
}
// Merge all the import declarations into the first one.
var first *ast.GenDecl
for i := 0; i < len(f.Decls); i++ {
decl := f.Decls[i]
gen, ok := decl.(*ast.GenDecl)
if !ok || gen.Tok != token.IMPORT || declImports(gen, "C") {
continue
}
if first == nil {
first = gen
continue // Don't touch the first one.
}
// We now know there is more than one package in this import
// declaration. Ensure that it ends up parenthesized.
first.Lparen = first.Pos()
// Move the imports of the other import declaration to the first one.
for _, spec := range gen.Specs {
spec.(*ast.ImportSpec).Path.ValuePos = first.Pos()
first.Specs = append(first.Specs, spec)
}
f.Decls = append(f.Decls[:i], f.Decls[i+1:]...)
i--
}
return true
}
func isThirdParty(importPath string) bool {
// Third party package import path usually contains "." (".com", ".org", ...)
// This logic is taken from golang.org/x/tools/imports package.
return strings.Contains(importPath, ".")
}
// DeleteImport deletes the import path from the file f, if present.
// If there are duplicate import declarations, all matching ones are deleted.
func DeleteImport(fset *token.FileSet, f *ast.File, path string) (deleted bool) {
return DeleteNamedImport(fset, f, "", path)
}
// DeleteNamedImport deletes the import with the given name and path from the file f, if present.
// If there are duplicate import declarations, all matching ones are deleted.
func DeleteNamedImport(fset *token.FileSet, f *ast.File, name, path string) (deleted bool) {
var delspecs []*ast.ImportSpec
var delcomments []*ast.CommentGroup
// Find the import nodes that import path, if any.
for i := 0; i < len(f.Decls); i++ {
decl := f.Decls[i]
gen, ok := decl.(*ast.GenDecl)
if !ok || gen.Tok != token.IMPORT {
continue
}
for j := 0; j < len(gen.Specs); j++ {
spec := gen.Specs[j]
impspec := spec.(*ast.ImportSpec)
if importName(impspec) != name || importPath(impspec) != path {
continue
}
// We found an import spec that imports path.
// Delete it.
delspecs = append(delspecs, impspec)
deleted = true
copy(gen.Specs[j:], gen.Specs[j+1:])
gen.Specs = gen.Specs[:len(gen.Specs)-1]
// If this was the last import spec in this decl,
// delete the decl, too.
if len(gen.Specs) == 0 {
copy(f.Decls[i:], f.Decls[i+1:])
f.Decls = f.Decls[:len(f.Decls)-1]
i--
break
} else if len(gen.Specs) == 1 {
if impspec.Doc != nil {
delcomments = append(delcomments, impspec.Doc)
}
if impspec.Comment != nil {
delcomments = append(delcomments, impspec.Comment)
}
for _, cg := range f.Comments {
// Found comment on the same line as the import spec.
if cg.End() < impspec.Pos() && fset.Position(cg.End()).Line == fset.Position(impspec.Pos()).Line {
delcomments = append(delcomments, cg)
break
}
}
spec := gen.Specs[0].(*ast.ImportSpec)
// Move the documentation right after the import decl.
if spec.Doc != nil {
for fset.Position(gen.TokPos).Line+1 < fset.Position(spec.Doc.Pos()).Line {
fset.File(gen.TokPos).MergeLine(fset.Position(gen.TokPos).Line)
}
}
for _, cg := range f.Comments {
if cg.End() < spec.Pos() && fset.Position(cg.End()).Line == fset.Position(spec.Pos()).Line {
for fset.Position(gen.TokPos).Line+1 < fset.Position(spec.Pos()).Line {
fset.File(gen.TokPos).MergeLine(fset.Position(gen.TokPos).Line)
}
break
}
}
}
if j > 0 {
lastImpspec := gen.Specs[j-1].(*ast.ImportSpec)
lastLine := fset.PositionFor(lastImpspec.Path.ValuePos, false).Line
line := fset.PositionFor(impspec.Path.ValuePos, false).Line
// We deleted an entry but now there may be
// a blank line-sized hole where the import was.
if line-lastLine > 1 || !gen.Rparen.IsValid() {
// There was a blank line immediately preceding the deleted import,
// so there's no need to close the hole. The right parenthesis is
// invalid after AddImport to an import statement without parenthesis.
// Do nothing.
} else if line != fset.File(gen.Rparen).LineCount() {
// There was no blank line. Close the hole.
fset.File(gen.Rparen).MergeLine(line)
}
}
j--
}
}
// Delete imports from f.Imports.
for i := 0; i < len(f.Imports); i++ {
imp := f.Imports[i]
for j, del := range delspecs {
if imp == del {
copy(f.Imports[i:], f.Imports[i+1:])
f.Imports = f.Imports[:len(f.Imports)-1]
copy(delspecs[j:], delspecs[j+1:])
delspecs = delspecs[:len(delspecs)-1]
i--
break
}
}
}
// Delete comments from f.Comments.
for i := 0; i < len(f.Comments); i++ {
cg := f.Comments[i]
for j, del := range delcomments {
if cg == del {
copy(f.Comments[i:], f.Comments[i+1:])
f.Comments = f.Comments[:len(f.Comments)-1]
copy(delcomments[j:], delcomments[j+1:])
delcomments = delcomments[:len(delcomments)-1]
i--
break
}
}
}
if len(delspecs) > 0 {
panic(fmt.Sprintf("deleted specs from Decls but not Imports: %v", delspecs))
}
return
}
// RewriteImport rewrites any import of path oldPath to path newPath.
func RewriteImport(fset *token.FileSet, f *ast.File, oldPath, newPath string) (rewrote bool) {
for _, imp := range f.Imports {
if importPath(imp) == oldPath {
rewrote = true
// record old End, because the default is to compute
// it using the length of imp.Path.Value.
imp.EndPos = imp.End()
imp.Path.Value = strconv.Quote(newPath)
}
}
return
}
// UsesImport reports whether a given import is used.
func UsesImport(f *ast.File, path string) (used bool) {
spec := importSpec(f, path)
if spec == nil {
return
}
name := spec.Name.String()
switch name {
case "<nil>":
// If the package name is not explicitly specified,
// make an educated guess. This is not guaranteed to be correct.
lastSlash := strings.LastIndex(path, "/")
if lastSlash == -1 {
name = path
} else {
name = path[lastSlash+1:]
}
case "_", ".":
// Not sure if this import is used - err on the side of caution.
return true
}
ast.Walk(visitFn(func(n ast.Node) {
sel, ok := n.(*ast.SelectorExpr)
if ok && isTopName(sel.X, name) {
used = true
}
}), f)
return
}
type visitFn func(node ast.Node)
func (fn visitFn) Visit(node ast.Node) ast.Visitor {
fn(node)
return fn
}
// imports reports whether f has an import with the specified name and path.
func imports(f *ast.File, name, path string) bool {
for _, s := range f.Imports {
if importName(s) == name && importPath(s) == path {
return true
}
}
return false
}
// importSpec returns the import spec if f imports path,
// or nil otherwise.
func importSpec(f *ast.File, path string) *ast.ImportSpec {
for _, s := range f.Imports {
if importPath(s) == path {
return s
}
}
return nil
}
// importName returns the name of s,
// or "" if the import is not named.
func importName(s *ast.ImportSpec) string {
if s.Name == nil {
return ""
}
return s.Name.Name
}
// importPath returns the unquoted import path of s,
// or "" if the path is not properly quoted.
func importPath(s *ast.ImportSpec) string {
t, err := strconv.Unquote(s.Path.Value)
if err != nil {
return ""
}
return t
}
// declImports reports whether gen contains an import of path.
func declImports(gen *ast.GenDecl, path string) bool {
if gen.Tok != token.IMPORT {
return false
}
for _, spec := range gen.Specs {
impspec := spec.(*ast.ImportSpec)
if importPath(impspec) == path {
return true
}
}
return false
}
// matchLen returns the length of the longest path segment prefix shared by x and y.
func matchLen(x, y string) int {
n := 0
for i := 0; i < len(x) && i < len(y) && x[i] == y[i]; i++ {
if x[i] == '/' {
n++
}
}
return n
}
// isTopName returns true if n is a top-level unresolved identifier with the given name.
func isTopName(n ast.Expr, name string) bool {
id, ok := n.(*ast.Ident)
return ok && id.Name == name && id.Obj == nil
}
// Imports returns the file imports grouped by paragraph.
func Imports(fset *token.FileSet, f *ast.File) [][]*ast.ImportSpec {
var groups [][]*ast.ImportSpec
for _, decl := range f.Decls {
genDecl, ok := decl.(*ast.GenDecl)
if !ok || genDecl.Tok != token.IMPORT {
break
}
group := []*ast.ImportSpec{}
var lastLine int
for _, spec := range genDecl.Specs {
importSpec := spec.(*ast.ImportSpec)
pos := importSpec.Path.ValuePos
line := fset.Position(pos).Line
if lastLine > 0 && pos > 0 && line-lastLine > 1 {
groups = append(groups, group)
group = []*ast.ImportSpec{}
}
group = append(group, importSpec)
lastLine = line
}
groups = append(groups, group)
}
return groups
}

486
vendor/golang.org/x/tools/go/ast/astutil/rewrite.go generated vendored Normal file
View File

@@ -0,0 +1,486 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package astutil
import (
"fmt"
"go/ast"
"reflect"
"sort"
)
// An ApplyFunc is invoked by Apply for each node n, even if n is nil,
// before and/or after the node's children, using a Cursor describing
// the current node and providing operations on it.
//
// The return value of ApplyFunc controls the syntax tree traversal.
// See Apply for details.
type ApplyFunc func(*Cursor) bool
// Apply traverses a syntax tree recursively, starting with root,
// and calling pre and post for each node as described below.
// Apply returns the syntax tree, possibly modified.
//
// If pre is not nil, it is called for each node before the node's
// children are traversed (pre-order). If pre returns false, no
// children are traversed, and post is not called for that node.
//
// If post is not nil, and a prior call of pre didn't return false,
// post is called for each node after its children are traversed
// (post-order). If post returns false, traversal is terminated and
// Apply returns immediately.
//
// Only fields that refer to AST nodes are considered children;
// i.e., token.Pos, Scopes, Objects, and fields of basic types
// (strings, etc.) are ignored.
//
// Children are traversed in the order in which they appear in the
// respective node's struct definition. A package's files are
// traversed in the filenames' alphabetical order.
func Apply(root ast.Node, pre, post ApplyFunc) (result ast.Node) {
parent := &struct{ ast.Node }{root}
defer func() {
if r := recover(); r != nil && r != abort {
panic(r)
}
result = parent.Node
}()
a := &application{pre: pre, post: post}
a.apply(parent, "Node", nil, root)
return
}
var abort = new(int) // singleton, to signal termination of Apply
// A Cursor describes a node encountered during Apply.
// Information about the node and its parent is available
// from the Node, Parent, Name, and Index methods.
//
// If p is a variable of type and value of the current parent node
// c.Parent(), and f is the field identifier with name c.Name(),
// the following invariants hold:
//
// p.f == c.Node() if c.Index() < 0
// p.f[c.Index()] == c.Node() if c.Index() >= 0
//
// The methods Replace, Delete, InsertBefore, and InsertAfter
// can be used to change the AST without disrupting Apply.
type Cursor struct {
parent ast.Node
name string
iter *iterator // valid if non-nil
node ast.Node
}
// Node returns the current Node.
func (c *Cursor) Node() ast.Node { return c.node }
// Parent returns the parent of the current Node.
func (c *Cursor) Parent() ast.Node { return c.parent }
// Name returns the name of the parent Node field that contains the current Node.
// If the parent is a *ast.Package and the current Node is a *ast.File, Name returns
// the filename for the current Node.
func (c *Cursor) Name() string { return c.name }
// Index reports the index >= 0 of the current Node in the slice of Nodes that
// contains it, or a value < 0 if the current Node is not part of a slice.
// The index of the current node changes if InsertBefore is called while
// processing the current node.
func (c *Cursor) Index() int {
if c.iter != nil {
return c.iter.index
}
return -1
}
// field returns the current node's parent field value.
func (c *Cursor) field() reflect.Value {
return reflect.Indirect(reflect.ValueOf(c.parent)).FieldByName(c.name)
}
// Replace replaces the current Node with n.
// The replacement node is not walked by Apply.
func (c *Cursor) Replace(n ast.Node) {
if _, ok := c.node.(*ast.File); ok {
file, ok := n.(*ast.File)
if !ok {
panic("attempt to replace *ast.File with non-*ast.File")
}
c.parent.(*ast.Package).Files[c.name] = file
return
}
v := c.field()
if i := c.Index(); i >= 0 {
v = v.Index(i)
}
v.Set(reflect.ValueOf(n))
}
// Delete deletes the current Node from its containing slice.
// If the current Node is not part of a slice, Delete panics.
// As a special case, if the current node is a package file,
// Delete removes it from the package's Files map.
func (c *Cursor) Delete() {
if _, ok := c.node.(*ast.File); ok {
delete(c.parent.(*ast.Package).Files, c.name)
return
}
i := c.Index()
if i < 0 {
panic("Delete node not contained in slice")
}
v := c.field()
l := v.Len()
reflect.Copy(v.Slice(i, l), v.Slice(i+1, l))
v.Index(l - 1).Set(reflect.Zero(v.Type().Elem()))
v.SetLen(l - 1)
c.iter.step--
}
// InsertAfter inserts n after the current Node in its containing slice.
// If the current Node is not part of a slice, InsertAfter panics.
// Apply does not walk n.
func (c *Cursor) InsertAfter(n ast.Node) {
i := c.Index()
if i < 0 {
panic("InsertAfter node not contained in slice")
}
v := c.field()
v.Set(reflect.Append(v, reflect.Zero(v.Type().Elem())))
l := v.Len()
reflect.Copy(v.Slice(i+2, l), v.Slice(i+1, l))
v.Index(i + 1).Set(reflect.ValueOf(n))
c.iter.step++
}
// InsertBefore inserts n before the current Node in its containing slice.
// If the current Node is not part of a slice, InsertBefore panics.
// Apply will not walk n.
func (c *Cursor) InsertBefore(n ast.Node) {
i := c.Index()
if i < 0 {
panic("InsertBefore node not contained in slice")
}
v := c.field()
v.Set(reflect.Append(v, reflect.Zero(v.Type().Elem())))
l := v.Len()
reflect.Copy(v.Slice(i+1, l), v.Slice(i, l))
v.Index(i).Set(reflect.ValueOf(n))
c.iter.index++
}
// application carries all the shared data so we can pass it around cheaply.
type application struct {
pre, post ApplyFunc
cursor Cursor
iter iterator
}
func (a *application) apply(parent ast.Node, name string, iter *iterator, n ast.Node) {
// convert typed nil into untyped nil
if v := reflect.ValueOf(n); v.Kind() == reflect.Ptr && v.IsNil() {
n = nil
}
// avoid heap-allocating a new cursor for each apply call; reuse a.cursor instead
saved := a.cursor
a.cursor.parent = parent
a.cursor.name = name
a.cursor.iter = iter
a.cursor.node = n
if a.pre != nil && !a.pre(&a.cursor) {
a.cursor = saved
return
}
// walk children
// (the order of the cases matches the order of the corresponding node types in go/ast)
switch n := n.(type) {
case nil:
// nothing to do
// Comments and fields
case *ast.Comment:
// nothing to do
case *ast.CommentGroup:
if n != nil {
a.applyList(n, "List")
}
case *ast.Field:
a.apply(n, "Doc", nil, n.Doc)
a.applyList(n, "Names")
a.apply(n, "Type", nil, n.Type)
a.apply(n, "Tag", nil, n.Tag)
a.apply(n, "Comment", nil, n.Comment)
case *ast.FieldList:
a.applyList(n, "List")
// Expressions
case *ast.BadExpr, *ast.Ident, *ast.BasicLit:
// nothing to do
case *ast.Ellipsis:
a.apply(n, "Elt", nil, n.Elt)
case *ast.FuncLit:
a.apply(n, "Type", nil, n.Type)
a.apply(n, "Body", nil, n.Body)
case *ast.CompositeLit:
a.apply(n, "Type", nil, n.Type)
a.applyList(n, "Elts")
case *ast.ParenExpr:
a.apply(n, "X", nil, n.X)
case *ast.SelectorExpr:
a.apply(n, "X", nil, n.X)
a.apply(n, "Sel", nil, n.Sel)
case *ast.IndexExpr:
a.apply(n, "X", nil, n.X)
a.apply(n, "Index", nil, n.Index)
case *ast.IndexListExpr:
a.apply(n, "X", nil, n.X)
a.applyList(n, "Indices")
case *ast.SliceExpr:
a.apply(n, "X", nil, n.X)
a.apply(n, "Low", nil, n.Low)
a.apply(n, "High", nil, n.High)
a.apply(n, "Max", nil, n.Max)
case *ast.TypeAssertExpr:
a.apply(n, "X", nil, n.X)
a.apply(n, "Type", nil, n.Type)
case *ast.CallExpr:
a.apply(n, "Fun", nil, n.Fun)
a.applyList(n, "Args")
case *ast.StarExpr:
a.apply(n, "X", nil, n.X)
case *ast.UnaryExpr:
a.apply(n, "X", nil, n.X)
case *ast.BinaryExpr:
a.apply(n, "X", nil, n.X)
a.apply(n, "Y", nil, n.Y)
case *ast.KeyValueExpr:
a.apply(n, "Key", nil, n.Key)
a.apply(n, "Value", nil, n.Value)
// Types
case *ast.ArrayType:
a.apply(n, "Len", nil, n.Len)
a.apply(n, "Elt", nil, n.Elt)
case *ast.StructType:
a.apply(n, "Fields", nil, n.Fields)
case *ast.FuncType:
if tparams := n.TypeParams; tparams != nil {
a.apply(n, "TypeParams", nil, tparams)
}
a.apply(n, "Params", nil, n.Params)
a.apply(n, "Results", nil, n.Results)
case *ast.InterfaceType:
a.apply(n, "Methods", nil, n.Methods)
case *ast.MapType:
a.apply(n, "Key", nil, n.Key)
a.apply(n, "Value", nil, n.Value)
case *ast.ChanType:
a.apply(n, "Value", nil, n.Value)
// Statements
case *ast.BadStmt:
// nothing to do
case *ast.DeclStmt:
a.apply(n, "Decl", nil, n.Decl)
case *ast.EmptyStmt:
// nothing to do
case *ast.LabeledStmt:
a.apply(n, "Label", nil, n.Label)
a.apply(n, "Stmt", nil, n.Stmt)
case *ast.ExprStmt:
a.apply(n, "X", nil, n.X)
case *ast.SendStmt:
a.apply(n, "Chan", nil, n.Chan)
a.apply(n, "Value", nil, n.Value)
case *ast.IncDecStmt:
a.apply(n, "X", nil, n.X)
case *ast.AssignStmt:
a.applyList(n, "Lhs")
a.applyList(n, "Rhs")
case *ast.GoStmt:
a.apply(n, "Call", nil, n.Call)
case *ast.DeferStmt:
a.apply(n, "Call", nil, n.Call)
case *ast.ReturnStmt:
a.applyList(n, "Results")
case *ast.BranchStmt:
a.apply(n, "Label", nil, n.Label)
case *ast.BlockStmt:
a.applyList(n, "List")
case *ast.IfStmt:
a.apply(n, "Init", nil, n.Init)
a.apply(n, "Cond", nil, n.Cond)
a.apply(n, "Body", nil, n.Body)
a.apply(n, "Else", nil, n.Else)
case *ast.CaseClause:
a.applyList(n, "List")
a.applyList(n, "Body")
case *ast.SwitchStmt:
a.apply(n, "Init", nil, n.Init)
a.apply(n, "Tag", nil, n.Tag)
a.apply(n, "Body", nil, n.Body)
case *ast.TypeSwitchStmt:
a.apply(n, "Init", nil, n.Init)
a.apply(n, "Assign", nil, n.Assign)
a.apply(n, "Body", nil, n.Body)
case *ast.CommClause:
a.apply(n, "Comm", nil, n.Comm)
a.applyList(n, "Body")
case *ast.SelectStmt:
a.apply(n, "Body", nil, n.Body)
case *ast.ForStmt:
a.apply(n, "Init", nil, n.Init)
a.apply(n, "Cond", nil, n.Cond)
a.apply(n, "Post", nil, n.Post)
a.apply(n, "Body", nil, n.Body)
case *ast.RangeStmt:
a.apply(n, "Key", nil, n.Key)
a.apply(n, "Value", nil, n.Value)
a.apply(n, "X", nil, n.X)
a.apply(n, "Body", nil, n.Body)
// Declarations
case *ast.ImportSpec:
a.apply(n, "Doc", nil, n.Doc)
a.apply(n, "Name", nil, n.Name)
a.apply(n, "Path", nil, n.Path)
a.apply(n, "Comment", nil, n.Comment)
case *ast.ValueSpec:
a.apply(n, "Doc", nil, n.Doc)
a.applyList(n, "Names")
a.apply(n, "Type", nil, n.Type)
a.applyList(n, "Values")
a.apply(n, "Comment", nil, n.Comment)
case *ast.TypeSpec:
a.apply(n, "Doc", nil, n.Doc)
a.apply(n, "Name", nil, n.Name)
if tparams := n.TypeParams; tparams != nil {
a.apply(n, "TypeParams", nil, tparams)
}
a.apply(n, "Type", nil, n.Type)
a.apply(n, "Comment", nil, n.Comment)
case *ast.BadDecl:
// nothing to do
case *ast.GenDecl:
a.apply(n, "Doc", nil, n.Doc)
a.applyList(n, "Specs")
case *ast.FuncDecl:
a.apply(n, "Doc", nil, n.Doc)
a.apply(n, "Recv", nil, n.Recv)
a.apply(n, "Name", nil, n.Name)
a.apply(n, "Type", nil, n.Type)
a.apply(n, "Body", nil, n.Body)
// Files and packages
case *ast.File:
a.apply(n, "Doc", nil, n.Doc)
a.apply(n, "Name", nil, n.Name)
a.applyList(n, "Decls")
// Don't walk n.Comments; they have either been walked already if
// they are Doc comments, or they can be easily walked explicitly.
case *ast.Package:
// collect and sort names for reproducible behavior
var names []string
for name := range n.Files {
names = append(names, name)
}
sort.Strings(names)
for _, name := range names {
a.apply(n, name, nil, n.Files[name])
}
default:
panic(fmt.Sprintf("Apply: unexpected node type %T", n))
}
if a.post != nil && !a.post(&a.cursor) {
panic(abort)
}
a.cursor = saved
}
// An iterator controls iteration over a slice of nodes.
type iterator struct {
index, step int
}
func (a *application) applyList(parent ast.Node, name string) {
// avoid heap-allocating a new iterator for each applyList call; reuse a.iter instead
saved := a.iter
a.iter.index = 0
for {
// must reload parent.name each time, since cursor modifications might change it
v := reflect.Indirect(reflect.ValueOf(parent)).FieldByName(name)
if a.iter.index >= v.Len() {
break
}
// element x may be nil in a bad AST - be cautious
var x ast.Node
if e := v.Index(a.iter.index); e.IsValid() {
x = e.Interface().(ast.Node)
}
a.iter.step = 1
a.apply(parent, name, &a.iter, x)
a.iter.index += a.iter.step
}
a.iter = saved
}

18
vendor/golang.org/x/tools/go/ast/astutil/util.go generated vendored Normal file
View File

@@ -0,0 +1,18 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package astutil
import "go/ast"
// Unparen returns e with any enclosing parentheses stripped.
func Unparen(e ast.Expr) ast.Expr {
for {
p, ok := e.(*ast.ParenExpr)
if !ok {
return e
}
e = p.X
}
}

220
vendor/golang.org/x/tools/go/ast/inspector/inspector.go generated vendored Normal file
View File

@@ -0,0 +1,220 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package inspector provides helper functions for traversal over the
// syntax trees of a package, including node filtering by type, and
// materialization of the traversal stack.
//
// During construction, the inspector does a complete traversal and
// builds a list of push/pop events and their node type. Subsequent
// method calls that request a traversal scan this list, rather than walk
// the AST, and perform type filtering using efficient bit sets.
//
// Experiments suggest the inspector's traversals are about 2.5x faster
// than ast.Inspect, but it may take around 5 traversals for this
// benefit to amortize the inspector's construction cost.
// If efficiency is the primary concern, do not use Inspector for
// one-off traversals.
package inspector
// There are four orthogonal features in a traversal:
// 1 type filtering
// 2 pruning
// 3 postorder calls to f
// 4 stack
// Rather than offer all of them in the API,
// only a few combinations are exposed:
// - Preorder is the fastest and has fewest features,
// but is the most commonly needed traversal.
// - Nodes and WithStack both provide pruning and postorder calls,
// even though few clients need it, because supporting two versions
// is not justified.
// More combinations could be supported by expressing them as
// wrappers around a more generic traversal, but this was measured
// and found to degrade performance significantly (30%).
import (
"go/ast"
)
// An Inspector provides methods for inspecting
// (traversing) the syntax trees of a package.
type Inspector struct {
events []event
}
// New returns an Inspector for the specified syntax trees.
func New(files []*ast.File) *Inspector {
return &Inspector{traverse(files)}
}
// An event represents a push or a pop
// of an ast.Node during a traversal.
type event struct {
node ast.Node
typ uint64 // typeOf(node) on push event, or union of typ strictly between push and pop events on pop events
index int // index of corresponding push or pop event
}
// TODO: Experiment with storing only the second word of event.node (unsafe.Pointer).
// Type can be recovered from the sole bit in typ.
// Preorder visits all the nodes of the files supplied to New in
// depth-first order. It calls f(n) for each node n before it visits
// n's children.
//
// The complete traversal sequence is determined by ast.Inspect.
// The types argument, if non-empty, enables type-based filtering of
// events. The function f is called only for nodes whose type
// matches an element of the types slice.
func (in *Inspector) Preorder(types []ast.Node, f func(ast.Node)) {
// Because it avoids postorder calls to f, and the pruning
// check, Preorder is almost twice as fast as Nodes. The two
// features seem to contribute similar slowdowns (~1.4x each).
mask := maskOf(types)
for i := 0; i < len(in.events); {
ev := in.events[i]
if ev.index > i {
// push
if ev.typ&mask != 0 {
f(ev.node)
}
pop := ev.index
if in.events[pop].typ&mask == 0 {
// Subtrees do not contain types: skip them and pop.
i = pop + 1
continue
}
}
i++
}
}
// Nodes visits the nodes of the files supplied to New in depth-first
// order. It calls f(n, true) for each node n before it visits n's
// children. If f returns true, Nodes invokes f recursively for each
// of the non-nil children of the node, followed by a call of
// f(n, false).
//
// The complete traversal sequence is determined by ast.Inspect.
// The types argument, if non-empty, enables type-based filtering of
// events. The function f if is called only for nodes whose type
// matches an element of the types slice.
func (in *Inspector) Nodes(types []ast.Node, f func(n ast.Node, push bool) (proceed bool)) {
mask := maskOf(types)
for i := 0; i < len(in.events); {
ev := in.events[i]
if ev.index > i {
// push
pop := ev.index
if ev.typ&mask != 0 {
if !f(ev.node, true) {
i = pop + 1 // jump to corresponding pop + 1
continue
}
}
if in.events[pop].typ&mask == 0 {
// Subtrees do not contain types: skip them.
i = pop
continue
}
} else {
// pop
push := ev.index
if in.events[push].typ&mask != 0 {
f(ev.node, false)
}
}
i++
}
}
// WithStack visits nodes in a similar manner to Nodes, but it
// supplies each call to f an additional argument, the current
// traversal stack. The stack's first element is the outermost node,
// an *ast.File; its last is the innermost, n.
func (in *Inspector) WithStack(types []ast.Node, f func(n ast.Node, push bool, stack []ast.Node) (proceed bool)) {
mask := maskOf(types)
var stack []ast.Node
for i := 0; i < len(in.events); {
ev := in.events[i]
if ev.index > i {
// push
pop := ev.index
stack = append(stack, ev.node)
if ev.typ&mask != 0 {
if !f(ev.node, true, stack) {
i = pop + 1
stack = stack[:len(stack)-1]
continue
}
}
if in.events[pop].typ&mask == 0 {
// Subtrees does not contain types: skip them.
i = pop
continue
}
} else {
// pop
push := ev.index
if in.events[push].typ&mask != 0 {
f(ev.node, false, stack)
}
stack = stack[:len(stack)-1]
}
i++
}
}
// traverse builds the table of events representing a traversal.
func traverse(files []*ast.File) []event {
// Preallocate approximate number of events
// based on source file extent.
// This makes traverse faster by 4x (!).
var extent int
for _, f := range files {
extent += int(f.End() - f.Pos())
}
// This estimate is based on the net/http package.
capacity := extent * 33 / 100
if capacity > 1e6 {
capacity = 1e6 // impose some reasonable maximum
}
events := make([]event, 0, capacity)
var stack []event
stack = append(stack, event{}) // include an extra event so file nodes have a parent
for _, f := range files {
ast.Inspect(f, func(n ast.Node) bool {
if n != nil {
// push
ev := event{
node: n,
typ: 0, // temporarily used to accumulate type bits of subtree
index: len(events), // push event temporarily holds own index
}
stack = append(stack, ev)
events = append(events, ev)
} else {
// pop
top := len(stack) - 1
ev := stack[top]
typ := typeOf(ev.node)
push := ev.index
parent := top - 1
events[push].typ = typ // set type of push
stack[parent].typ |= typ | ev.typ // parent's typ contains push and pop's typs.
events[push].index = len(events) // make push refer to pop
stack = stack[:top]
events = append(events, ev)
}
return true
})
}
return events
}

227
vendor/golang.org/x/tools/go/ast/inspector/typeof.go generated vendored Normal file
View File

@@ -0,0 +1,227 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package inspector
// This file defines func typeOf(ast.Node) uint64.
//
// The initial map-based implementation was too slow;
// see https://go-review.googlesource.com/c/tools/+/135655/1/go/ast/inspector/inspector.go#196
import (
"go/ast"
"math"
)
const (
nArrayType = iota
nAssignStmt
nBadDecl
nBadExpr
nBadStmt
nBasicLit
nBinaryExpr
nBlockStmt
nBranchStmt
nCallExpr
nCaseClause
nChanType
nCommClause
nComment
nCommentGroup
nCompositeLit
nDeclStmt
nDeferStmt
nEllipsis
nEmptyStmt
nExprStmt
nField
nFieldList
nFile
nForStmt
nFuncDecl
nFuncLit
nFuncType
nGenDecl
nGoStmt
nIdent
nIfStmt
nImportSpec
nIncDecStmt
nIndexExpr
nIndexListExpr
nInterfaceType
nKeyValueExpr
nLabeledStmt
nMapType
nPackage
nParenExpr
nRangeStmt
nReturnStmt
nSelectStmt
nSelectorExpr
nSendStmt
nSliceExpr
nStarExpr
nStructType
nSwitchStmt
nTypeAssertExpr
nTypeSpec
nTypeSwitchStmt
nUnaryExpr
nValueSpec
)
// typeOf returns a distinct single-bit value that represents the type of n.
//
// Various implementations were benchmarked with BenchmarkNewInspector:
//
// GOGC=off
// - type switch 4.9-5.5ms 2.1ms
// - binary search over a sorted list of types 5.5-5.9ms 2.5ms
// - linear scan, frequency-ordered list 5.9-6.1ms 2.7ms
// - linear scan, unordered list 6.4ms 2.7ms
// - hash table 6.5ms 3.1ms
//
// A perfect hash seemed like overkill.
//
// The compiler's switch statement is the clear winner
// as it produces a binary tree in code,
// with constant conditions and good branch prediction.
// (Sadly it is the most verbose in source code.)
// Binary search suffered from poor branch prediction.
func typeOf(n ast.Node) uint64 {
// Fast path: nearly half of all nodes are identifiers.
if _, ok := n.(*ast.Ident); ok {
return 1 << nIdent
}
// These cases include all nodes encountered by ast.Inspect.
switch n.(type) {
case *ast.ArrayType:
return 1 << nArrayType
case *ast.AssignStmt:
return 1 << nAssignStmt
case *ast.BadDecl:
return 1 << nBadDecl
case *ast.BadExpr:
return 1 << nBadExpr
case *ast.BadStmt:
return 1 << nBadStmt
case *ast.BasicLit:
return 1 << nBasicLit
case *ast.BinaryExpr:
return 1 << nBinaryExpr
case *ast.BlockStmt:
return 1 << nBlockStmt
case *ast.BranchStmt:
return 1 << nBranchStmt
case *ast.CallExpr:
return 1 << nCallExpr
case *ast.CaseClause:
return 1 << nCaseClause
case *ast.ChanType:
return 1 << nChanType
case *ast.CommClause:
return 1 << nCommClause
case *ast.Comment:
return 1 << nComment
case *ast.CommentGroup:
return 1 << nCommentGroup
case *ast.CompositeLit:
return 1 << nCompositeLit
case *ast.DeclStmt:
return 1 << nDeclStmt
case *ast.DeferStmt:
return 1 << nDeferStmt
case *ast.Ellipsis:
return 1 << nEllipsis
case *ast.EmptyStmt:
return 1 << nEmptyStmt
case *ast.ExprStmt:
return 1 << nExprStmt
case *ast.Field:
return 1 << nField
case *ast.FieldList:
return 1 << nFieldList
case *ast.File:
return 1 << nFile
case *ast.ForStmt:
return 1 << nForStmt
case *ast.FuncDecl:
return 1 << nFuncDecl
case *ast.FuncLit:
return 1 << nFuncLit
case *ast.FuncType:
return 1 << nFuncType
case *ast.GenDecl:
return 1 << nGenDecl
case *ast.GoStmt:
return 1 << nGoStmt
case *ast.Ident:
return 1 << nIdent
case *ast.IfStmt:
return 1 << nIfStmt
case *ast.ImportSpec:
return 1 << nImportSpec
case *ast.IncDecStmt:
return 1 << nIncDecStmt
case *ast.IndexExpr:
return 1 << nIndexExpr
case *ast.IndexListExpr:
return 1 << nIndexListExpr
case *ast.InterfaceType:
return 1 << nInterfaceType
case *ast.KeyValueExpr:
return 1 << nKeyValueExpr
case *ast.LabeledStmt:
return 1 << nLabeledStmt
case *ast.MapType:
return 1 << nMapType
case *ast.Package:
return 1 << nPackage
case *ast.ParenExpr:
return 1 << nParenExpr
case *ast.RangeStmt:
return 1 << nRangeStmt
case *ast.ReturnStmt:
return 1 << nReturnStmt
case *ast.SelectStmt:
return 1 << nSelectStmt
case *ast.SelectorExpr:
return 1 << nSelectorExpr
case *ast.SendStmt:
return 1 << nSendStmt
case *ast.SliceExpr:
return 1 << nSliceExpr
case *ast.StarExpr:
return 1 << nStarExpr
case *ast.StructType:
return 1 << nStructType
case *ast.SwitchStmt:
return 1 << nSwitchStmt
case *ast.TypeAssertExpr:
return 1 << nTypeAssertExpr
case *ast.TypeSpec:
return 1 << nTypeSpec
case *ast.TypeSwitchStmt:
return 1 << nTypeSwitchStmt
case *ast.UnaryExpr:
return 1 << nUnaryExpr
case *ast.ValueSpec:
return 1 << nValueSpec
}
return 0
}
func maskOf(nodes []ast.Node) uint64 {
if nodes == nil {
return math.MaxUint64 // match all node types
}
var mask uint64
for _, n := range nodes {
mask |= typeOf(n)
}
return mask
}

View File

@@ -0,0 +1,186 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package gcexportdata provides functions for locating, reading, and
// writing export data files containing type information produced by the
// gc compiler. This package supports go1.7 export data format and all
// later versions.
//
// Although it might seem convenient for this package to live alongside
// go/types in the standard library, this would cause version skew
// problems for developer tools that use it, since they must be able to
// consume the outputs of the gc compiler both before and after a Go
// update such as from Go 1.7 to Go 1.8. Because this package lives in
// golang.org/x/tools, sites can update their version of this repo some
// time before the Go 1.8 release and rebuild and redeploy their
// developer tools, which will then be able to consume both Go 1.7 and
// Go 1.8 export data files, so they will work before and after the
// Go update. (See discussion at https://golang.org/issue/15651.)
package gcexportdata // import "golang.org/x/tools/go/gcexportdata"
import (
"bufio"
"bytes"
"encoding/json"
"fmt"
"go/token"
"go/types"
"io"
"os/exec"
"golang.org/x/tools/internal/gcimporter"
)
// Find returns the name of an object (.o) or archive (.a) file
// containing type information for the specified import path,
// using the go command.
// If no file was found, an empty filename is returned.
//
// A relative srcDir is interpreted relative to the current working directory.
//
// Find also returns the package's resolved (canonical) import path,
// reflecting the effects of srcDir and vendoring on importPath.
//
// Deprecated: Use the higher-level API in golang.org/x/tools/go/packages,
// which is more efficient.
func Find(importPath, srcDir string) (filename, path string) {
cmd := exec.Command("go", "list", "-json", "-export", "--", importPath)
cmd.Dir = srcDir
out, err := cmd.Output()
if err != nil {
return "", ""
}
var data struct {
ImportPath string
Export string
}
json.Unmarshal(out, &data)
return data.Export, data.ImportPath
}
// NewReader returns a reader for the export data section of an object
// (.o) or archive (.a) file read from r. The new reader may provide
// additional trailing data beyond the end of the export data.
func NewReader(r io.Reader) (io.Reader, error) {
buf := bufio.NewReader(r)
_, size, err := gcimporter.FindExportData(buf)
if err != nil {
return nil, err
}
if size >= 0 {
// We were given an archive and found the __.PKGDEF in it.
// This tells us the size of the export data, and we don't
// need to return the entire file.
return &io.LimitedReader{
R: buf,
N: size,
}, nil
} else {
// We were given an object file. As such, we don't know how large
// the export data is and must return the entire file.
return buf, nil
}
}
// readAll works the same way as io.ReadAll, but avoids allocations and copies
// by preallocating a byte slice of the necessary size if the size is known up
// front. This is always possible when the input is an archive. In that case,
// NewReader will return the known size using an io.LimitedReader.
func readAll(r io.Reader) ([]byte, error) {
if lr, ok := r.(*io.LimitedReader); ok {
data := make([]byte, lr.N)
_, err := io.ReadFull(lr, data)
return data, err
}
return io.ReadAll(r)
}
// Read reads export data from in, decodes it, and returns type
// information for the package.
//
// The package path (effectively its linker symbol prefix) is
// specified by path, since unlike the package name, this information
// may not be recorded in the export data.
//
// File position information is added to fset.
//
// Read may inspect and add to the imports map to ensure that references
// within the export data to other packages are consistent. The caller
// must ensure that imports[path] does not exist, or exists but is
// incomplete (see types.Package.Complete), and Read inserts the
// resulting package into this map entry.
//
// On return, the state of the reader is undefined.
func Read(in io.Reader, fset *token.FileSet, imports map[string]*types.Package, path string) (*types.Package, error) {
data, err := readAll(in)
if err != nil {
return nil, fmt.Errorf("reading export data for %q: %v", path, err)
}
if bytes.HasPrefix(data, []byte("!<arch>")) {
return nil, fmt.Errorf("can't read export data for %q directly from an archive file (call gcexportdata.NewReader first to extract export data)", path)
}
// The indexed export format starts with an 'i'; the older
// binary export format starts with a 'c', 'd', or 'v'
// (from "version"). Select appropriate importer.
if len(data) > 0 {
switch data[0] {
case 'v', 'c', 'd': // binary, till go1.10
return nil, fmt.Errorf("binary (%c) import format is no longer supported", data[0])
case 'i': // indexed, till go1.19
_, pkg, err := gcimporter.IImportData(fset, imports, data[1:], path)
return pkg, err
case 'u': // unified, from go1.20
_, pkg, err := gcimporter.UImportData(fset, imports, data[1:], path)
return pkg, err
default:
l := len(data)
if l > 10 {
l = 10
}
return nil, fmt.Errorf("unexpected export data with prefix %q for path %s", string(data[:l]), path)
}
}
return nil, fmt.Errorf("empty export data for %s", path)
}
// Write writes encoded type information for the specified package to out.
// The FileSet provides file position information for named objects.
func Write(out io.Writer, fset *token.FileSet, pkg *types.Package) error {
if _, err := io.WriteString(out, "i"); err != nil {
return err
}
return gcimporter.IExportData(out, fset, pkg)
}
// ReadBundle reads an export bundle from in, decodes it, and returns type
// information for the packages.
// File position information is added to fset.
//
// ReadBundle may inspect and add to the imports map to ensure that references
// within the export bundle to other packages are consistent.
//
// On return, the state of the reader is undefined.
//
// Experimental: This API is experimental and may change in the future.
func ReadBundle(in io.Reader, fset *token.FileSet, imports map[string]*types.Package) ([]*types.Package, error) {
data, err := readAll(in)
if err != nil {
return nil, fmt.Errorf("reading export bundle: %v", err)
}
return gcimporter.IImportBundle(fset, imports, data)
}
// WriteBundle writes encoded type information for the specified packages to out.
// The FileSet provides file position information for named objects.
//
// Experimental: This API is experimental and may change in the future.
func WriteBundle(out io.Writer, fset *token.FileSet, pkgs []*types.Package) error {
return gcimporter.IExportBundle(out, fset, pkgs)
}

75
vendor/golang.org/x/tools/go/gcexportdata/importer.go generated vendored Normal file
View File

@@ -0,0 +1,75 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gcexportdata
import (
"fmt"
"go/token"
"go/types"
"os"
)
// NewImporter returns a new instance of the types.Importer interface
// that reads type information from export data files written by gc.
// The Importer also satisfies types.ImporterFrom.
//
// Export data files are located using "go build" workspace conventions
// and the build.Default context.
//
// Use this importer instead of go/importer.For("gc", ...) to avoid the
// version-skew problems described in the documentation of this package,
// or to control the FileSet or access the imports map populated during
// package loading.
//
// Deprecated: Use the higher-level API in golang.org/x/tools/go/packages,
// which is more efficient.
func NewImporter(fset *token.FileSet, imports map[string]*types.Package) types.ImporterFrom {
return importer{fset, imports}
}
type importer struct {
fset *token.FileSet
imports map[string]*types.Package
}
func (imp importer) Import(importPath string) (*types.Package, error) {
return imp.ImportFrom(importPath, "", 0)
}
func (imp importer) ImportFrom(importPath, srcDir string, mode types.ImportMode) (_ *types.Package, err error) {
filename, path := Find(importPath, srcDir)
if filename == "" {
if importPath == "unsafe" {
// Even for unsafe, call Find first in case
// the package was vendored.
return types.Unsafe, nil
}
return nil, fmt.Errorf("can't find import: %s", importPath)
}
if pkg, ok := imp.imports[path]; ok && pkg.Complete() {
return pkg, nil // cache hit
}
// open file
f, err := os.Open(filename)
if err != nil {
return nil, err
}
defer func() {
f.Close()
if err != nil {
// add file name to error
err = fmt.Errorf("reading export data: %s: %v", filename, err)
}
}()
r, err := NewReader(f)
if err != nil {
return nil, err
}
return Read(r, imp.fset, imp.imports, path)
}

View File

@@ -0,0 +1,54 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package packagesdriver fetches type sizes for go/packages and go/analysis.
package packagesdriver
import (
"context"
"fmt"
"strings"
"golang.org/x/tools/internal/gocommand"
)
// TODO(adonovan): move back into go/packages.
func GetSizesForArgsGolist(ctx context.Context, inv gocommand.Invocation, gocmdRunner *gocommand.Runner) (string, string, error) {
inv.Verb = "list"
inv.Args = []string{"-f", "{{context.GOARCH}} {{context.Compiler}}", "--", "unsafe"}
stdout, stderr, friendlyErr, rawErr := gocmdRunner.RunRaw(ctx, inv)
var goarch, compiler string
if rawErr != nil {
rawErrMsg := rawErr.Error()
if strings.Contains(rawErrMsg, "cannot find main module") ||
strings.Contains(rawErrMsg, "go.mod file not found") {
// User's running outside of a module.
// All bets are off. Get GOARCH and guess compiler is gc.
// TODO(matloob): Is this a problem in practice?
inv.Verb = "env"
inv.Args = []string{"GOARCH"}
envout, enverr := gocmdRunner.Run(ctx, inv)
if enverr != nil {
return "", "", enverr
}
goarch = strings.TrimSpace(envout.String())
compiler = "gc"
} else if friendlyErr != nil {
return "", "", friendlyErr
} else {
// This should be unreachable, but be defensive
// in case RunRaw's error results are inconsistent.
return "", "", rawErr
}
} else {
fields := strings.Fields(stdout.String())
if len(fields) < 2 {
return "", "", fmt.Errorf("could not parse GOARCH and Go compiler in format \"<GOARCH> <compiler>\":\nstdout: <<%s>>\nstderr: <<%s>>",
stdout.String(), stderr.String())
}
goarch = fields[0]
compiler = fields[1]
}
return compiler, goarch, nil
}

242
vendor/golang.org/x/tools/go/packages/doc.go generated vendored Normal file
View File

@@ -0,0 +1,242 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/*
Package packages loads Go packages for inspection and analysis.
The [Load] function takes as input a list of patterns and returns a
list of [Package] values describing individual packages matched by those
patterns.
A [Config] specifies configuration options, the most important of which is
the [LoadMode], which controls the amount of detail in the loaded packages.
Load passes most patterns directly to the underlying build tool.
The default build tool is the go command.
Its supported patterns are described at
https://pkg.go.dev/cmd/go#hdr-Package_lists_and_patterns.
Other build systems may be supported by providing a "driver";
see [The driver protocol].
All patterns with the prefix "query=", where query is a
non-empty string of letters from [a-z], are reserved and may be
interpreted as query operators.
Two query operators are currently supported: "file" and "pattern".
The query "file=path/to/file.go" matches the package or packages enclosing
the Go source file path/to/file.go. For example "file=~/go/src/fmt/print.go"
might return the packages "fmt" and "fmt [fmt.test]".
The query "pattern=string" causes "string" to be passed directly to
the underlying build tool. In most cases this is unnecessary,
but an application can use Load("pattern=" + x) as an escaping mechanism
to ensure that x is not interpreted as a query operator if it contains '='.
All other query operators are reserved for future use and currently
cause Load to report an error.
The Package struct provides basic information about the package, including
- ID, a unique identifier for the package in the returned set;
- GoFiles, the names of the package's Go source files;
- Imports, a map from source import strings to the Packages they name;
- Types, the type information for the package's exported symbols;
- Syntax, the parsed syntax trees for the package's source code; and
- TypesInfo, the result of a complete type-check of the package syntax trees.
(See the documentation for type Package for the complete list of fields
and more detailed descriptions.)
For example,
Load(nil, "bytes", "unicode...")
returns four Package structs describing the standard library packages
bytes, unicode, unicode/utf16, and unicode/utf8. Note that one pattern
can match multiple packages and that a package might be matched by
multiple patterns: in general it is not possible to determine which
packages correspond to which patterns.
Note that the list returned by Load contains only the packages matched
by the patterns. Their dependencies can be found by walking the import
graph using the Imports fields.
The Load function can be configured by passing a pointer to a Config as
the first argument. A nil Config is equivalent to the zero Config, which
causes Load to run in LoadFiles mode, collecting minimal information.
See the documentation for type Config for details.
As noted earlier, the Config.Mode controls the amount of detail
reported about the loaded packages. See the documentation for type LoadMode
for details.
Most tools should pass their command-line arguments (after any flags)
uninterpreted to [Load], so that it can interpret them
according to the conventions of the underlying build system.
See the Example function for typical usage.
# The driver protocol
[Load] may be used to load Go packages even in Go projects that use
alternative build systems, by installing an appropriate "driver"
program for the build system and specifying its location in the
GOPACKAGESDRIVER environment variable.
For example,
https://github.com/bazelbuild/rules_go/wiki/Editor-and-tool-integration
explains how to use the driver for Bazel.
The driver program is responsible for interpreting patterns in its
preferred notation and reporting information about the packages that
those patterns identify. Drivers must also support the special "file="
and "pattern=" patterns described above.
The patterns are provided as positional command-line arguments. A
JSON-encoded [DriverRequest] message providing additional information
is written to the driver's standard input. The driver must write a
JSON-encoded [DriverResponse] message to its standard output. (This
message differs from the JSON schema produced by 'go list'.)
*/
package packages // import "golang.org/x/tools/go/packages"
/*
Motivation and design considerations
The new package's design solves problems addressed by two existing
packages: go/build, which locates and describes packages, and
golang.org/x/tools/go/loader, which loads, parses and type-checks them.
The go/build.Package structure encodes too much of the 'go build' way
of organizing projects, leaving us in need of a data type that describes a
package of Go source code independent of the underlying build system.
We wanted something that works equally well with go build and vgo, and
also other build systems such as Bazel and Blaze, making it possible to
construct analysis tools that work in all these environments.
Tools such as errcheck and staticcheck were essentially unavailable to
the Go community at Google, and some of Google's internal tools for Go
are unavailable externally.
This new package provides a uniform way to obtain package metadata by
querying each of these build systems, optionally supporting their
preferred command-line notations for packages, so that tools integrate
neatly with users' build environments. The Metadata query function
executes an external query tool appropriate to the current workspace.
Loading packages always returns the complete import graph "all the way down",
even if all you want is information about a single package, because the query
mechanisms of all the build systems we currently support ({go,vgo} list, and
blaze/bazel aspect-based query) cannot provide detailed information
about one package without visiting all its dependencies too, so there is
no additional asymptotic cost to providing transitive information.
(This property might not be true of a hypothetical 5th build system.)
In calls to TypeCheck, all initial packages, and any package that
transitively depends on one of them, must be loaded from source.
Consider A->B->C->D->E: if A,C are initial, A,B,C must be loaded from
source; D may be loaded from export data, and E may not be loaded at all
(though it's possible that D's export data mentions it, so a
types.Package may be created for it and exposed.)
The old loader had a feature to suppress type-checking of function
bodies on a per-package basis, primarily intended to reduce the work of
obtaining type information for imported packages. Now that imports are
satisfied by export data, the optimization no longer seems necessary.
Despite some early attempts, the old loader did not exploit export data,
instead always using the equivalent of WholeProgram mode. This was due
to the complexity of mixing source and export data packages (now
resolved by the upward traversal mentioned above), and because export data
files were nearly always missing or stale. Now that 'go build' supports
caching, all the underlying build systems can guarantee to produce
export data in a reasonable (amortized) time.
Test "main" packages synthesized by the build system are now reported as
first-class packages, avoiding the need for clients (such as go/ssa) to
reinvent this generation logic.
One way in which go/packages is simpler than the old loader is in its
treatment of in-package tests. In-package tests are packages that
consist of all the files of the library under test, plus the test files.
The old loader constructed in-package tests by a two-phase process of
mutation called "augmentation": first it would construct and type check
all the ordinary library packages and type-check the packages that
depend on them; then it would add more (test) files to the package and
type-check again. This two-phase approach had four major problems:
1) in processing the tests, the loader modified the library package,
leaving no way for a client application to see both the test
package and the library package; one would mutate into the other.
2) because test files can declare additional methods on types defined in
the library portion of the package, the dispatch of method calls in
the library portion was affected by the presence of the test files.
This should have been a clue that the packages were logically
different.
3) this model of "augmentation" assumed at most one in-package test
per library package, which is true of projects using 'go build',
but not other build systems.
4) because of the two-phase nature of test processing, all packages that
import the library package had to be processed before augmentation,
forcing a "one-shot" API and preventing the client from calling Load
in several times in sequence as is now possible in WholeProgram mode.
(TypeCheck mode has a similar one-shot restriction for a different reason.)
Early drafts of this package supported "multi-shot" operation.
Although it allowed clients to make a sequence of calls (or concurrent
calls) to Load, building up the graph of Packages incrementally,
it was of marginal value: it complicated the API
(since it allowed some options to vary across calls but not others),
it complicated the implementation,
it cannot be made to work in Types mode, as explained above,
and it was less efficient than making one combined call (when this is possible).
Among the clients we have inspected, none made multiple calls to load
but could not be easily and satisfactorily modified to make only a single call.
However, applications changes may be required.
For example, the ssadump command loads the user-specified packages
and in addition the runtime package. It is tempting to simply append
"runtime" to the user-provided list, but that does not work if the user
specified an ad-hoc package such as [a.go b.go].
Instead, ssadump no longer requests the runtime package,
but seeks it among the dependencies of the user-specified packages,
and emits an error if it is not found.
Questions & Tasks
- Add GOARCH/GOOS?
They are not portable concepts, but could be made portable.
Our goal has been to allow users to express themselves using the conventions
of the underlying build system: if the build system honors GOARCH
during a build and during a metadata query, then so should
applications built atop that query mechanism.
Conversely, if the target architecture of the build is determined by
command-line flags, the application can pass the relevant
flags through to the build system using a command such as:
myapp -query_flag="--cpu=amd64" -query_flag="--os=darwin"
However, this approach is low-level, unwieldy, and non-portable.
GOOS and GOARCH seem important enough to warrant a dedicated option.
- How should we handle partial failures such as a mixture of good and
malformed patterns, existing and non-existent packages, successful and
failed builds, import failures, import cycles, and so on, in a call to
Load?
- Support bazel, blaze, and go1.10 list, not just go1.11 list.
- Handle (and test) various partial success cases, e.g.
a mixture of good packages and:
invalid patterns
nonexistent packages
empty packages
packages with malformed package or import declarations
unreadable files
import cycles
other parse errors
type errors
Make sure we record errors at the correct place in the graph.
- Missing packages among initial arguments are not reported.
Return bogus packages for them, like golist does.
- "undeclared name" errors (for example) are reported out of source file
order. I suspect this is due to the breadth-first resolution now used
by go/types. Is that a bug? Discuss with gri.
*/

156
vendor/golang.org/x/tools/go/packages/external.go generated vendored Normal file
View File

@@ -0,0 +1,156 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packages
// This file defines the protocol that enables an external "driver"
// tool to supply package metadata in place of 'go list'.
import (
"bytes"
"encoding/json"
"fmt"
"os"
"os/exec"
"strings"
)
// DriverRequest defines the schema of a request for package metadata
// from an external driver program. The JSON-encoded DriverRequest
// message is provided to the driver program's standard input. The
// query patterns are provided as command-line arguments.
//
// See the package documentation for an overview.
type DriverRequest struct {
Mode LoadMode `json:"mode"`
// Env specifies the environment the underlying build system should be run in.
Env []string `json:"env"`
// BuildFlags are flags that should be passed to the underlying build system.
BuildFlags []string `json:"build_flags"`
// Tests specifies whether the patterns should also return test packages.
Tests bool `json:"tests"`
// Overlay maps file paths (relative to the driver's working directory)
// to the contents of overlay files (see Config.Overlay).
Overlay map[string][]byte `json:"overlay"`
}
// DriverResponse defines the schema of a response from an external
// driver program, providing the results of a query for package
// metadata. The driver program must write a JSON-encoded
// DriverResponse message to its standard output.
//
// See the package documentation for an overview.
type DriverResponse struct {
// NotHandled is returned if the request can't be handled by the current
// driver. If an external driver returns a response with NotHandled, the
// rest of the DriverResponse is ignored, and go/packages will fallback
// to the next driver. If go/packages is extended in the future to support
// lists of multiple drivers, go/packages will fall back to the next driver.
NotHandled bool
// Compiler and Arch are the arguments pass of types.SizesFor
// to get a types.Sizes to use when type checking.
Compiler string
Arch string
// Roots is the set of package IDs that make up the root packages.
// We have to encode this separately because when we encode a single package
// we cannot know if it is one of the roots as that requires knowledge of the
// graph it is part of.
Roots []string `json:",omitempty"`
// Packages is the full set of packages in the graph.
// The packages are not connected into a graph.
// The Imports if populated will be stubs that only have their ID set.
// Imports will be connected and then type and syntax information added in a
// later pass (see refine).
Packages []*Package
// GoVersion is the minor version number used by the driver
// (e.g. the go command on the PATH) when selecting .go files.
// Zero means unknown.
GoVersion int
}
// driver is the type for functions that query the build system for the
// packages named by the patterns.
type driver func(cfg *Config, patterns ...string) (*DriverResponse, error)
// findExternalDriver returns the file path of a tool that supplies
// the build system package structure, or "" if not found."
// If GOPACKAGESDRIVER is set in the environment findExternalTool returns its
// value, otherwise it searches for a binary named gopackagesdriver on the PATH.
func findExternalDriver(cfg *Config) driver {
const toolPrefix = "GOPACKAGESDRIVER="
tool := ""
for _, env := range cfg.Env {
if val := strings.TrimPrefix(env, toolPrefix); val != env {
tool = val
}
}
if tool != "" && tool == "off" {
return nil
}
if tool == "" {
var err error
tool, err = exec.LookPath("gopackagesdriver")
if err != nil {
return nil
}
}
return func(cfg *Config, words ...string) (*DriverResponse, error) {
req, err := json.Marshal(DriverRequest{
Mode: cfg.Mode,
Env: cfg.Env,
BuildFlags: cfg.BuildFlags,
Tests: cfg.Tests,
Overlay: cfg.Overlay,
})
if err != nil {
return nil, fmt.Errorf("failed to encode message to driver tool: %v", err)
}
buf := new(bytes.Buffer)
stderr := new(bytes.Buffer)
cmd := exec.CommandContext(cfg.Context, tool, words...)
cmd.Dir = cfg.Dir
// The cwd gets resolved to the real path. On Darwin, where
// /tmp is a symlink, this breaks anything that expects the
// working directory to keep the original path, including the
// go command when dealing with modules.
//
// os.Getwd stdlib has a special feature where if the
// cwd and the PWD are the same node then it trusts
// the PWD, so by setting it in the env for the child
// process we fix up all the paths returned by the go
// command.
//
// (See similar trick in Invocation.run in ../../internal/gocommand/invoke.go)
cmd.Env = append(slicesClip(cfg.Env), "PWD="+cfg.Dir)
cmd.Stdin = bytes.NewReader(req)
cmd.Stdout = buf
cmd.Stderr = stderr
if err := cmd.Run(); err != nil {
return nil, fmt.Errorf("%v: %v: %s", tool, err, cmd.Stderr)
}
if len(stderr.Bytes()) != 0 && os.Getenv("GOPACKAGESPRINTDRIVERERRORS") != "" {
fmt.Fprintf(os.Stderr, "%s stderr: <<%s>>\n", cmdDebugStr(cmd), stderr)
}
var response DriverResponse
if err := json.Unmarshal(buf.Bytes(), &response); err != nil {
return nil, err
}
return &response, nil
}
}
// slicesClip removes unused capacity from the slice, returning s[:len(s):len(s)].
// TODO(adonovan): use go1.21 slices.Clip.
func slicesClip[S ~[]E, E any](s S) S { return s[:len(s):len(s)] }

1026
vendor/golang.org/x/tools/go/packages/golist.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,83 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packages
import (
"encoding/json"
"path/filepath"
"golang.org/x/tools/internal/gocommand"
)
// determineRootDirs returns a mapping from absolute directories that could
// contain code to their corresponding import path prefixes.
func (state *golistState) determineRootDirs() (map[string]string, error) {
env, err := state.getEnv()
if err != nil {
return nil, err
}
if env["GOMOD"] != "" {
state.rootsOnce.Do(func() {
state.rootDirs, state.rootDirsError = state.determineRootDirsModules()
})
} else {
state.rootsOnce.Do(func() {
state.rootDirs, state.rootDirsError = state.determineRootDirsGOPATH()
})
}
return state.rootDirs, state.rootDirsError
}
func (state *golistState) determineRootDirsModules() (map[string]string, error) {
// List all of the modules--the first will be the directory for the main
// module. Any replaced modules will also need to be treated as roots.
// Editing files in the module cache isn't a great idea, so we don't
// plan to ever support that.
out, err := state.invokeGo("list", "-m", "-json", "all")
if err != nil {
// 'go list all' will fail if we're outside of a module and
// GO111MODULE=on. Try falling back without 'all'.
var innerErr error
out, innerErr = state.invokeGo("list", "-m", "-json")
if innerErr != nil {
return nil, err
}
}
roots := map[string]string{}
modules := map[string]string{}
var i int
for dec := json.NewDecoder(out); dec.More(); {
mod := new(gocommand.ModuleJSON)
if err := dec.Decode(mod); err != nil {
return nil, err
}
if mod.Dir != "" && mod.Path != "" {
// This is a valid module; add it to the map.
absDir, err := filepath.Abs(mod.Dir)
if err != nil {
return nil, err
}
modules[absDir] = mod.Path
// The first result is the main module.
if i == 0 || mod.Replace != nil && mod.Replace.Path != "" {
roots[absDir] = mod.Path
}
}
i++
}
return roots, nil
}
func (state *golistState) determineRootDirsGOPATH() (map[string]string, error) {
m := map[string]string{}
for _, dir := range filepath.SplitList(state.mustGetEnv()["GOPATH"]) {
absDir, err := filepath.Abs(dir)
if err != nil {
return nil, err
}
m[filepath.Join(absDir, "src")] = ""
}
return m, nil
}

View File

@@ -0,0 +1,57 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packages
import (
"fmt"
"strings"
)
var allModes = []LoadMode{
NeedName,
NeedFiles,
NeedCompiledGoFiles,
NeedImports,
NeedDeps,
NeedExportFile,
NeedTypes,
NeedSyntax,
NeedTypesInfo,
NeedTypesSizes,
}
var modeStrings = []string{
"NeedName",
"NeedFiles",
"NeedCompiledGoFiles",
"NeedImports",
"NeedDeps",
"NeedExportFile",
"NeedTypes",
"NeedSyntax",
"NeedTypesInfo",
"NeedTypesSizes",
}
func (mod LoadMode) String() string {
m := mod
if m == 0 {
return "LoadMode(0)"
}
var out []string
for i, x := range allModes {
if x > m {
break
}
if (m & x) != 0 {
out = append(out, modeStrings[i])
m = m ^ x
}
}
if m != 0 {
out = append(out, "Unknown")
}
return fmt.Sprintf("LoadMode(%s)", strings.Join(out, "|"))
}

1510
vendor/golang.org/x/tools/go/packages/packages.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

59
vendor/golang.org/x/tools/go/packages/visit.go generated vendored Normal file
View File

@@ -0,0 +1,59 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packages
import (
"fmt"
"os"
"sort"
)
// Visit visits all the packages in the import graph whose roots are
// pkgs, calling the optional pre function the first time each package
// is encountered (preorder), and the optional post function after a
// package's dependencies have been visited (postorder).
// The boolean result of pre(pkg) determines whether
// the imports of package pkg are visited.
func Visit(pkgs []*Package, pre func(*Package) bool, post func(*Package)) {
seen := make(map[*Package]bool)
var visit func(*Package)
visit = func(pkg *Package) {
if !seen[pkg] {
seen[pkg] = true
if pre == nil || pre(pkg) {
paths := make([]string, 0, len(pkg.Imports))
for path := range pkg.Imports {
paths = append(paths, path)
}
sort.Strings(paths) // Imports is a map, this makes visit stable
for _, path := range paths {
visit(pkg.Imports[path])
}
}
if post != nil {
post(pkg)
}
}
}
for _, pkg := range pkgs {
visit(pkg)
}
}
// PrintErrors prints to os.Stderr the accumulated errors of all
// packages in the import graph rooted at pkgs, dependencies first.
// PrintErrors returns the number of errors printed.
func PrintErrors(pkgs []*Package) int {
var n int
Visit(pkgs, nil, func(pkg *Package) {
for _, err := range pkg.Errors {
fmt.Fprintln(os.Stderr, err)
n++
}
})
return n
}

View File

@@ -0,0 +1,753 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package objectpath defines a naming scheme for types.Objects
// (that is, named entities in Go programs) relative to their enclosing
// package.
//
// Type-checker objects are canonical, so they are usually identified by
// their address in memory (a pointer), but a pointer has meaning only
// within one address space. By contrast, objectpath names allow the
// identity of an object to be sent from one program to another,
// establishing a correspondence between types.Object variables that are
// distinct but logically equivalent.
//
// A single object may have multiple paths. In this example,
//
// type A struct{ X int }
// type B A
//
// the field X has two paths due to its membership of both A and B.
// The For(obj) function always returns one of these paths, arbitrarily
// but consistently.
package objectpath
import (
"fmt"
"go/types"
"strconv"
"strings"
"golang.org/x/tools/internal/aliases"
"golang.org/x/tools/internal/typesinternal"
)
// TODO(adonovan): think about generic aliases.
// A Path is an opaque name that identifies a types.Object
// relative to its package. Conceptually, the name consists of a
// sequence of destructuring operations applied to the package scope
// to obtain the original object.
// The name does not include the package itself.
type Path string
// Encoding
//
// An object path is a textual and (with training) human-readable encoding
// of a sequence of destructuring operators, starting from a types.Package.
// The sequences represent a path through the package/object/type graph.
// We classify these operators by their type:
//
// PO package->object Package.Scope.Lookup
// OT object->type Object.Type
// TT type->type Type.{Elem,Key,Params,Results,Underlying} [EKPRU]
// TO type->object Type.{At,Field,Method,Obj} [AFMO]
//
// All valid paths start with a package and end at an object
// and thus may be defined by the regular language:
//
// objectpath = PO (OT TT* TO)*
//
// The concrete encoding follows directly:
// - The only PO operator is Package.Scope.Lookup, which requires an identifier.
// - The only OT operator is Object.Type,
// which we encode as '.' because dot cannot appear in an identifier.
// - The TT operators are encoded as [EKPRUTC];
// one of these (TypeParam) requires an integer operand,
// which is encoded as a string of decimal digits.
// - The TO operators are encoded as [AFMO];
// three of these (At,Field,Method) require an integer operand,
// which is encoded as a string of decimal digits.
// These indices are stable across different representations
// of the same package, even source and export data.
// The indices used are implementation specific and may not correspond to
// the argument to the go/types function.
//
// In the example below,
//
// package p
//
// type T interface {
// f() (a string, b struct{ X int })
// }
//
// field X has the path "T.UM0.RA1.F0",
// representing the following sequence of operations:
//
// p.Lookup("T") T
// .Type().Underlying().Method(0). f
// .Type().Results().At(1) b
// .Type().Field(0) X
//
// The encoding is not maximally compact---every R or P is
// followed by an A, for example---but this simplifies the
// encoder and decoder.
const (
// object->type operators
opType = '.' // .Type() (Object)
// type->type operators
opElem = 'E' // .Elem() (Pointer, Slice, Array, Chan, Map)
opKey = 'K' // .Key() (Map)
opParams = 'P' // .Params() (Signature)
opResults = 'R' // .Results() (Signature)
opUnderlying = 'U' // .Underlying() (Named)
opTypeParam = 'T' // .TypeParams.At(i) (Named, Signature)
opConstraint = 'C' // .Constraint() (TypeParam)
// type->object operators
opAt = 'A' // .At(i) (Tuple)
opField = 'F' // .Field(i) (Struct)
opMethod = 'M' // .Method(i) (Named or Interface; not Struct: "promoted" names are ignored)
opObj = 'O' // .Obj() (Named, TypeParam)
)
// For is equivalent to new(Encoder).For(obj).
//
// It may be more efficient to reuse a single Encoder across several calls.
func For(obj types.Object) (Path, error) {
return new(Encoder).For(obj)
}
// An Encoder amortizes the cost of encoding the paths of multiple objects.
// The zero value of an Encoder is ready to use.
type Encoder struct {
scopeMemo map[*types.Scope][]types.Object // memoization of scopeObjects
}
// For returns the path to an object relative to its package,
// or an error if the object is not accessible from the package's Scope.
//
// The For function guarantees to return a path only for the following objects:
// - package-level types
// - exported package-level non-types
// - methods
// - parameter and result variables
// - struct fields
// These objects are sufficient to define the API of their package.
// The objects described by a package's export data are drawn from this set.
//
// The set of objects accessible from a package's Scope depends on
// whether the package was produced by type-checking syntax, or
// reading export data; the latter may have a smaller Scope since
// export data trims objects that are not reachable from an exported
// declaration. For example, the For function will return a path for
// an exported method of an unexported type that is not reachable
// from any public declaration; this path will cause the Object
// function to fail if called on a package loaded from export data.
// TODO(adonovan): is this a bug or feature? Should this package
// compute accessibility in the same way?
//
// For does not return a path for predeclared names, imported package
// names, local names, and unexported package-level names (except
// types).
//
// Example: given this definition,
//
// package p
//
// type T interface {
// f() (a string, b struct{ X int })
// }
//
// For(X) would return a path that denotes the following sequence of operations:
//
// p.Scope().Lookup("T") (TypeName T)
// .Type().Underlying().Method(0). (method Func f)
// .Type().Results().At(1) (field Var b)
// .Type().Field(0) (field Var X)
//
// where p is the package (*types.Package) to which X belongs.
func (enc *Encoder) For(obj types.Object) (Path, error) {
pkg := obj.Pkg()
// This table lists the cases of interest.
//
// Object Action
// ------ ------
// nil reject
// builtin reject
// pkgname reject
// label reject
// var
// package-level accept
// func param/result accept
// local reject
// struct field accept
// const
// package-level accept
// local reject
// func
// package-level accept
// init functions reject
// concrete method accept
// interface method accept
// type
// package-level accept
// local reject
//
// The only accessible package-level objects are members of pkg itself.
//
// The cases are handled in four steps:
//
// 1. reject nil and builtin
// 2. accept package-level objects
// 3. reject obviously invalid objects
// 4. search the API for the path to the param/result/field/method.
// 1. reference to nil or builtin?
if pkg == nil {
return "", fmt.Errorf("predeclared %s has no path", obj)
}
scope := pkg.Scope()
// 2. package-level object?
if scope.Lookup(obj.Name()) == obj {
// Only exported objects (and non-exported types) have a path.
// Non-exported types may be referenced by other objects.
if _, ok := obj.(*types.TypeName); !ok && !obj.Exported() {
return "", fmt.Errorf("no path for non-exported %v", obj)
}
return Path(obj.Name()), nil
}
// 3. Not a package-level object.
// Reject obviously non-viable cases.
switch obj := obj.(type) {
case *types.TypeName:
if _, ok := aliases.Unalias(obj.Type()).(*types.TypeParam); !ok {
// With the exception of type parameters, only package-level type names
// have a path.
return "", fmt.Errorf("no path for %v", obj)
}
case *types.Const, // Only package-level constants have a path.
*types.Label, // Labels are function-local.
*types.PkgName: // PkgNames are file-local.
return "", fmt.Errorf("no path for %v", obj)
case *types.Var:
// Could be:
// - a field (obj.IsField())
// - a func parameter or result
// - a local var.
// Sadly there is no way to distinguish
// a param/result from a local
// so we must proceed to the find.
case *types.Func:
// A func, if not package-level, must be a method.
if recv := obj.Type().(*types.Signature).Recv(); recv == nil {
return "", fmt.Errorf("func is not a method: %v", obj)
}
if path, ok := enc.concreteMethod(obj); ok {
// Fast path for concrete methods that avoids looping over scope.
return path, nil
}
default:
panic(obj)
}
// 4. Search the API for the path to the var (field/param/result) or method.
// First inspect package-level named types.
// In the presence of path aliases, these give
// the best paths because non-types may
// refer to types, but not the reverse.
empty := make([]byte, 0, 48) // initial space
objs := enc.scopeObjects(scope)
for _, o := range objs {
tname, ok := o.(*types.TypeName)
if !ok {
continue // handle non-types in second pass
}
path := append(empty, o.Name()...)
path = append(path, opType)
T := o.Type()
if tname.IsAlias() {
// type alias
if r := find(obj, T, path, nil); r != nil {
return Path(r), nil
}
} else {
if named, _ := T.(*types.Named); named != nil {
if r := findTypeParam(obj, named.TypeParams(), path, nil); r != nil {
// generic named type
return Path(r), nil
}
}
// defined (named) type
if r := find(obj, T.Underlying(), append(path, opUnderlying), nil); r != nil {
return Path(r), nil
}
}
}
// Then inspect everything else:
// non-types, and declared methods of defined types.
for _, o := range objs {
path := append(empty, o.Name()...)
if _, ok := o.(*types.TypeName); !ok {
if o.Exported() {
// exported non-type (const, var, func)
if r := find(obj, o.Type(), append(path, opType), nil); r != nil {
return Path(r), nil
}
}
continue
}
// Inspect declared methods of defined types.
if T, ok := aliases.Unalias(o.Type()).(*types.Named); ok {
path = append(path, opType)
// The method index here is always with respect
// to the underlying go/types data structures,
// which ultimately derives from source order
// and must be preserved by export data.
for i := 0; i < T.NumMethods(); i++ {
m := T.Method(i)
path2 := appendOpArg(path, opMethod, i)
if m == obj {
return Path(path2), nil // found declared method
}
if r := find(obj, m.Type(), append(path2, opType), nil); r != nil {
return Path(r), nil
}
}
}
}
return "", fmt.Errorf("can't find path for %v in %s", obj, pkg.Path())
}
func appendOpArg(path []byte, op byte, arg int) []byte {
path = append(path, op)
path = strconv.AppendInt(path, int64(arg), 10)
return path
}
// concreteMethod returns the path for meth, which must have a non-nil receiver.
// The second return value indicates success and may be false if the method is
// an interface method or if it is an instantiated method.
//
// This function is just an optimization that avoids the general scope walking
// approach. You are expected to fall back to the general approach if this
// function fails.
func (enc *Encoder) concreteMethod(meth *types.Func) (Path, bool) {
// Concrete methods can only be declared on package-scoped named types. For
// that reason we can skip the expensive walk over the package scope: the
// path will always be package -> named type -> method. We can trivially get
// the type name from the receiver, and only have to look over the type's
// methods to find the method index.
//
// Methods on generic types require special consideration, however. Consider
// the following package:
//
// L1: type S[T any] struct{}
// L2: func (recv S[A]) Foo() { recv.Bar() }
// L3: func (recv S[B]) Bar() { }
// L4: type Alias = S[int]
// L5: func _[T any]() { var s S[int]; s.Foo() }
//
// The receivers of methods on generic types are instantiations. L2 and L3
// instantiate S with the type-parameters A and B, which are scoped to the
// respective methods. L4 and L5 each instantiate S with int. Each of these
// instantiations has its own method set, full of methods (and thus objects)
// with receivers whose types are the respective instantiations. In other
// words, we have
//
// S[A].Foo, S[A].Bar
// S[B].Foo, S[B].Bar
// S[int].Foo, S[int].Bar
//
// We may thus be trying to produce object paths for any of these objects.
//
// S[A].Foo and S[B].Bar are the origin methods, and their paths are S.Foo
// and S.Bar, which are the paths that this function naturally produces.
//
// S[A].Bar, S[B].Foo, and both methods on S[int] are instantiations that
// don't correspond to the origin methods. For S[int], this is significant.
// The most precise object path for S[int].Foo, for example, is Alias.Foo,
// not S.Foo. Our function, however, would produce S.Foo, which would
// resolve to a different object.
//
// For S[A].Bar and S[B].Foo it could be argued that S.Bar and S.Foo are
// still the correct paths, since only the origin methods have meaningful
// paths. But this is likely only true for trivial cases and has edge cases.
// Since this function is only an optimization, we err on the side of giving
// up, deferring to the slower but definitely correct algorithm. Most users
// of objectpath will only be giving us origin methods, anyway, as referring
// to instantiated methods is usually not useful.
if meth.Origin() != meth {
return "", false
}
_, named := typesinternal.ReceiverNamed(meth.Type().(*types.Signature).Recv())
if named == nil {
return "", false
}
if types.IsInterface(named) {
// Named interfaces don't have to be package-scoped
//
// TODO(dominikh): opt: if scope.Lookup(name) == named, then we can apply this optimization to interface
// methods, too, I think.
return "", false
}
// Preallocate space for the name, opType, opMethod, and some digits.
name := named.Obj().Name()
path := make([]byte, 0, len(name)+8)
path = append(path, name...)
path = append(path, opType)
// Method indices are w.r.t. the go/types data structures,
// ultimately deriving from source order,
// which is preserved by export data.
for i := 0; i < named.NumMethods(); i++ {
if named.Method(i) == meth {
path = appendOpArg(path, opMethod, i)
return Path(path), true
}
}
// Due to golang/go#59944, go/types fails to associate the receiver with
// certain methods on cgo types.
//
// TODO(rfindley): replace this panic once golang/go#59944 is fixed in all Go
// versions gopls supports.
return "", false
// panic(fmt.Sprintf("couldn't find method %s on type %s; methods: %#v", meth, named, enc.namedMethods(named)))
}
// find finds obj within type T, returning the path to it, or nil if not found.
//
// The seen map is used to short circuit cycles through type parameters. If
// nil, it will be allocated as necessary.
func find(obj types.Object, T types.Type, path []byte, seen map[*types.TypeName]bool) []byte {
switch T := T.(type) {
case *aliases.Alias:
return find(obj, aliases.Unalias(T), path, seen)
case *types.Basic, *types.Named:
// Named types belonging to pkg were handled already,
// so T must belong to another package. No path.
return nil
case *types.Pointer:
return find(obj, T.Elem(), append(path, opElem), seen)
case *types.Slice:
return find(obj, T.Elem(), append(path, opElem), seen)
case *types.Array:
return find(obj, T.Elem(), append(path, opElem), seen)
case *types.Chan:
return find(obj, T.Elem(), append(path, opElem), seen)
case *types.Map:
if r := find(obj, T.Key(), append(path, opKey), seen); r != nil {
return r
}
return find(obj, T.Elem(), append(path, opElem), seen)
case *types.Signature:
if r := findTypeParam(obj, T.TypeParams(), path, seen); r != nil {
return r
}
if r := find(obj, T.Params(), append(path, opParams), seen); r != nil {
return r
}
return find(obj, T.Results(), append(path, opResults), seen)
case *types.Struct:
for i := 0; i < T.NumFields(); i++ {
fld := T.Field(i)
path2 := appendOpArg(path, opField, i)
if fld == obj {
return path2 // found field var
}
if r := find(obj, fld.Type(), append(path2, opType), seen); r != nil {
return r
}
}
return nil
case *types.Tuple:
for i := 0; i < T.Len(); i++ {
v := T.At(i)
path2 := appendOpArg(path, opAt, i)
if v == obj {
return path2 // found param/result var
}
if r := find(obj, v.Type(), append(path2, opType), seen); r != nil {
return r
}
}
return nil
case *types.Interface:
for i := 0; i < T.NumMethods(); i++ {
m := T.Method(i)
path2 := appendOpArg(path, opMethod, i)
if m == obj {
return path2 // found interface method
}
if r := find(obj, m.Type(), append(path2, opType), seen); r != nil {
return r
}
}
return nil
case *types.TypeParam:
name := T.Obj()
if name == obj {
return append(path, opObj)
}
if seen[name] {
return nil
}
if seen == nil {
seen = make(map[*types.TypeName]bool)
}
seen[name] = true
if r := find(obj, T.Constraint(), append(path, opConstraint), seen); r != nil {
return r
}
return nil
}
panic(T)
}
func findTypeParam(obj types.Object, list *types.TypeParamList, path []byte, seen map[*types.TypeName]bool) []byte {
for i := 0; i < list.Len(); i++ {
tparam := list.At(i)
path2 := appendOpArg(path, opTypeParam, i)
if r := find(obj, tparam, path2, seen); r != nil {
return r
}
}
return nil
}
// Object returns the object denoted by path p within the package pkg.
func Object(pkg *types.Package, p Path) (types.Object, error) {
pathstr := string(p)
if pathstr == "" {
return nil, fmt.Errorf("empty path")
}
var pkgobj, suffix string
if dot := strings.IndexByte(pathstr, opType); dot < 0 {
pkgobj = pathstr
} else {
pkgobj = pathstr[:dot]
suffix = pathstr[dot:] // suffix starts with "."
}
obj := pkg.Scope().Lookup(pkgobj)
if obj == nil {
return nil, fmt.Errorf("package %s does not contain %q", pkg.Path(), pkgobj)
}
// abstraction of *types.{Pointer,Slice,Array,Chan,Map}
type hasElem interface {
Elem() types.Type
}
// abstraction of *types.{Named,Signature}
type hasTypeParams interface {
TypeParams() *types.TypeParamList
}
// abstraction of *types.{Named,TypeParam}
type hasObj interface {
Obj() *types.TypeName
}
// The loop state is the pair (t, obj),
// exactly one of which is non-nil, initially obj.
// All suffixes start with '.' (the only object->type operation),
// followed by optional type->type operations,
// then a type->object operation.
// The cycle then repeats.
var t types.Type
for suffix != "" {
code := suffix[0]
suffix = suffix[1:]
// Codes [AFM] have an integer operand.
var index int
switch code {
case opAt, opField, opMethod, opTypeParam:
rest := strings.TrimLeft(suffix, "0123456789")
numerals := suffix[:len(suffix)-len(rest)]
suffix = rest
i, err := strconv.Atoi(numerals)
if err != nil {
return nil, fmt.Errorf("invalid path: bad numeric operand %q for code %q", numerals, code)
}
index = int(i)
case opObj:
// no operand
default:
// The suffix must end with a type->object operation.
if suffix == "" {
return nil, fmt.Errorf("invalid path: ends with %q, want [AFMO]", code)
}
}
if code == opType {
if t != nil {
return nil, fmt.Errorf("invalid path: unexpected %q in type context", opType)
}
t = obj.Type()
obj = nil
continue
}
if t == nil {
return nil, fmt.Errorf("invalid path: code %q in object context", code)
}
// Inv: t != nil, obj == nil
t = aliases.Unalias(t)
switch code {
case opElem:
hasElem, ok := t.(hasElem) // Pointer, Slice, Array, Chan, Map
if !ok {
return nil, fmt.Errorf("cannot apply %q to %s (got %T, want pointer, slice, array, chan or map)", code, t, t)
}
t = hasElem.Elem()
case opKey:
mapType, ok := t.(*types.Map)
if !ok {
return nil, fmt.Errorf("cannot apply %q to %s (got %T, want map)", code, t, t)
}
t = mapType.Key()
case opParams:
sig, ok := t.(*types.Signature)
if !ok {
return nil, fmt.Errorf("cannot apply %q to %s (got %T, want signature)", code, t, t)
}
t = sig.Params()
case opResults:
sig, ok := t.(*types.Signature)
if !ok {
return nil, fmt.Errorf("cannot apply %q to %s (got %T, want signature)", code, t, t)
}
t = sig.Results()
case opUnderlying:
named, ok := t.(*types.Named)
if !ok {
return nil, fmt.Errorf("cannot apply %q to %s (got %T, want named)", code, t, t)
}
t = named.Underlying()
case opTypeParam:
hasTypeParams, ok := t.(hasTypeParams) // Named, Signature
if !ok {
return nil, fmt.Errorf("cannot apply %q to %s (got %T, want named or signature)", code, t, t)
}
tparams := hasTypeParams.TypeParams()
if n := tparams.Len(); index >= n {
return nil, fmt.Errorf("tuple index %d out of range [0-%d)", index, n)
}
t = tparams.At(index)
case opConstraint:
tparam, ok := t.(*types.TypeParam)
if !ok {
return nil, fmt.Errorf("cannot apply %q to %s (got %T, want type parameter)", code, t, t)
}
t = tparam.Constraint()
case opAt:
tuple, ok := t.(*types.Tuple)
if !ok {
return nil, fmt.Errorf("cannot apply %q to %s (got %T, want tuple)", code, t, t)
}
if n := tuple.Len(); index >= n {
return nil, fmt.Errorf("tuple index %d out of range [0-%d)", index, n)
}
obj = tuple.At(index)
t = nil
case opField:
structType, ok := t.(*types.Struct)
if !ok {
return nil, fmt.Errorf("cannot apply %q to %s (got %T, want struct)", code, t, t)
}
if n := structType.NumFields(); index >= n {
return nil, fmt.Errorf("field index %d out of range [0-%d)", index, n)
}
obj = structType.Field(index)
t = nil
case opMethod:
switch t := t.(type) {
case *types.Interface:
if index >= t.NumMethods() {
return nil, fmt.Errorf("method index %d out of range [0-%d)", index, t.NumMethods())
}
obj = t.Method(index) // Id-ordered
case *types.Named:
if index >= t.NumMethods() {
return nil, fmt.Errorf("method index %d out of range [0-%d)", index, t.NumMethods())
}
obj = t.Method(index)
default:
return nil, fmt.Errorf("cannot apply %q to %s (got %T, want interface or named)", code, t, t)
}
t = nil
case opObj:
hasObj, ok := t.(hasObj)
if !ok {
return nil, fmt.Errorf("cannot apply %q to %s (got %T, want named or type param)", code, t, t)
}
obj = hasObj.Obj()
t = nil
default:
return nil, fmt.Errorf("invalid path: unknown code %q", code)
}
}
if obj.Pkg() != pkg {
return nil, fmt.Errorf("path denotes %s, which belongs to a different package", obj)
}
return obj, nil // success
}
// scopeObjects is a memoization of scope objects.
// Callers must not modify the result.
func (enc *Encoder) scopeObjects(scope *types.Scope) []types.Object {
m := enc.scopeMemo
if m == nil {
m = make(map[*types.Scope][]types.Object)
enc.scopeMemo = m
}
objs, ok := m[scope]
if !ok {
names := scope.Names() // allocates and sorts
objs = make([]types.Object, len(names))
for i, name := range names {
objs[i] = scope.Lookup(name)
}
m[scope] = objs
}
return objs
}