Files
anthonyrawlins 9bdcbe0447 Integrate BACKBEAT SDK and resolve KACHING license validation
Major integrations and fixes:
- Added BACKBEAT SDK integration for P2P operation timing
- Implemented beat-aware status tracking for distributed operations
- Added Docker secrets support for secure license management
- Resolved KACHING license validation via HTTPS/TLS
- Updated docker-compose configuration for clean stack deployment
- Disabled rollback policies to prevent deployment failures
- Added license credential storage (CHORUS-DEV-MULTI-001)

Technical improvements:
- BACKBEAT P2P operation tracking with phase management
- Enhanced configuration system with file-based secrets
- Improved error handling for license validation
- Clean separation of KACHING and CHORUS deployment stacks

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-09-06 07:56:26 +10:00

666 lines
12 KiB
Go

package roaring
func difference(set1 []uint16, set2 []uint16, buffer []uint16) int {
if len(set2) == 0 {
buffer = buffer[:len(set1)]
copy(buffer, set1)
return len(set1)
}
if len(set1) == 0 {
return 0
}
pos := 0
k1 := 0
k2 := 0
buffer = buffer[:cap(buffer)]
s1 := set1[k1]
s2 := set2[k2]
for {
if s1 < s2 {
buffer[pos] = s1
pos++
k1++
if k1 >= len(set1) {
break
}
s1 = set1[k1]
} else if s1 == s2 {
k1++
k2++
if k1 >= len(set1) {
break
}
s1 = set1[k1]
if k2 >= len(set2) {
for ; k1 < len(set1); k1++ {
buffer[pos] = set1[k1]
pos++
}
break
}
s2 = set2[k2]
} else { // if (val1>val2)
k2++
if k2 >= len(set2) {
for ; k1 < len(set1); k1++ {
buffer[pos] = set1[k1]
pos++
}
break
}
s2 = set2[k2]
}
}
return pos
}
func exclusiveUnion2by2(set1 []uint16, set2 []uint16, buffer []uint16) int {
if 0 == len(set2) {
buffer = buffer[:len(set1)]
copy(buffer, set1[:])
return len(set1)
}
if 0 == len(set1) {
buffer = buffer[:len(set2)]
copy(buffer, set2[:])
return len(set2)
}
pos := 0
k1 := 0
k2 := 0
s1 := set1[k1]
s2 := set2[k2]
buffer = buffer[:cap(buffer)]
for {
if s1 < s2 {
buffer[pos] = s1
pos++
k1++
if k1 >= len(set1) {
for ; k2 < len(set2); k2++ {
buffer[pos] = set2[k2]
pos++
}
break
}
s1 = set1[k1]
} else if s1 == s2 {
k1++
k2++
if k1 >= len(set1) {
for ; k2 < len(set2); k2++ {
buffer[pos] = set2[k2]
pos++
}
break
}
if k2 >= len(set2) {
for ; k1 < len(set1); k1++ {
buffer[pos] = set1[k1]
pos++
}
break
}
s1 = set1[k1]
s2 = set2[k2]
} else { // if (val1>val2)
buffer[pos] = s2
pos++
k2++
if k2 >= len(set2) {
for ; k1 < len(set1); k1++ {
buffer[pos] = set1[k1]
pos++
}
break
}
s2 = set2[k2]
}
}
return pos
}
// union2by2Cardinality computes the cardinality of the union
func union2by2Cardinality(set1 []uint16, set2 []uint16) int {
pos := 0
k1 := 0
k2 := 0
if 0 == len(set2) {
return len(set1)
}
if 0 == len(set1) {
return len(set2)
}
s1 := set1[k1]
s2 := set2[k2]
for {
if s1 < s2 {
pos++
k1++
if k1 >= len(set1) {
pos += len(set2) - k2
break
}
s1 = set1[k1]
} else if s1 == s2 {
pos++
k1++
k2++
if k1 >= len(set1) {
pos += len(set2) - k2
break
}
if k2 >= len(set2) {
pos += len(set1) - k1
break
}
s1 = set1[k1]
s2 = set2[k2]
} else { // if (set1[k1]>set2[k2])
pos++
k2++
if k2 >= len(set2) {
pos += len(set1) - k1
break
}
s2 = set2[k2]
}
}
return pos
}
func intersection2by2(
set1 []uint16,
set2 []uint16,
buffer []uint16,
) int {
if len(set1)*64 < len(set2) {
return onesidedgallopingintersect2by2(set1, set2, buffer)
} else if len(set2)*64 < len(set1) {
return onesidedgallopingintersect2by2(set2, set1, buffer)
} else {
return localintersect2by2(set1, set2, buffer)
}
}
// intersection2by2Cardinality computes the cardinality of the intersection
func intersection2by2Cardinality(
set1 []uint16,
set2 []uint16,
) int {
if len(set1)*64 < len(set2) {
return onesidedgallopingintersect2by2Cardinality(set1, set2)
} else if len(set2)*64 < len(set1) {
return onesidedgallopingintersect2by2Cardinality(set2, set1)
} else {
return localintersect2by2Cardinality(set1, set2)
}
}
// intersects2by2 computes whether the two sets intersect
func intersects2by2(
set1 []uint16,
set2 []uint16,
) bool {
// could be optimized if one set is much larger than the other one
if (len(set1) == 0) || (len(set2) == 0) {
return false
}
index1 := 0
index2 := 0
value1 := set1[index1]
value2 := set2[index2]
mainwhile:
for {
if value2 < value1 {
for {
index2++
if index2 == len(set2) {
break mainwhile
}
value2 = set2[index2]
if value2 >= value1 {
break
}
}
}
if value1 < value2 {
for {
index1++
if index1 == len(set1) {
break mainwhile
}
value1 = set1[index1]
if value1 >= value2 {
break
}
}
} else {
// (set2[k2] == set1[k1])
return true
}
}
return false
}
func localintersect2by2(
set1 []uint16,
set2 []uint16,
buffer []uint16,
) int {
if (len(set1) == 0) || (len(set2) == 0) {
return 0
}
k1 := 0
k2 := 0
pos := 0
buffer = buffer[:cap(buffer)]
s1 := set1[k1]
s2 := set2[k2]
mainwhile:
for {
if s2 < s1 {
for {
k2++
if k2 == len(set2) {
break mainwhile
}
s2 = set2[k2]
if s2 >= s1 {
break
}
}
}
if s1 < s2 {
for {
k1++
if k1 == len(set1) {
break mainwhile
}
s1 = set1[k1]
if s1 >= s2 {
break
}
}
} else {
// (set2[k2] == set1[k1])
buffer[pos] = s1
pos++
k1++
if k1 == len(set1) {
break
}
s1 = set1[k1]
k2++
if k2 == len(set2) {
break
}
s2 = set2[k2]
}
}
return pos
}
// / localintersect2by2Cardinality computes the cardinality of the intersection
func localintersect2by2Cardinality(
set1 []uint16,
set2 []uint16,
) int {
if (len(set1) == 0) || (len(set2) == 0) {
return 0
}
index1 := 0
index2 := 0
pos := 0
value1 := set1[index1]
value2 := set2[index2]
mainwhile:
for {
if value2 < value1 {
for {
index2++
if index2 == len(set2) {
break mainwhile
}
value2 = set2[index2]
if value2 >= value1 {
break
}
}
}
if value1 < value2 {
for {
index1++
if index1 == len(set1) {
break mainwhile
}
value1 = set1[index1]
if value1 >= value2 {
break
}
}
} else {
// (set2[k2] == set1[k1])
pos++
index1++
if index1 == len(set1) {
break
}
value1 = set1[index1]
index2++
if index2 == len(set2) {
break
}
value2 = set2[index2]
}
}
return pos
}
func advanceUntil(
array []uint16,
pos int,
length int,
min uint16,
) int {
lower := pos + 1
if lower >= length || array[lower] >= min {
return lower
}
spansize := 1
for lower+spansize < length && array[lower+spansize] < min {
spansize *= 2
}
var upper int
if lower+spansize < length {
upper = lower + spansize
} else {
upper = length - 1
}
if array[upper] == min {
return upper
}
if array[upper] < min {
// means
// array
// has no
// item
// >= min
// pos = array.length;
return length
}
// we know that the next-smallest span was too small
lower += (spansize >> 1)
mid := 0
for lower+1 != upper {
mid = (lower + upper) >> 1
if array[mid] == min {
return mid
} else if array[mid] < min {
lower = mid
} else {
upper = mid
}
}
return upper
}
func onesidedgallopingintersect2by2(
smallset []uint16,
largeset []uint16,
buffer []uint16,
) int {
if 0 == len(smallset) {
return 0
}
buffer = buffer[:cap(buffer)]
k1 := 0
k2 := 0
pos := 0
s1 := largeset[k1]
s2 := smallset[k2]
mainwhile:
for {
if s1 < s2 {
k1 = advanceUntil(largeset, k1, len(largeset), s2)
if k1 == len(largeset) {
break mainwhile
}
s1 = largeset[k1]
}
if s2 < s1 {
k2++
if k2 == len(smallset) {
break mainwhile
}
s2 = smallset[k2]
} else {
buffer[pos] = s2
pos++
k2++
if k2 == len(smallset) {
break
}
s2 = smallset[k2]
k1 = advanceUntil(largeset, k1, len(largeset), s2)
if k1 == len(largeset) {
break mainwhile
}
s1 = largeset[k1]
}
}
return pos
}
func onesidedgallopingintersect2by2Cardinality(
smallset []uint16,
largeset []uint16,
) int {
if 0 == len(smallset) {
return 0
}
k1 := 0
k2 := 0
pos := 0
s1 := largeset[k1]
s2 := smallset[k2]
mainwhile:
for {
if s1 < s2 {
k1 = advanceUntil(largeset, k1, len(largeset), s2)
if k1 == len(largeset) {
break mainwhile
}
s1 = largeset[k1]
}
if s2 < s1 {
k2++
if k2 == len(smallset) {
break mainwhile
}
s2 = smallset[k2]
} else {
pos++
k2++
if k2 == len(smallset) {
break
}
s2 = smallset[k2]
k1 = advanceUntil(largeset, k1, len(largeset), s2)
if k1 == len(largeset) {
break mainwhile
}
s1 = largeset[k1]
}
}
return pos
}
func binarySearch(array []uint16, ikey uint16) int {
low := 0
high := len(array) - 1
for low+16 <= high {
middleIndex := int(uint32(low+high) >> 1)
middleValue := array[middleIndex]
if middleValue < ikey {
low = middleIndex + 1
} else if middleValue > ikey {
high = middleIndex - 1
} else {
return middleIndex
}
}
for ; low <= high; low++ {
val := array[low]
if val >= ikey {
if val == ikey {
return low
}
break
}
}
return -(low + 1)
}
// searchResult provides information about a search request.
// The values will depend on the context of the search
type searchResult struct {
value uint16
index int
exactMatch bool
}
// notFound returns a bool depending the search context
// For cases `previousValue` and `nextValue` if target is present in the slice
// this function will return `true` otherwise `false`
// For `nextAbsentValue` and `previousAbsentValue` this will only return `False`
func (sr *searchResult) notFound() bool {
return !sr.exactMatch
}
// outOfBounds indicates whether the target was outside the lower and upper bounds of the container
func (sr *searchResult) outOfBounds() bool {
return sr.index <= -1
}
// binarySearchUntil is a helper function around binarySearchUntilWithBounds
// The user does not have to pass in the lower and upper bound
// The lower bound is taken to be `0` and the upper bound `len(array)-1`
func binarySearchUntil(array []uint16, target uint16) searchResult {
return binarySearchUntilWithBounds(array, target, 0, len(array)-1)
}
// binarySearchUntilWithBounds returns a `searchResult`.
// If an exact match is found the `searchResult{target, <index>, true}` will be returned, where `<index>` is
// `target`s index in `array`, and `result.notFound()` evaluates to `false`.
// If a match is not found, but `target` was in-bounds then the result.index will be the closest smaller value
// Example: [ 8,9,11,12] if the target was 10, then `searchResult{9, 1, false}` will be returned.
// If `target` was out of bounds `searchResult{0, -1, false}` will be returned.
func binarySearchUntilWithBounds(array []uint16, target uint16, lowIndex int, maxIndex int) searchResult {
highIndex := maxIndex
closestIndex := -1
if target < array[lowIndex] {
return searchResult{0, closestIndex, false}
}
if target > array[maxIndex] {
return searchResult{0, len(array), false}
}
for lowIndex <= highIndex {
middleIndex := (lowIndex + highIndex) / 2
middleValue := array[middleIndex]
if middleValue == target {
return searchResult{middleValue, middleIndex, true}
}
if target < middleValue {
if middleIndex > 0 && target > array[middleIndex-1] {
return searchResult{array[middleIndex-1], middleIndex - 1, false}
}
highIndex = middleIndex
} else {
if middleIndex < maxIndex && target < array[middleIndex+1] {
return searchResult{middleValue, middleIndex, false}
}
lowIndex = middleIndex + 1
}
}
return searchResult{array[closestIndex], closestIndex, false}
}
// binarySearchPast is a wrapper around binarySearchPastWithBounds
// The user does not have to pass in the lower and upper bound
// The lower bound is taken to be `0` and the upper bound `len(array)-1`
func binarySearchPast(array []uint16, target uint16) searchResult {
return binarySearchPastWithBounds(array, target, 0, len(array)-1)
}
// binarySearchPastWithBounds looks for the smallest value larger than or equal to `target`
// If `target` is out of bounds a `searchResult` indicating out of bounds is returned
// `target` does not have to exist in the slice.
//
// Example:
// Suppose the slice is [...10,13...] with `target` equal to 11
// The searchResult will have searchResult.value = 13
func binarySearchPastWithBounds(array []uint16, target uint16, lowIndex int, maxIndex int) searchResult {
highIndex := maxIndex
closestIndex := -1
if target < array[lowIndex] {
return searchResult{0, closestIndex, false}
}
if target > array[maxIndex] {
return searchResult{0, len(array), false}
}
for lowIndex <= highIndex {
middleIndex := (lowIndex + highIndex) / 2
middleValue := array[middleIndex]
if middleValue == target {
return searchResult{middleValue, middleIndex, true}
}
if target < middleValue {
if middleIndex > 0 && target > array[middleIndex-1] {
return searchResult{array[middleIndex], middleIndex, false}
}
highIndex = middleIndex
} else {
if middleIndex < maxIndex && target < array[middleIndex+1] {
return searchResult{array[middleIndex+1], middleIndex + 1, false}
}
lowIndex = middleIndex + 1
}
}
return searchResult{array[closestIndex], closestIndex, false}
}