Files
CHORUS/vendor/go.opentelemetry.io/otel/trace/provider.go
anthonyrawlins 8d9b62daf3 Phase 2: Implement Execution Environment Abstraction (v0.3.0)
This commit implements Phase 2 of the CHORUS Task Execution Engine development plan,
providing a comprehensive execution environment abstraction layer with Docker
container sandboxing support.

## New Features

### Core Sandbox Interface
- Comprehensive ExecutionSandbox interface with isolated task execution
- Support for command execution, file I/O, environment management
- Resource usage monitoring and sandbox lifecycle management
- Standardized error handling with SandboxError types and categories

### Docker Container Sandbox Implementation
- Full Docker API integration with secure container creation
- Transparent repository mounting with configurable read/write access
- Advanced security policies with capability dropping and privilege controls
- Comprehensive resource limits (CPU, memory, disk, processes, file handles)
- Support for tmpfs mounts, masked paths, and read-only bind mounts
- Container lifecycle management with proper cleanup and health monitoring

### Security & Resource Management
- Configurable security policies with SELinux, AppArmor, and Seccomp support
- Fine-grained capability management with secure defaults
- Network isolation options with configurable DNS and proxy settings
- Resource monitoring with real-time CPU, memory, and network usage tracking
- Comprehensive ulimits configuration for process and file handle limits

### Repository Integration
- Seamless repository mounting from local paths to container workspaces
- Git configuration support with user credentials and global settings
- File inclusion/exclusion patterns for selective repository access
- Configurable permissions and ownership for mounted repositories

### Testing Infrastructure
- Comprehensive test suite with 60+ test cases covering all functionality
- Docker integration tests with Alpine Linux containers (skipped in short mode)
- Mock sandbox implementation for unit testing without Docker dependencies
- Security policy validation tests with read-only filesystem enforcement
- Resource usage monitoring and cleanup verification tests

## Technical Details

### Dependencies Added
- github.com/docker/docker v28.4.0+incompatible - Docker API client
- github.com/docker/go-connections v0.6.0 - Docker connection utilities
- github.com/docker/go-units v0.5.0 - Docker units and formatting
- Associated Docker API dependencies for complete container management

### Architecture
- Interface-driven design enabling multiple sandbox implementations
- Comprehensive configuration structures for all sandbox aspects
- Resource usage tracking with detailed metrics collection
- Error handling with retryable error classification
- Proper cleanup and resource management throughout sandbox lifecycle

### Compatibility
- Maintains backward compatibility with existing CHORUS architecture
- Designed for future integration with Phase 3 Core Task Execution Engine
- Extensible design supporting additional sandbox implementations (VM, process)

This Phase 2 implementation provides the foundation for secure, isolated task
execution that will be integrated with the AI model providers from Phase 1
in the upcoming Phase 3 development.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-09-25 14:28:08 +10:00

60 lines
3.0 KiB
Go

// Copyright The OpenTelemetry Authors
// SPDX-License-Identifier: Apache-2.0
package trace // import "go.opentelemetry.io/otel/trace"
import "go.opentelemetry.io/otel/trace/embedded"
// TracerProvider provides Tracers that are used by instrumentation code to
// trace computational workflows.
//
// A TracerProvider is the collection destination of all Spans from Tracers it
// provides, it represents a unique telemetry collection pipeline. How that
// pipeline is defined, meaning how those Spans are collected, processed, and
// where they are exported, depends on its implementation. Instrumentation
// authors do not need to define this implementation, rather just use the
// provided Tracers to instrument code.
//
// Commonly, instrumentation code will accept a TracerProvider implementation
// at runtime from its users or it can simply use the globally registered one
// (see https://pkg.go.dev/go.opentelemetry.io/otel#GetTracerProvider).
//
// Warning: Methods may be added to this interface in minor releases. See
// package documentation on API implementation for information on how to set
// default behavior for unimplemented methods.
type TracerProvider interface {
// Users of the interface can ignore this. This embedded type is only used
// by implementations of this interface. See the "API Implementations"
// section of the package documentation for more information.
embedded.TracerProvider
// Tracer returns a unique Tracer scoped to be used by instrumentation code
// to trace computational workflows. The scope and identity of that
// instrumentation code is uniquely defined by the name and options passed.
//
// The passed name needs to uniquely identify instrumentation code.
// Therefore, it is recommended that name is the Go package name of the
// library providing instrumentation (note: not the code being
// instrumented). Instrumentation libraries can have multiple versions,
// therefore, the WithInstrumentationVersion option should be used to
// distinguish these different codebases. Additionally, instrumentation
// libraries may sometimes use traces to communicate different domains of
// workflow data (i.e. using spans to communicate workflow events only). If
// this is the case, the WithScopeAttributes option should be used to
// uniquely identify Tracers that handle the different domains of workflow
// data.
//
// If the same name and options are passed multiple times, the same Tracer
// will be returned (it is up to the implementation if this will be the
// same underlying instance of that Tracer or not). It is not necessary to
// call this multiple times with the same name and options to get an
// up-to-date Tracer. All implementations will ensure any TracerProvider
// configuration changes are propagated to all provided Tracers.
//
// If name is empty, then an implementation defined default name will be
// used instead.
//
// This method is safe to call concurrently.
Tracer(name string, options ...TracerOption) Tracer
}