 9bdcbe0447
			
		
	
	9bdcbe0447
	
	
	
		
			
			Major integrations and fixes: - Added BACKBEAT SDK integration for P2P operation timing - Implemented beat-aware status tracking for distributed operations - Added Docker secrets support for secure license management - Resolved KACHING license validation via HTTPS/TLS - Updated docker-compose configuration for clean stack deployment - Disabled rollback policies to prevent deployment failures - Added license credential storage (CHORUS-DEV-MULTI-001) Technical improvements: - BACKBEAT P2P operation tracking with phase management - Enhanced configuration system with file-based secrets - Improved error handling for license validation - Clean separation of KACHING and CHORUS deployment stacks 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
		
			
				
	
	
		
			357 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			357 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2009 The Go Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| // package qtls partially implements TLS 1.2, as specified in RFC 5246,
 | |
| // and TLS 1.3, as specified in RFC 8446.
 | |
| package qtls
 | |
| 
 | |
| // BUG(agl): The crypto/tls package only implements some countermeasures
 | |
| // against Lucky13 attacks on CBC-mode encryption, and only on SHA1
 | |
| // variants. See http://www.isg.rhul.ac.uk/tls/TLStiming.pdf and
 | |
| // https://www.imperialviolet.org/2013/02/04/luckythirteen.html.
 | |
| 
 | |
| import (
 | |
| 	"bytes"
 | |
| 	"context"
 | |
| 	"crypto"
 | |
| 	"crypto/ecdsa"
 | |
| 	"crypto/ed25519"
 | |
| 	"crypto/rsa"
 | |
| 	"crypto/x509"
 | |
| 	"encoding/pem"
 | |
| 	"errors"
 | |
| 	"fmt"
 | |
| 	"net"
 | |
| 	"os"
 | |
| 	"strings"
 | |
| )
 | |
| 
 | |
| // Server returns a new TLS server side connection
 | |
| // using conn as the underlying transport.
 | |
| // The configuration config must be non-nil and must include
 | |
| // at least one certificate or else set GetCertificate.
 | |
| func Server(conn net.Conn, config *Config) *Conn {
 | |
| 	c := &Conn{
 | |
| 		conn:   conn,
 | |
| 		config: fromConfig(config),
 | |
| 	}
 | |
| 	c.handshakeFn = c.serverHandshake
 | |
| 	return c
 | |
| }
 | |
| 
 | |
| // Client returns a new TLS client side connection
 | |
| // using conn as the underlying transport.
 | |
| // The config cannot be nil: users must set either ServerName or
 | |
| // InsecureSkipVerify in the config.
 | |
| func Client(conn net.Conn, config *Config) *Conn {
 | |
| 	c := &Conn{
 | |
| 		conn:     conn,
 | |
| 		config:   fromConfig(config),
 | |
| 		isClient: true,
 | |
| 	}
 | |
| 	c.handshakeFn = c.clientHandshake
 | |
| 	return c
 | |
| }
 | |
| 
 | |
| // A listener implements a network listener (net.Listener) for TLS connections.
 | |
| type listener struct {
 | |
| 	net.Listener
 | |
| 	config *Config
 | |
| }
 | |
| 
 | |
| // Accept waits for and returns the next incoming TLS connection.
 | |
| // The returned connection is of type *Conn.
 | |
| func (l *listener) Accept() (net.Conn, error) {
 | |
| 	c, err := l.Listener.Accept()
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	return Server(c, l.config), nil
 | |
| }
 | |
| 
 | |
| // NewListener creates a Listener which accepts connections from an inner
 | |
| // Listener and wraps each connection with Server.
 | |
| // The configuration config must be non-nil and must include
 | |
| // at least one certificate or else set GetCertificate.
 | |
| func NewListener(inner net.Listener, config *Config) net.Listener {
 | |
| 	l := new(listener)
 | |
| 	l.Listener = inner
 | |
| 	l.config = config
 | |
| 	return l
 | |
| }
 | |
| 
 | |
| // Listen creates a TLS listener accepting connections on the
 | |
| // given network address using net.Listen.
 | |
| // The configuration config must be non-nil and must include
 | |
| // at least one certificate or else set GetCertificate.
 | |
| func Listen(network, laddr string, config *Config) (net.Listener, error) {
 | |
| 	if config == nil || len(config.Certificates) == 0 &&
 | |
| 		config.GetCertificate == nil && config.GetConfigForClient == nil {
 | |
| 		return nil, errors.New("tls: neither Certificates, GetCertificate, nor GetConfigForClient set in Config")
 | |
| 	}
 | |
| 	l, err := net.Listen(network, laddr)
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	return NewListener(l, config), nil
 | |
| }
 | |
| 
 | |
| type timeoutError struct{}
 | |
| 
 | |
| func (timeoutError) Error() string   { return "tls: DialWithDialer timed out" }
 | |
| func (timeoutError) Timeout() bool   { return true }
 | |
| func (timeoutError) Temporary() bool { return true }
 | |
| 
 | |
| // DialWithDialer connects to the given network address using dialer.Dial and
 | |
| // then initiates a TLS handshake, returning the resulting TLS connection. Any
 | |
| // timeout or deadline given in the dialer apply to connection and TLS
 | |
| // handshake as a whole.
 | |
| //
 | |
| // DialWithDialer interprets a nil configuration as equivalent to the zero
 | |
| // configuration; see the documentation of Config for the defaults.
 | |
| //
 | |
| // DialWithDialer uses context.Background internally; to specify the context,
 | |
| // use Dialer.DialContext with NetDialer set to the desired dialer.
 | |
| func DialWithDialer(dialer *net.Dialer, network, addr string, config *Config) (*Conn, error) {
 | |
| 	return dial(context.Background(), dialer, network, addr, config)
 | |
| }
 | |
| 
 | |
| func dial(ctx context.Context, netDialer *net.Dialer, network, addr string, config *Config) (*Conn, error) {
 | |
| 	if netDialer.Timeout != 0 {
 | |
| 		var cancel context.CancelFunc
 | |
| 		ctx, cancel = context.WithTimeout(ctx, netDialer.Timeout)
 | |
| 		defer cancel()
 | |
| 	}
 | |
| 
 | |
| 	if !netDialer.Deadline.IsZero() {
 | |
| 		var cancel context.CancelFunc
 | |
| 		ctx, cancel = context.WithDeadline(ctx, netDialer.Deadline)
 | |
| 		defer cancel()
 | |
| 	}
 | |
| 
 | |
| 	rawConn, err := netDialer.DialContext(ctx, network, addr)
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	colonPos := strings.LastIndex(addr, ":")
 | |
| 	if colonPos == -1 {
 | |
| 		colonPos = len(addr)
 | |
| 	}
 | |
| 	hostname := addr[:colonPos]
 | |
| 
 | |
| 	if config == nil {
 | |
| 		config = defaultConfig()
 | |
| 	}
 | |
| 	// If no ServerName is set, infer the ServerName
 | |
| 	// from the hostname we're connecting to.
 | |
| 	if config.ServerName == "" {
 | |
| 		// Make a copy to avoid polluting argument or default.
 | |
| 		c := config.Clone()
 | |
| 		c.ServerName = hostname
 | |
| 		config = c
 | |
| 	}
 | |
| 
 | |
| 	conn := Client(rawConn, config)
 | |
| 	if err := conn.HandshakeContext(ctx); err != nil {
 | |
| 		rawConn.Close()
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	return conn, nil
 | |
| }
 | |
| 
 | |
| // Dial connects to the given network address using net.Dial
 | |
| // and then initiates a TLS handshake, returning the resulting
 | |
| // TLS connection.
 | |
| // Dial interprets a nil configuration as equivalent to
 | |
| // the zero configuration; see the documentation of Config
 | |
| // for the defaults.
 | |
| func Dial(network, addr string, config *Config) (*Conn, error) {
 | |
| 	return DialWithDialer(new(net.Dialer), network, addr, config)
 | |
| }
 | |
| 
 | |
| // Dialer dials TLS connections given a configuration and a Dialer for the
 | |
| // underlying connection.
 | |
| type Dialer struct {
 | |
| 	// NetDialer is the optional dialer to use for the TLS connections'
 | |
| 	// underlying TCP connections.
 | |
| 	// A nil NetDialer is equivalent to the net.Dialer zero value.
 | |
| 	NetDialer *net.Dialer
 | |
| 
 | |
| 	// Config is the TLS configuration to use for new connections.
 | |
| 	// A nil configuration is equivalent to the zero
 | |
| 	// configuration; see the documentation of Config for the
 | |
| 	// defaults.
 | |
| 	Config *Config
 | |
| }
 | |
| 
 | |
| // Dial connects to the given network address and initiates a TLS
 | |
| // handshake, returning the resulting TLS connection.
 | |
| //
 | |
| // The returned Conn, if any, will always be of type *Conn.
 | |
| //
 | |
| // Dial uses context.Background internally; to specify the context,
 | |
| // use DialContext.
 | |
| func (d *Dialer) Dial(network, addr string) (net.Conn, error) {
 | |
| 	return d.DialContext(context.Background(), network, addr)
 | |
| }
 | |
| 
 | |
| func (d *Dialer) netDialer() *net.Dialer {
 | |
| 	if d.NetDialer != nil {
 | |
| 		return d.NetDialer
 | |
| 	}
 | |
| 	return new(net.Dialer)
 | |
| }
 | |
| 
 | |
| // DialContext connects to the given network address and initiates a TLS
 | |
| // handshake, returning the resulting TLS connection.
 | |
| //
 | |
| // The provided Context must be non-nil. If the context expires before
 | |
| // the connection is complete, an error is returned. Once successfully
 | |
| // connected, any expiration of the context will not affect the
 | |
| // connection.
 | |
| //
 | |
| // The returned Conn, if any, will always be of type *Conn.
 | |
| func (d *Dialer) DialContext(ctx context.Context, network, addr string) (net.Conn, error) {
 | |
| 	c, err := dial(ctx, d.netDialer(), network, addr, d.Config)
 | |
| 	if err != nil {
 | |
| 		// Don't return c (a typed nil) in an interface.
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	return c, nil
 | |
| }
 | |
| 
 | |
| // LoadX509KeyPair reads and parses a public/private key pair from a pair
 | |
| // of files. The files must contain PEM encoded data. The certificate file
 | |
| // may contain intermediate certificates following the leaf certificate to
 | |
| // form a certificate chain. On successful return, Certificate.Leaf will
 | |
| // be nil because the parsed form of the certificate is not retained.
 | |
| func LoadX509KeyPair(certFile, keyFile string) (Certificate, error) {
 | |
| 	certPEMBlock, err := os.ReadFile(certFile)
 | |
| 	if err != nil {
 | |
| 		return Certificate{}, err
 | |
| 	}
 | |
| 	keyPEMBlock, err := os.ReadFile(keyFile)
 | |
| 	if err != nil {
 | |
| 		return Certificate{}, err
 | |
| 	}
 | |
| 	return X509KeyPair(certPEMBlock, keyPEMBlock)
 | |
| }
 | |
| 
 | |
| // X509KeyPair parses a public/private key pair from a pair of
 | |
| // PEM encoded data. On successful return, Certificate.Leaf will be nil because
 | |
| // the parsed form of the certificate is not retained.
 | |
| func X509KeyPair(certPEMBlock, keyPEMBlock []byte) (Certificate, error) {
 | |
| 	fail := func(err error) (Certificate, error) { return Certificate{}, err }
 | |
| 
 | |
| 	var cert Certificate
 | |
| 	var skippedBlockTypes []string
 | |
| 	for {
 | |
| 		var certDERBlock *pem.Block
 | |
| 		certDERBlock, certPEMBlock = pem.Decode(certPEMBlock)
 | |
| 		if certDERBlock == nil {
 | |
| 			break
 | |
| 		}
 | |
| 		if certDERBlock.Type == "CERTIFICATE" {
 | |
| 			cert.Certificate = append(cert.Certificate, certDERBlock.Bytes)
 | |
| 		} else {
 | |
| 			skippedBlockTypes = append(skippedBlockTypes, certDERBlock.Type)
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if len(cert.Certificate) == 0 {
 | |
| 		if len(skippedBlockTypes) == 0 {
 | |
| 			return fail(errors.New("tls: failed to find any PEM data in certificate input"))
 | |
| 		}
 | |
| 		if len(skippedBlockTypes) == 1 && strings.HasSuffix(skippedBlockTypes[0], "PRIVATE KEY") {
 | |
| 			return fail(errors.New("tls: failed to find certificate PEM data in certificate input, but did find a private key; PEM inputs may have been switched"))
 | |
| 		}
 | |
| 		return fail(fmt.Errorf("tls: failed to find \"CERTIFICATE\" PEM block in certificate input after skipping PEM blocks of the following types: %v", skippedBlockTypes))
 | |
| 	}
 | |
| 
 | |
| 	skippedBlockTypes = skippedBlockTypes[:0]
 | |
| 	var keyDERBlock *pem.Block
 | |
| 	for {
 | |
| 		keyDERBlock, keyPEMBlock = pem.Decode(keyPEMBlock)
 | |
| 		if keyDERBlock == nil {
 | |
| 			if len(skippedBlockTypes) == 0 {
 | |
| 				return fail(errors.New("tls: failed to find any PEM data in key input"))
 | |
| 			}
 | |
| 			if len(skippedBlockTypes) == 1 && skippedBlockTypes[0] == "CERTIFICATE" {
 | |
| 				return fail(errors.New("tls: found a certificate rather than a key in the PEM for the private key"))
 | |
| 			}
 | |
| 			return fail(fmt.Errorf("tls: failed to find PEM block with type ending in \"PRIVATE KEY\" in key input after skipping PEM blocks of the following types: %v", skippedBlockTypes))
 | |
| 		}
 | |
| 		if keyDERBlock.Type == "PRIVATE KEY" || strings.HasSuffix(keyDERBlock.Type, " PRIVATE KEY") {
 | |
| 			break
 | |
| 		}
 | |
| 		skippedBlockTypes = append(skippedBlockTypes, keyDERBlock.Type)
 | |
| 	}
 | |
| 
 | |
| 	// We don't need to parse the public key for TLS, but we so do anyway
 | |
| 	// to check that it looks sane and matches the private key.
 | |
| 	x509Cert, err := x509.ParseCertificate(cert.Certificate[0])
 | |
| 	if err != nil {
 | |
| 		return fail(err)
 | |
| 	}
 | |
| 
 | |
| 	cert.PrivateKey, err = parsePrivateKey(keyDERBlock.Bytes)
 | |
| 	if err != nil {
 | |
| 		return fail(err)
 | |
| 	}
 | |
| 
 | |
| 	switch pub := x509Cert.PublicKey.(type) {
 | |
| 	case *rsa.PublicKey:
 | |
| 		priv, ok := cert.PrivateKey.(*rsa.PrivateKey)
 | |
| 		if !ok {
 | |
| 			return fail(errors.New("tls: private key type does not match public key type"))
 | |
| 		}
 | |
| 		if pub.N.Cmp(priv.N) != 0 {
 | |
| 			return fail(errors.New("tls: private key does not match public key"))
 | |
| 		}
 | |
| 	case *ecdsa.PublicKey:
 | |
| 		priv, ok := cert.PrivateKey.(*ecdsa.PrivateKey)
 | |
| 		if !ok {
 | |
| 			return fail(errors.New("tls: private key type does not match public key type"))
 | |
| 		}
 | |
| 		if pub.X.Cmp(priv.X) != 0 || pub.Y.Cmp(priv.Y) != 0 {
 | |
| 			return fail(errors.New("tls: private key does not match public key"))
 | |
| 		}
 | |
| 	case ed25519.PublicKey:
 | |
| 		priv, ok := cert.PrivateKey.(ed25519.PrivateKey)
 | |
| 		if !ok {
 | |
| 			return fail(errors.New("tls: private key type does not match public key type"))
 | |
| 		}
 | |
| 		if !bytes.Equal(priv.Public().(ed25519.PublicKey), pub) {
 | |
| 			return fail(errors.New("tls: private key does not match public key"))
 | |
| 		}
 | |
| 	default:
 | |
| 		return fail(errors.New("tls: unknown public key algorithm"))
 | |
| 	}
 | |
| 
 | |
| 	return cert, nil
 | |
| }
 | |
| 
 | |
| // Attempt to parse the given private key DER block. OpenSSL 0.9.8 generates
 | |
| // PKCS #1 private keys by default, while OpenSSL 1.0.0 generates PKCS #8 keys.
 | |
| // OpenSSL ecparam generates SEC1 EC private keys for ECDSA. We try all three.
 | |
| func parsePrivateKey(der []byte) (crypto.PrivateKey, error) {
 | |
| 	if key, err := x509.ParsePKCS1PrivateKey(der); err == nil {
 | |
| 		return key, nil
 | |
| 	}
 | |
| 	if key, err := x509.ParsePKCS8PrivateKey(der); err == nil {
 | |
| 		switch key := key.(type) {
 | |
| 		case *rsa.PrivateKey, *ecdsa.PrivateKey, ed25519.PrivateKey:
 | |
| 			return key, nil
 | |
| 		default:
 | |
| 			return nil, errors.New("tls: found unknown private key type in PKCS#8 wrapping")
 | |
| 		}
 | |
| 	}
 | |
| 	if key, err := x509.ParseECPrivateKey(der); err == nil {
 | |
| 		return key, nil
 | |
| 	}
 | |
| 
 | |
| 	return nil, errors.New("tls: failed to parse private key")
 | |
| }
 |