Files
anthonyrawlins 9bdcbe0447 Integrate BACKBEAT SDK and resolve KACHING license validation
Major integrations and fixes:
- Added BACKBEAT SDK integration for P2P operation timing
- Implemented beat-aware status tracking for distributed operations
- Added Docker secrets support for secure license management
- Resolved KACHING license validation via HTTPS/TLS
- Updated docker-compose configuration for clean stack deployment
- Disabled rollback policies to prevent deployment failures
- Added license credential storage (CHORUS-DEV-MULTI-001)

Technical improvements:
- BACKBEAT P2P operation tracking with phase management
- Enhanced configuration system with file-based secrets
- Improved error handling for license validation
- Clean separation of KACHING and CHORUS deployment stacks

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-09-06 07:56:26 +10:00

463 lines
11 KiB
Go

package roaring64
import (
"errors"
"github.com/RoaringBitmap/roaring/v2"
)
type roaringArray64 struct {
keys []uint32
containers []*roaring.Bitmap
needCopyOnWrite []bool
copyOnWrite bool
}
var (
ErrKeySortOrder = errors.New("keys were out of order")
ErrCardinalityConstraint = errors.New("size of arrays was not coherent")
)
// runOptimize compresses the element containers to minimize space consumed.
// Q: how does this interact with copyOnWrite and needCopyOnWrite?
// A: since we aren't changing the logical content, just the representation,
//
// we don't bother to check the needCopyOnWrite bits. We replace
// (possibly all) elements of ra.containers in-place with space
// optimized versions.
func (ra *roaringArray64) runOptimize() {
for i := range ra.containers {
ra.containers[i].RunOptimize()
}
}
func (ra *roaringArray64) appendContainer(key uint32, value *roaring.Bitmap, mustCopyOnWrite bool) {
ra.keys = append(ra.keys, key)
ra.containers = append(ra.containers, value)
ra.needCopyOnWrite = append(ra.needCopyOnWrite, mustCopyOnWrite)
}
func (ra *roaringArray64) appendWithoutCopy(sa roaringArray64, startingindex int) {
mustCopyOnWrite := sa.needCopyOnWrite[startingindex]
ra.appendContainer(sa.keys[startingindex], sa.containers[startingindex], mustCopyOnWrite)
}
func (ra *roaringArray64) appendCopy(sa roaringArray64, startingindex int) {
// cow only if the two request it, or if we already have a lightweight copy
copyonwrite := (ra.copyOnWrite && sa.copyOnWrite) || sa.needsCopyOnWrite(startingindex)
if !copyonwrite {
// since there is no copy-on-write, we need to clone the container (this is important)
ra.appendContainer(sa.keys[startingindex], sa.containers[startingindex].Clone(), copyonwrite)
} else {
ra.appendContainer(sa.keys[startingindex], sa.containers[startingindex].Clone(), copyonwrite)
if !sa.needsCopyOnWrite(startingindex) {
sa.setNeedsCopyOnWrite(startingindex)
}
}
}
func (ra *roaringArray64) appendWithoutCopyMany(sa roaringArray64, startingindex, end int) {
for i := startingindex; i < end; i++ {
ra.appendWithoutCopy(sa, i)
}
}
func (ra *roaringArray64) appendCopyMany(sa roaringArray64, startingindex, end int) {
for i := startingindex; i < end; i++ {
ra.appendCopy(sa, i)
}
}
func (ra *roaringArray64) appendCopiesUntil(sa roaringArray64, stoppingKey uint32) {
// cow only if the two request it, or if we already have a lightweight copy
copyonwrite := ra.copyOnWrite && sa.copyOnWrite
for i := 0; i < sa.size(); i++ {
if sa.keys[i] >= stoppingKey {
break
}
thiscopyonewrite := copyonwrite || sa.needsCopyOnWrite(i)
if thiscopyonewrite {
ra.appendContainer(sa.keys[i], sa.containers[i], thiscopyonewrite)
if !sa.needsCopyOnWrite(i) {
sa.setNeedsCopyOnWrite(i)
}
} else {
// since there is no copy-on-write, we need to clone the container (this is important)
ra.appendContainer(sa.keys[i], sa.containers[i].Clone(), thiscopyonewrite)
}
}
}
func (ra *roaringArray64) appendCopiesAfter(sa roaringArray64, beforeStart uint32) {
// cow only if the two request it, or if we already have a lightweight copy
copyonwrite := ra.copyOnWrite && sa.copyOnWrite
startLocation := sa.getIndex(beforeStart)
if startLocation >= 0 {
startLocation++
} else {
startLocation = -startLocation - 1
}
for i := startLocation; i < sa.size(); i++ {
thiscopyonewrite := copyonwrite || sa.needsCopyOnWrite(i)
if thiscopyonewrite {
ra.appendContainer(sa.keys[i], sa.containers[i], thiscopyonewrite)
if !sa.needsCopyOnWrite(i) {
sa.setNeedsCopyOnWrite(i)
}
} else {
// since there is no copy-on-write, we need to clone the container (this is important)
ra.appendContainer(sa.keys[i], sa.containers[i].Clone(), thiscopyonewrite)
}
}
}
func (ra *roaringArray64) removeIndexRange(begin, end int) {
if end <= begin {
return
}
r := end - begin
copy(ra.keys[begin:], ra.keys[end:])
copy(ra.containers[begin:], ra.containers[end:])
copy(ra.needCopyOnWrite[begin:], ra.needCopyOnWrite[end:])
ra.resize(len(ra.keys) - r)
}
func (ra *roaringArray64) resize(newsize int) {
for k := newsize; k < len(ra.containers); k++ {
ra.keys[k] = 0
ra.needCopyOnWrite[k] = false
ra.containers[k] = nil
}
ra.keys = ra.keys[:newsize]
ra.containers = ra.containers[:newsize]
ra.needCopyOnWrite = ra.needCopyOnWrite[:newsize]
}
func (ra *roaringArray64) clear() {
ra.resize(0)
ra.copyOnWrite = false
}
func (ra *roaringArray64) clone() *roaringArray64 {
sa := roaringArray64{}
sa.copyOnWrite = ra.copyOnWrite
// this is where copyOnWrite is used.
if ra.copyOnWrite {
sa.keys = make([]uint32, len(ra.keys))
copy(sa.keys, ra.keys)
sa.containers = make([]*roaring.Bitmap, len(ra.containers))
copy(sa.containers, ra.containers)
sa.needCopyOnWrite = make([]bool, len(ra.needCopyOnWrite))
ra.markAllAsNeedingCopyOnWrite()
sa.markAllAsNeedingCopyOnWrite()
// sa.needCopyOnWrite is shared
} else {
// make a full copy
sa.keys = make([]uint32, len(ra.keys))
copy(sa.keys, ra.keys)
sa.containers = make([]*roaring.Bitmap, len(ra.containers))
for i := range sa.containers {
sa.containers[i] = ra.containers[i].Clone()
}
sa.needCopyOnWrite = make([]bool, len(ra.needCopyOnWrite))
}
return &sa
}
// clone all containers which have needCopyOnWrite set to true
// This can be used to make sure it is safe to munmap a []byte
// that the roaring array may still have a reference to.
func (ra *roaringArray64) cloneCopyOnWriteContainers() {
for i, needCopyOnWrite := range ra.needCopyOnWrite {
if needCopyOnWrite {
ra.containers[i] = ra.containers[i].Clone()
ra.needCopyOnWrite[i] = false
}
}
}
// unused function:
// func (ra *roaringArray64) containsKey(x uint32) bool {
// return (ra.binarySearch(0, int64(len(ra.keys)), x) >= 0)
// }
func (ra *roaringArray64) getContainer(x uint32) *roaring.Bitmap {
i := ra.binarySearch(0, int64(len(ra.keys)), x)
if i < 0 {
return nil
}
return ra.containers[i]
}
func (ra *roaringArray64) getContainerAtIndex(i int) *roaring.Bitmap {
return ra.containers[i]
}
func (ra *roaringArray64) getWritableContainerAtIndex(i int) *roaring.Bitmap {
if ra.needCopyOnWrite[i] {
ra.containers[i] = ra.containers[i].Clone()
ra.needCopyOnWrite[i] = false
}
return ra.containers[i]
}
func (ra *roaringArray64) getIndex(x uint32) int {
// before the binary search, we optimize for frequent cases
size := len(ra.keys)
if (size == 0) || (ra.keys[size-1] == x) {
return size - 1
}
return ra.binarySearch(0, int64(size), x)
}
func (ra *roaringArray64) getKeyAtIndex(i int) uint32 {
return ra.keys[i]
}
func (ra *roaringArray64) insertNewKeyValueAt(i int, key uint32, value *roaring.Bitmap) {
ra.keys = append(ra.keys, 0)
ra.containers = append(ra.containers, nil)
copy(ra.keys[i+1:], ra.keys[i:])
copy(ra.containers[i+1:], ra.containers[i:])
ra.keys[i] = key
ra.containers[i] = value
ra.needCopyOnWrite = append(ra.needCopyOnWrite, false)
copy(ra.needCopyOnWrite[i+1:], ra.needCopyOnWrite[i:])
ra.needCopyOnWrite[i] = false
}
func (ra *roaringArray64) remove(key uint32) bool {
i := ra.binarySearch(0, int64(len(ra.keys)), key)
if i >= 0 { // if a new key
ra.removeAtIndex(i)
return true
}
return false
}
func (ra *roaringArray64) removeAtIndex(i int) {
copy(ra.keys[i:], ra.keys[i+1:])
copy(ra.containers[i:], ra.containers[i+1:])
copy(ra.needCopyOnWrite[i:], ra.needCopyOnWrite[i+1:])
ra.resize(len(ra.keys) - 1)
}
func (ra *roaringArray64) setContainerAtIndex(i int, c *roaring.Bitmap) {
ra.containers[i] = c
}
func (ra *roaringArray64) replaceKeyAndContainerAtIndex(i int, key uint32, c *roaring.Bitmap, mustCopyOnWrite bool) {
ra.keys[i] = key
ra.containers[i] = c
ra.needCopyOnWrite[i] = mustCopyOnWrite
}
func (ra *roaringArray64) size() int {
return len(ra.keys)
}
func (ra *roaringArray64) binarySearch(begin, end int64, ikey uint32) int {
low := begin
high := end - 1
for low+16 <= high {
middleIndex := low + (high-low)/2 // avoid overflow
middleValue := ra.keys[middleIndex]
if middleValue < ikey {
low = middleIndex + 1
} else if middleValue > ikey {
high = middleIndex - 1
} else {
return int(middleIndex)
}
}
for ; low <= high; low++ {
val := ra.keys[low]
if val >= ikey {
if val == ikey {
return int(low)
}
break
}
}
return -int(low + 1)
}
func (ra *roaringArray64) equals(o interface{}) bool {
srb, ok := o.(roaringArray64)
if ok {
if srb.size() != ra.size() {
return false
}
for i, k := range ra.keys {
if k != srb.keys[i] {
return false
}
}
for i, c := range ra.containers {
if !c.Equals(srb.containers[i]) {
return false
}
}
return true
}
return false
}
func (ra *roaringArray64) hasRunCompression() bool {
for _, c := range ra.containers {
if c.HasRunCompression() {
return true
}
}
return false
}
/**
* Find the smallest integer index strictly larger than pos such that array[index].key&gt;=min. If none can
* be found, return size. Based on code by O. Kaser.
*
* @param min minimal value
* @param pos index to exceed
* @return the smallest index greater than pos such that array[index].key is at least as large as
* min, or size if it is not possible.
*/
func (ra *roaringArray64) advanceUntil(min uint32, pos int) int {
lower := pos + 1
if lower >= len(ra.keys) || ra.keys[lower] >= min {
return lower
}
spansize := 1
for lower+spansize < len(ra.keys) && ra.keys[lower+spansize] < min {
spansize *= 2
}
var upper int
if lower+spansize < len(ra.keys) {
upper = lower + spansize
} else {
upper = len(ra.keys) - 1
}
if ra.keys[upper] == min {
return upper
}
if ra.keys[upper] < min {
// means
// array
// has no
// item
// >= min
// pos = array.length;
return len(ra.keys)
}
// we know that the next-smallest span was too small
lower += (spansize >> 1)
mid := 0
for lower+1 != upper {
mid = (lower + upper) >> 1
if ra.keys[mid] == min {
return mid
} else if ra.keys[mid] < min {
lower = mid
} else {
upper = mid
}
}
return upper
}
func (ra *roaringArray64) markAllAsNeedingCopyOnWrite() {
for i := range ra.needCopyOnWrite {
ra.needCopyOnWrite[i] = true
}
}
func (ra *roaringArray64) needsCopyOnWrite(i int) bool {
return ra.needCopyOnWrite[i]
}
func (ra *roaringArray64) setNeedsCopyOnWrite(i int) {
ra.needCopyOnWrite[i] = true
}
// should be dirt cheap
func (ra *roaringArray64) serializedSizeInBytes() uint64 {
answer := uint64(8)
for _, c := range ra.containers {
answer += 4
answer += c.GetSerializedSizeInBytes()
}
return answer
}
func (ra *roaringArray64) checkKeysSorted() bool {
if len(ra.keys) == 0 || len(ra.keys) == 1 {
return true
}
previous := ra.keys[0]
for nextIdx := 1; nextIdx < len(ra.keys); nextIdx++ {
next := ra.keys[nextIdx]
if previous >= next {
return false
}
previous = next
}
return true
}
// validate checks the referential integrity
// ensures len(keys) == len(containers), recurses and checks each container type
func (ra *roaringArray64) validate() error {
if !ra.checkKeysSorted() {
return ErrKeySortOrder
}
if len(ra.keys) != len(ra.containers) {
return ErrCardinalityConstraint
}
if len(ra.keys) != len(ra.needCopyOnWrite) {
return ErrCardinalityConstraint
}
for _, maps := range ra.containers {
err := maps.Validate()
if err != nil {
return err
}
if maps.IsEmpty() {
return errors.New("empty container")
}
}
return nil
}