Integrate BACKBEAT SDK and resolve KACHING license validation

Major integrations and fixes:
- Added BACKBEAT SDK integration for P2P operation timing
- Implemented beat-aware status tracking for distributed operations
- Added Docker secrets support for secure license management
- Resolved KACHING license validation via HTTPS/TLS
- Updated docker-compose configuration for clean stack deployment
- Disabled rollback policies to prevent deployment failures
- Added license credential storage (CHORUS-DEV-MULTI-001)

Technical improvements:
- BACKBEAT P2P operation tracking with phase management
- Enhanced configuration system with file-based secrets
- Improved error handling for license validation
- Clean separation of KACHING and CHORUS deployment stacks

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
anthonyrawlins
2025-09-06 07:56:26 +10:00
parent 543ab216f9
commit 9bdcbe0447
4730 changed files with 1480093 additions and 1916 deletions

242
vendor/golang.org/x/tools/go/packages/doc.go generated vendored Normal file
View File

@@ -0,0 +1,242 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/*
Package packages loads Go packages for inspection and analysis.
The [Load] function takes as input a list of patterns and returns a
list of [Package] values describing individual packages matched by those
patterns.
A [Config] specifies configuration options, the most important of which is
the [LoadMode], which controls the amount of detail in the loaded packages.
Load passes most patterns directly to the underlying build tool.
The default build tool is the go command.
Its supported patterns are described at
https://pkg.go.dev/cmd/go#hdr-Package_lists_and_patterns.
Other build systems may be supported by providing a "driver";
see [The driver protocol].
All patterns with the prefix "query=", where query is a
non-empty string of letters from [a-z], are reserved and may be
interpreted as query operators.
Two query operators are currently supported: "file" and "pattern".
The query "file=path/to/file.go" matches the package or packages enclosing
the Go source file path/to/file.go. For example "file=~/go/src/fmt/print.go"
might return the packages "fmt" and "fmt [fmt.test]".
The query "pattern=string" causes "string" to be passed directly to
the underlying build tool. In most cases this is unnecessary,
but an application can use Load("pattern=" + x) as an escaping mechanism
to ensure that x is not interpreted as a query operator if it contains '='.
All other query operators are reserved for future use and currently
cause Load to report an error.
The Package struct provides basic information about the package, including
- ID, a unique identifier for the package in the returned set;
- GoFiles, the names of the package's Go source files;
- Imports, a map from source import strings to the Packages they name;
- Types, the type information for the package's exported symbols;
- Syntax, the parsed syntax trees for the package's source code; and
- TypesInfo, the result of a complete type-check of the package syntax trees.
(See the documentation for type Package for the complete list of fields
and more detailed descriptions.)
For example,
Load(nil, "bytes", "unicode...")
returns four Package structs describing the standard library packages
bytes, unicode, unicode/utf16, and unicode/utf8. Note that one pattern
can match multiple packages and that a package might be matched by
multiple patterns: in general it is not possible to determine which
packages correspond to which patterns.
Note that the list returned by Load contains only the packages matched
by the patterns. Their dependencies can be found by walking the import
graph using the Imports fields.
The Load function can be configured by passing a pointer to a Config as
the first argument. A nil Config is equivalent to the zero Config, which
causes Load to run in LoadFiles mode, collecting minimal information.
See the documentation for type Config for details.
As noted earlier, the Config.Mode controls the amount of detail
reported about the loaded packages. See the documentation for type LoadMode
for details.
Most tools should pass their command-line arguments (after any flags)
uninterpreted to [Load], so that it can interpret them
according to the conventions of the underlying build system.
See the Example function for typical usage.
# The driver protocol
[Load] may be used to load Go packages even in Go projects that use
alternative build systems, by installing an appropriate "driver"
program for the build system and specifying its location in the
GOPACKAGESDRIVER environment variable.
For example,
https://github.com/bazelbuild/rules_go/wiki/Editor-and-tool-integration
explains how to use the driver for Bazel.
The driver program is responsible for interpreting patterns in its
preferred notation and reporting information about the packages that
those patterns identify. Drivers must also support the special "file="
and "pattern=" patterns described above.
The patterns are provided as positional command-line arguments. A
JSON-encoded [DriverRequest] message providing additional information
is written to the driver's standard input. The driver must write a
JSON-encoded [DriverResponse] message to its standard output. (This
message differs from the JSON schema produced by 'go list'.)
*/
package packages // import "golang.org/x/tools/go/packages"
/*
Motivation and design considerations
The new package's design solves problems addressed by two existing
packages: go/build, which locates and describes packages, and
golang.org/x/tools/go/loader, which loads, parses and type-checks them.
The go/build.Package structure encodes too much of the 'go build' way
of organizing projects, leaving us in need of a data type that describes a
package of Go source code independent of the underlying build system.
We wanted something that works equally well with go build and vgo, and
also other build systems such as Bazel and Blaze, making it possible to
construct analysis tools that work in all these environments.
Tools such as errcheck and staticcheck were essentially unavailable to
the Go community at Google, and some of Google's internal tools for Go
are unavailable externally.
This new package provides a uniform way to obtain package metadata by
querying each of these build systems, optionally supporting their
preferred command-line notations for packages, so that tools integrate
neatly with users' build environments. The Metadata query function
executes an external query tool appropriate to the current workspace.
Loading packages always returns the complete import graph "all the way down",
even if all you want is information about a single package, because the query
mechanisms of all the build systems we currently support ({go,vgo} list, and
blaze/bazel aspect-based query) cannot provide detailed information
about one package without visiting all its dependencies too, so there is
no additional asymptotic cost to providing transitive information.
(This property might not be true of a hypothetical 5th build system.)
In calls to TypeCheck, all initial packages, and any package that
transitively depends on one of them, must be loaded from source.
Consider A->B->C->D->E: if A,C are initial, A,B,C must be loaded from
source; D may be loaded from export data, and E may not be loaded at all
(though it's possible that D's export data mentions it, so a
types.Package may be created for it and exposed.)
The old loader had a feature to suppress type-checking of function
bodies on a per-package basis, primarily intended to reduce the work of
obtaining type information for imported packages. Now that imports are
satisfied by export data, the optimization no longer seems necessary.
Despite some early attempts, the old loader did not exploit export data,
instead always using the equivalent of WholeProgram mode. This was due
to the complexity of mixing source and export data packages (now
resolved by the upward traversal mentioned above), and because export data
files were nearly always missing or stale. Now that 'go build' supports
caching, all the underlying build systems can guarantee to produce
export data in a reasonable (amortized) time.
Test "main" packages synthesized by the build system are now reported as
first-class packages, avoiding the need for clients (such as go/ssa) to
reinvent this generation logic.
One way in which go/packages is simpler than the old loader is in its
treatment of in-package tests. In-package tests are packages that
consist of all the files of the library under test, plus the test files.
The old loader constructed in-package tests by a two-phase process of
mutation called "augmentation": first it would construct and type check
all the ordinary library packages and type-check the packages that
depend on them; then it would add more (test) files to the package and
type-check again. This two-phase approach had four major problems:
1) in processing the tests, the loader modified the library package,
leaving no way for a client application to see both the test
package and the library package; one would mutate into the other.
2) because test files can declare additional methods on types defined in
the library portion of the package, the dispatch of method calls in
the library portion was affected by the presence of the test files.
This should have been a clue that the packages were logically
different.
3) this model of "augmentation" assumed at most one in-package test
per library package, which is true of projects using 'go build',
but not other build systems.
4) because of the two-phase nature of test processing, all packages that
import the library package had to be processed before augmentation,
forcing a "one-shot" API and preventing the client from calling Load
in several times in sequence as is now possible in WholeProgram mode.
(TypeCheck mode has a similar one-shot restriction for a different reason.)
Early drafts of this package supported "multi-shot" operation.
Although it allowed clients to make a sequence of calls (or concurrent
calls) to Load, building up the graph of Packages incrementally,
it was of marginal value: it complicated the API
(since it allowed some options to vary across calls but not others),
it complicated the implementation,
it cannot be made to work in Types mode, as explained above,
and it was less efficient than making one combined call (when this is possible).
Among the clients we have inspected, none made multiple calls to load
but could not be easily and satisfactorily modified to make only a single call.
However, applications changes may be required.
For example, the ssadump command loads the user-specified packages
and in addition the runtime package. It is tempting to simply append
"runtime" to the user-provided list, but that does not work if the user
specified an ad-hoc package such as [a.go b.go].
Instead, ssadump no longer requests the runtime package,
but seeks it among the dependencies of the user-specified packages,
and emits an error if it is not found.
Questions & Tasks
- Add GOARCH/GOOS?
They are not portable concepts, but could be made portable.
Our goal has been to allow users to express themselves using the conventions
of the underlying build system: if the build system honors GOARCH
during a build and during a metadata query, then so should
applications built atop that query mechanism.
Conversely, if the target architecture of the build is determined by
command-line flags, the application can pass the relevant
flags through to the build system using a command such as:
myapp -query_flag="--cpu=amd64" -query_flag="--os=darwin"
However, this approach is low-level, unwieldy, and non-portable.
GOOS and GOARCH seem important enough to warrant a dedicated option.
- How should we handle partial failures such as a mixture of good and
malformed patterns, existing and non-existent packages, successful and
failed builds, import failures, import cycles, and so on, in a call to
Load?
- Support bazel, blaze, and go1.10 list, not just go1.11 list.
- Handle (and test) various partial success cases, e.g.
a mixture of good packages and:
invalid patterns
nonexistent packages
empty packages
packages with malformed package or import declarations
unreadable files
import cycles
other parse errors
type errors
Make sure we record errors at the correct place in the graph.
- Missing packages among initial arguments are not reported.
Return bogus packages for them, like golist does.
- "undeclared name" errors (for example) are reported out of source file
order. I suspect this is due to the breadth-first resolution now used
by go/types. Is that a bug? Discuss with gri.
*/

156
vendor/golang.org/x/tools/go/packages/external.go generated vendored Normal file
View File

@@ -0,0 +1,156 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packages
// This file defines the protocol that enables an external "driver"
// tool to supply package metadata in place of 'go list'.
import (
"bytes"
"encoding/json"
"fmt"
"os"
"os/exec"
"strings"
)
// DriverRequest defines the schema of a request for package metadata
// from an external driver program. The JSON-encoded DriverRequest
// message is provided to the driver program's standard input. The
// query patterns are provided as command-line arguments.
//
// See the package documentation for an overview.
type DriverRequest struct {
Mode LoadMode `json:"mode"`
// Env specifies the environment the underlying build system should be run in.
Env []string `json:"env"`
// BuildFlags are flags that should be passed to the underlying build system.
BuildFlags []string `json:"build_flags"`
// Tests specifies whether the patterns should also return test packages.
Tests bool `json:"tests"`
// Overlay maps file paths (relative to the driver's working directory)
// to the contents of overlay files (see Config.Overlay).
Overlay map[string][]byte `json:"overlay"`
}
// DriverResponse defines the schema of a response from an external
// driver program, providing the results of a query for package
// metadata. The driver program must write a JSON-encoded
// DriverResponse message to its standard output.
//
// See the package documentation for an overview.
type DriverResponse struct {
// NotHandled is returned if the request can't be handled by the current
// driver. If an external driver returns a response with NotHandled, the
// rest of the DriverResponse is ignored, and go/packages will fallback
// to the next driver. If go/packages is extended in the future to support
// lists of multiple drivers, go/packages will fall back to the next driver.
NotHandled bool
// Compiler and Arch are the arguments pass of types.SizesFor
// to get a types.Sizes to use when type checking.
Compiler string
Arch string
// Roots is the set of package IDs that make up the root packages.
// We have to encode this separately because when we encode a single package
// we cannot know if it is one of the roots as that requires knowledge of the
// graph it is part of.
Roots []string `json:",omitempty"`
// Packages is the full set of packages in the graph.
// The packages are not connected into a graph.
// The Imports if populated will be stubs that only have their ID set.
// Imports will be connected and then type and syntax information added in a
// later pass (see refine).
Packages []*Package
// GoVersion is the minor version number used by the driver
// (e.g. the go command on the PATH) when selecting .go files.
// Zero means unknown.
GoVersion int
}
// driver is the type for functions that query the build system for the
// packages named by the patterns.
type driver func(cfg *Config, patterns ...string) (*DriverResponse, error)
// findExternalDriver returns the file path of a tool that supplies
// the build system package structure, or "" if not found."
// If GOPACKAGESDRIVER is set in the environment findExternalTool returns its
// value, otherwise it searches for a binary named gopackagesdriver on the PATH.
func findExternalDriver(cfg *Config) driver {
const toolPrefix = "GOPACKAGESDRIVER="
tool := ""
for _, env := range cfg.Env {
if val := strings.TrimPrefix(env, toolPrefix); val != env {
tool = val
}
}
if tool != "" && tool == "off" {
return nil
}
if tool == "" {
var err error
tool, err = exec.LookPath("gopackagesdriver")
if err != nil {
return nil
}
}
return func(cfg *Config, words ...string) (*DriverResponse, error) {
req, err := json.Marshal(DriverRequest{
Mode: cfg.Mode,
Env: cfg.Env,
BuildFlags: cfg.BuildFlags,
Tests: cfg.Tests,
Overlay: cfg.Overlay,
})
if err != nil {
return nil, fmt.Errorf("failed to encode message to driver tool: %v", err)
}
buf := new(bytes.Buffer)
stderr := new(bytes.Buffer)
cmd := exec.CommandContext(cfg.Context, tool, words...)
cmd.Dir = cfg.Dir
// The cwd gets resolved to the real path. On Darwin, where
// /tmp is a symlink, this breaks anything that expects the
// working directory to keep the original path, including the
// go command when dealing with modules.
//
// os.Getwd stdlib has a special feature where if the
// cwd and the PWD are the same node then it trusts
// the PWD, so by setting it in the env for the child
// process we fix up all the paths returned by the go
// command.
//
// (See similar trick in Invocation.run in ../../internal/gocommand/invoke.go)
cmd.Env = append(slicesClip(cfg.Env), "PWD="+cfg.Dir)
cmd.Stdin = bytes.NewReader(req)
cmd.Stdout = buf
cmd.Stderr = stderr
if err := cmd.Run(); err != nil {
return nil, fmt.Errorf("%v: %v: %s", tool, err, cmd.Stderr)
}
if len(stderr.Bytes()) != 0 && os.Getenv("GOPACKAGESPRINTDRIVERERRORS") != "" {
fmt.Fprintf(os.Stderr, "%s stderr: <<%s>>\n", cmdDebugStr(cmd), stderr)
}
var response DriverResponse
if err := json.Unmarshal(buf.Bytes(), &response); err != nil {
return nil, err
}
return &response, nil
}
}
// slicesClip removes unused capacity from the slice, returning s[:len(s):len(s)].
// TODO(adonovan): use go1.21 slices.Clip.
func slicesClip[S ~[]E, E any](s S) S { return s[:len(s):len(s)] }

1026
vendor/golang.org/x/tools/go/packages/golist.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,83 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packages
import (
"encoding/json"
"path/filepath"
"golang.org/x/tools/internal/gocommand"
)
// determineRootDirs returns a mapping from absolute directories that could
// contain code to their corresponding import path prefixes.
func (state *golistState) determineRootDirs() (map[string]string, error) {
env, err := state.getEnv()
if err != nil {
return nil, err
}
if env["GOMOD"] != "" {
state.rootsOnce.Do(func() {
state.rootDirs, state.rootDirsError = state.determineRootDirsModules()
})
} else {
state.rootsOnce.Do(func() {
state.rootDirs, state.rootDirsError = state.determineRootDirsGOPATH()
})
}
return state.rootDirs, state.rootDirsError
}
func (state *golistState) determineRootDirsModules() (map[string]string, error) {
// List all of the modules--the first will be the directory for the main
// module. Any replaced modules will also need to be treated as roots.
// Editing files in the module cache isn't a great idea, so we don't
// plan to ever support that.
out, err := state.invokeGo("list", "-m", "-json", "all")
if err != nil {
// 'go list all' will fail if we're outside of a module and
// GO111MODULE=on. Try falling back without 'all'.
var innerErr error
out, innerErr = state.invokeGo("list", "-m", "-json")
if innerErr != nil {
return nil, err
}
}
roots := map[string]string{}
modules := map[string]string{}
var i int
for dec := json.NewDecoder(out); dec.More(); {
mod := new(gocommand.ModuleJSON)
if err := dec.Decode(mod); err != nil {
return nil, err
}
if mod.Dir != "" && mod.Path != "" {
// This is a valid module; add it to the map.
absDir, err := filepath.Abs(mod.Dir)
if err != nil {
return nil, err
}
modules[absDir] = mod.Path
// The first result is the main module.
if i == 0 || mod.Replace != nil && mod.Replace.Path != "" {
roots[absDir] = mod.Path
}
}
i++
}
return roots, nil
}
func (state *golistState) determineRootDirsGOPATH() (map[string]string, error) {
m := map[string]string{}
for _, dir := range filepath.SplitList(state.mustGetEnv()["GOPATH"]) {
absDir, err := filepath.Abs(dir)
if err != nil {
return nil, err
}
m[filepath.Join(absDir, "src")] = ""
}
return m, nil
}

View File

@@ -0,0 +1,57 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packages
import (
"fmt"
"strings"
)
var allModes = []LoadMode{
NeedName,
NeedFiles,
NeedCompiledGoFiles,
NeedImports,
NeedDeps,
NeedExportFile,
NeedTypes,
NeedSyntax,
NeedTypesInfo,
NeedTypesSizes,
}
var modeStrings = []string{
"NeedName",
"NeedFiles",
"NeedCompiledGoFiles",
"NeedImports",
"NeedDeps",
"NeedExportFile",
"NeedTypes",
"NeedSyntax",
"NeedTypesInfo",
"NeedTypesSizes",
}
func (mod LoadMode) String() string {
m := mod
if m == 0 {
return "LoadMode(0)"
}
var out []string
for i, x := range allModes {
if x > m {
break
}
if (m & x) != 0 {
out = append(out, modeStrings[i])
m = m ^ x
}
}
if m != 0 {
out = append(out, "Unknown")
}
return fmt.Sprintf("LoadMode(%s)", strings.Join(out, "|"))
}

1510
vendor/golang.org/x/tools/go/packages/packages.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

59
vendor/golang.org/x/tools/go/packages/visit.go generated vendored Normal file
View File

@@ -0,0 +1,59 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packages
import (
"fmt"
"os"
"sort"
)
// Visit visits all the packages in the import graph whose roots are
// pkgs, calling the optional pre function the first time each package
// is encountered (preorder), and the optional post function after a
// package's dependencies have been visited (postorder).
// The boolean result of pre(pkg) determines whether
// the imports of package pkg are visited.
func Visit(pkgs []*Package, pre func(*Package) bool, post func(*Package)) {
seen := make(map[*Package]bool)
var visit func(*Package)
visit = func(pkg *Package) {
if !seen[pkg] {
seen[pkg] = true
if pre == nil || pre(pkg) {
paths := make([]string, 0, len(pkg.Imports))
for path := range pkg.Imports {
paths = append(paths, path)
}
sort.Strings(paths) // Imports is a map, this makes visit stable
for _, path := range paths {
visit(pkg.Imports[path])
}
}
if post != nil {
post(pkg)
}
}
}
for _, pkg := range pkgs {
visit(pkg)
}
}
// PrintErrors prints to os.Stderr the accumulated errors of all
// packages in the import graph rooted at pkgs, dependencies first.
// PrintErrors returns the number of errors printed.
func PrintErrors(pkgs []*Package) int {
var n int
Visit(pkgs, nil, func(pkg *Package) {
for _, err := range pkg.Errors {
fmt.Fprintln(os.Stderr, err)
n++
}
})
return n
}