Major integrations and fixes: - Added BACKBEAT SDK integration for P2P operation timing - Implemented beat-aware status tracking for distributed operations - Added Docker secrets support for secure license management - Resolved KACHING license validation via HTTPS/TLS - Updated docker-compose configuration for clean stack deployment - Disabled rollback policies to prevent deployment failures - Added license credential storage (CHORUS-DEV-MULTI-001) Technical improvements: - BACKBEAT P2P operation tracking with phase management - Enhanced configuration system with file-based secrets - Improved error handling for license validation - Clean separation of KACHING and CHORUS deployment stacks 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
225 lines
7.4 KiB
Go
225 lines
7.4 KiB
Go
// Copyright 2023 Google Inc. All rights reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package s2
|
|
|
|
// Shape interface enforcement
|
|
var _ Shape = (*LaxPolygon)(nil)
|
|
|
|
// LaxPolygon represents a region defined by a collection of zero or more
|
|
// closed loops. The interior is the region to the left of all loops. This
|
|
// is similar to Polygon except that this class supports polygons
|
|
// with degeneracies. Degeneracies are of two types: degenerate edges (from a
|
|
// vertex to itself) and sibling edge pairs (consisting of two oppositely
|
|
// oriented edges). Degeneracies can represent either "shells" or "holes"
|
|
// depending on the loop they are contained by. For example, a degenerate
|
|
// edge or sibling pair contained by a "shell" would be interpreted as a
|
|
// degenerate hole. Such edges form part of the boundary of the polygon.
|
|
//
|
|
// Loops with fewer than three vertices are interpreted as follows:
|
|
// - A loop with two vertices defines two edges (in opposite directions).
|
|
// - A loop with one vertex defines a single degenerate edge.
|
|
// - A loop with no vertices is interpreted as the "full loop" containing
|
|
//
|
|
// all points on the sphere. If this loop is present, then all other loops
|
|
// must form degeneracies (i.e., degenerate edges or sibling pairs). For
|
|
// example, two loops {} and {X} would be interpreted as the full polygon
|
|
// with a degenerate single-point hole at X.
|
|
//
|
|
// LaxPolygon does not have any error checking, and it is perfectly fine to
|
|
// create LaxPolygon objects that do not meet the requirements below (e.g., in
|
|
// order to analyze or fix those problems). However, LaxPolygons must satisfy
|
|
// some additional conditions in order to perform certain operations:
|
|
//
|
|
// - In order to be valid for point containment tests, the polygon must
|
|
//
|
|
// satisfy the "interior is on the left" rule. This means that there must
|
|
// not be any crossing edges, and if there are duplicate edges then all but
|
|
// at most one of them must belong to a sibling pair (i.e., the number of
|
|
// edges in opposite directions must differ by at most one).
|
|
//
|
|
// - To be valid for polygon operations (BoundaryOperation), degenerate
|
|
//
|
|
// edges and sibling pairs cannot coincide with any other edges. For
|
|
// example, the following situations are not allowed:
|
|
//
|
|
// {AA, AA} // degenerate edge coincides with another edge
|
|
// {AA, AB} // degenerate edge coincides with another edge
|
|
// {AB, BA, AB} // sibling pair coincides with another edge
|
|
//
|
|
// Note that LaxPolygon is much faster to initialize and is more compact than
|
|
// Polygon, but unlike Polygon it does not have any built-in operations.
|
|
// Instead you should use ShapeIndex based operations such as BoundaryOperation,
|
|
// ClosestEdgeQuery, etc.
|
|
type LaxPolygon struct {
|
|
numLoops int
|
|
vertices []Point
|
|
|
|
numVerts int
|
|
cumulativeVertices []int
|
|
|
|
// TODO(roberts): C++ adds a prevLoop int field that claims to boost
|
|
// chain position lookups by 1.5-4.5x. Benchmark to see if this
|
|
// is useful here.
|
|
}
|
|
|
|
// LaxPolygonFromPolygon creates a LaxPolygon from the given Polygon.
|
|
func LaxPolygonFromPolygon(p *Polygon) *LaxPolygon {
|
|
spans := make([][]Point, len(p.loops))
|
|
for i, loop := range p.loops {
|
|
if loop.IsFull() {
|
|
spans[i] = []Point{} // Empty span.
|
|
} else {
|
|
spans[i] = make([]Point, len(loop.vertices))
|
|
copy(spans[i], loop.vertices)
|
|
}
|
|
}
|
|
return LaxPolygonFromPoints(spans)
|
|
}
|
|
|
|
// LaxPolygonFromPoints creates a LaxPolygon from the given points.
|
|
func LaxPolygonFromPoints(loops [][]Point) *LaxPolygon {
|
|
p := &LaxPolygon{}
|
|
p.numLoops = len(loops)
|
|
switch p.numLoops {
|
|
case 0:
|
|
p.numVerts = 0
|
|
p.vertices = nil
|
|
case 1:
|
|
p.numVerts = len(loops[0])
|
|
p.vertices = make([]Point, p.numVerts)
|
|
copy(p.vertices, loops[0])
|
|
default:
|
|
p.cumulativeVertices = make([]int, p.numLoops+1)
|
|
numVertices := 0
|
|
for i, loop := range loops {
|
|
p.cumulativeVertices[i] = numVertices
|
|
numVertices += len(loop)
|
|
}
|
|
|
|
p.cumulativeVertices[p.numLoops] = numVertices
|
|
for _, points := range loops {
|
|
p.vertices = append(p.vertices, points...)
|
|
}
|
|
}
|
|
return p
|
|
}
|
|
|
|
// numVertices reports the total number of vertices in all loops.
|
|
func (p *LaxPolygon) numVertices() int {
|
|
if p.numLoops <= 1 {
|
|
return p.numVerts
|
|
}
|
|
return p.cumulativeVertices[p.numLoops]
|
|
}
|
|
|
|
// numLoopVertices reports the total number of vertices in the given loop.
|
|
func (p *LaxPolygon) numLoopVertices(i int) int {
|
|
if p.numLoops == 1 {
|
|
return p.numVerts
|
|
}
|
|
return p.cumulativeVertices[i+1] - p.cumulativeVertices[i]
|
|
}
|
|
|
|
// loopVertex returns the vertex from loop i at index j.
|
|
//
|
|
// This requires:
|
|
//
|
|
// 0 <= i < len(loops)
|
|
// 0 <= j < len(loop[i].vertices)
|
|
func (p *LaxPolygon) loopVertex(i, j int) Point {
|
|
if p.numLoops == 1 {
|
|
return p.vertices[j]
|
|
}
|
|
|
|
return p.vertices[p.cumulativeVertices[i]+j]
|
|
}
|
|
|
|
func (p *LaxPolygon) NumEdges() int { return p.numVertices() }
|
|
|
|
func (p *LaxPolygon) Edge(e int) Edge {
|
|
e1 := e + 1
|
|
if p.numLoops == 1 {
|
|
// wrap the end vertex if this is the last edge.
|
|
if e1 == p.numVerts {
|
|
e1 = 0
|
|
}
|
|
return Edge{p.vertices[e], p.vertices[e1]}
|
|
}
|
|
|
|
// TODO(roberts): If this turns out to be performance critical in tests
|
|
// incorporate the maxLinearSearchLoops like in C++.
|
|
|
|
// Check if e1 would cross a loop boundary in the set of all vertices.
|
|
nextLoop := 0
|
|
for p.cumulativeVertices[nextLoop] <= e {
|
|
nextLoop++
|
|
}
|
|
|
|
// If so, wrap around to the first vertex of the loop.
|
|
if e1 == p.cumulativeVertices[nextLoop] {
|
|
e1 = p.cumulativeVertices[nextLoop-1]
|
|
}
|
|
|
|
return Edge{p.vertices[e], p.vertices[e1]}
|
|
}
|
|
|
|
func (p *LaxPolygon) Dimension() int { return 2 }
|
|
func (p *LaxPolygon) typeTag() typeTag { return typeTagLaxPolygon }
|
|
func (p *LaxPolygon) privateInterface() {}
|
|
func (p *LaxPolygon) IsEmpty() bool { return defaultShapeIsEmpty(p) }
|
|
func (p *LaxPolygon) IsFull() bool { return defaultShapeIsFull(p) }
|
|
func (p *LaxPolygon) ReferencePoint() ReferencePoint { return referencePointForShape(p) }
|
|
func (p *LaxPolygon) NumChains() int { return p.numLoops }
|
|
func (p *LaxPolygon) Chain(i int) Chain {
|
|
if p.numLoops == 1 {
|
|
return Chain{0, p.numVertices()}
|
|
}
|
|
start := p.cumulativeVertices[i]
|
|
return Chain{start, p.cumulativeVertices[i+1] - start}
|
|
}
|
|
|
|
func (p *LaxPolygon) ChainEdge(i, j int) Edge {
|
|
n := p.numLoopVertices(i)
|
|
k := 0
|
|
if j+1 != n {
|
|
k = j + 1
|
|
}
|
|
if p.numLoops == 1 {
|
|
return Edge{p.vertices[j], p.vertices[k]}
|
|
}
|
|
base := p.cumulativeVertices[i]
|
|
return Edge{p.vertices[base+j], p.vertices[base+k]}
|
|
}
|
|
|
|
func (p *LaxPolygon) ChainPosition(e int) ChainPosition {
|
|
if p.numLoops == 1 {
|
|
return ChainPosition{0, e}
|
|
}
|
|
|
|
// TODO(roberts): If this turns out to be performance critical in tests
|
|
// incorporate the maxLinearSearchLoops like in C++.
|
|
|
|
// Find the index of the first vertex of the loop following this one.
|
|
nextLoop := 1
|
|
for p.cumulativeVertices[nextLoop] <= e {
|
|
nextLoop++
|
|
}
|
|
|
|
return ChainPosition{p.cumulativeVertices[nextLoop] - p.cumulativeVertices[1], e - p.cumulativeVertices[nextLoop-1]}
|
|
}
|
|
|
|
// TODO(roberts): Remaining to port from C++:
|
|
// EncodedLaxPolygon
|