Major integrations and fixes: - Added BACKBEAT SDK integration for P2P operation timing - Implemented beat-aware status tracking for distributed operations - Added Docker secrets support for secure license management - Resolved KACHING license validation via HTTPS/TLS - Updated docker-compose configuration for clean stack deployment - Disabled rollback policies to prevent deployment failures - Added license credential storage (CHORUS-DEV-MULTI-001) Technical improvements: - BACKBEAT P2P operation tracking with phase management - Enhanced configuration system with file-based secrets - Improved error handling for license validation - Clean separation of KACHING and CHORUS deployment stacks 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
365 lines
14 KiB
Go
365 lines
14 KiB
Go
// Copyright 2014 Google Inc. All rights reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package s2
|
|
|
|
import (
|
|
"fmt"
|
|
"io"
|
|
"math"
|
|
"sort"
|
|
|
|
"github.com/blevesearch/geo/r3"
|
|
"github.com/blevesearch/geo/s1"
|
|
)
|
|
|
|
// Point represents a point on the unit sphere as a normalized 3D vector.
|
|
// Fields should be treated as read-only. Use one of the factory methods for creation.
|
|
type Point struct {
|
|
r3.Vector
|
|
}
|
|
|
|
// sortPoints sorts the slice of Points in place.
|
|
func sortPoints(e []Point) {
|
|
sort.Sort(points(e))
|
|
}
|
|
|
|
// points implements the Sort interface for slices of Point.
|
|
type points []Point
|
|
|
|
func (p points) Len() int { return len(p) }
|
|
func (p points) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
|
|
func (p points) Less(i, j int) bool { return p[i].Cmp(p[j].Vector) == -1 }
|
|
|
|
// PointFromCoords creates a new normalized point from coordinates.
|
|
//
|
|
// This always returns a valid point. If the given coordinates can not be normalized
|
|
// the origin point will be returned.
|
|
//
|
|
// This behavior is different from the C++ construction of a S2Point from coordinates
|
|
// (i.e. S2Point(x, y, z)) in that in C++ they do not Normalize.
|
|
func PointFromCoords(x, y, z float64) Point {
|
|
if x == 0 && y == 0 && z == 0 {
|
|
return OriginPoint()
|
|
}
|
|
return Point{r3.Vector{X: x, Y: y, Z: z}.Normalize()}
|
|
}
|
|
|
|
// OriginPoint returns a unique "origin" on the sphere for operations that need a fixed
|
|
// reference point. In particular, this is the "point at infinity" used for
|
|
// point-in-polygon testing (by counting the number of edge crossings).
|
|
//
|
|
// It should *not* be a point that is commonly used in edge tests in order
|
|
// to avoid triggering code to handle degenerate cases (this rules out the
|
|
// north and south poles). It should also not be on the boundary of any
|
|
// low-level S2Cell for the same reason.
|
|
func OriginPoint() Point {
|
|
return Point{r3.Vector{X: -0.0099994664350250197, Y: 0.0025924542609324121, Z: 0.99994664350250195}}
|
|
}
|
|
|
|
// PointCross returns a Point that is orthogonal to both p and op. This is similar to
|
|
// p.Cross(op) (the true cross product) except that it does a better job of
|
|
// ensuring orthogonality when the Point is nearly parallel to op, it returns
|
|
// a non-zero result even when p == op or p == -op and the result is a Point.
|
|
//
|
|
// It satisfies the following properties (f == PointCross):
|
|
//
|
|
// (1) f(p, op) != 0 for all p, op
|
|
// (2) f(op,p) == -f(p,op) unless p == op or p == -op
|
|
// (3) f(-p,op) == -f(p,op) unless p == op or p == -op
|
|
// (4) f(p,-op) == -f(p,op) unless p == op or p == -op
|
|
func (p Point) PointCross(op Point) Point {
|
|
// NOTE(dnadasi): In the C++ API the equivalent method here was known as "RobustCrossProd",
|
|
// but PointCross more accurately describes how this method is used.
|
|
x := p.Add(op.Vector).Cross(op.Sub(p.Vector))
|
|
|
|
// Compare exactly to the 0 vector.
|
|
if x == (r3.Vector{}) {
|
|
// The only result that makes sense mathematically is to return zero, but
|
|
// we find it more convenient to return an arbitrary orthogonal vector.
|
|
return Point{p.Ortho()}
|
|
}
|
|
|
|
return Point{x}
|
|
}
|
|
|
|
// OrderedCCW returns true if the edges OA, OB, and OC are encountered in that
|
|
// order while sweeping CCW around the point O.
|
|
//
|
|
// You can think of this as testing whether A <= B <= C with respect to the
|
|
// CCW ordering around O that starts at A, or equivalently, whether B is
|
|
// contained in the range of angles (inclusive) that starts at A and extends
|
|
// CCW to C. Properties:
|
|
//
|
|
// (1) If OrderedCCW(a,b,c,o) && OrderedCCW(b,a,c,o), then a == b
|
|
// (2) If OrderedCCW(a,b,c,o) && OrderedCCW(a,c,b,o), then b == c
|
|
// (3) If OrderedCCW(a,b,c,o) && OrderedCCW(c,b,a,o), then a == b == c
|
|
// (4) If a == b or b == c, then OrderedCCW(a,b,c,o) is true
|
|
// (5) Otherwise if a == c, then OrderedCCW(a,b,c,o) is false
|
|
func OrderedCCW(a, b, c, o Point) bool {
|
|
sum := 0
|
|
if RobustSign(b, o, a) != Clockwise {
|
|
sum++
|
|
}
|
|
if RobustSign(c, o, b) != Clockwise {
|
|
sum++
|
|
}
|
|
if RobustSign(a, o, c) == CounterClockwise {
|
|
sum++
|
|
}
|
|
return sum >= 2
|
|
}
|
|
|
|
// Distance returns the angle between two points.
|
|
func (p Point) Distance(b Point) s1.Angle {
|
|
return p.Angle(b.Vector)
|
|
}
|
|
|
|
// ApproxEqual reports whether the two points are similar enough to be equal.
|
|
func (p Point) ApproxEqual(other Point) bool {
|
|
return p.approxEqual(other, s1.Angle(1e-15))
|
|
}
|
|
|
|
// approxEqual reports whether the two points are within the given epsilon.
|
|
func (p Point) approxEqual(other Point, eps s1.Angle) bool {
|
|
return p.Angle(other.Vector) <= eps
|
|
}
|
|
|
|
// ChordAngleBetweenPoints constructs a ChordAngle corresponding to the distance
|
|
// between the two given points. The points must be unit length.
|
|
func ChordAngleBetweenPoints(x, y Point) s1.ChordAngle {
|
|
return s1.ChordAngle(math.Min(4.0, x.Sub(y.Vector).Norm2()))
|
|
}
|
|
|
|
// regularPoints generates a slice of points shaped as a regular polygon with
|
|
// the numVertices vertices, all located on a circle of the specified angular radius
|
|
// around the center. The radius is the actual distance from center to each vertex.
|
|
func regularPoints(center Point, radius s1.Angle, numVertices int) []Point {
|
|
return regularPointsForFrame(getFrame(center), radius, numVertices)
|
|
}
|
|
|
|
// regularPointsForFrame generates a slice of points shaped as a regular polygon
|
|
// with numVertices vertices, all on a circle of the specified angular radius around
|
|
// the center. The radius is the actual distance from the center to each vertex.
|
|
func regularPointsForFrame(frame matrix3x3, radius s1.Angle, numVertices int) []Point {
|
|
// We construct the loop in the given frame coordinates, with the center at
|
|
// (0, 0, 1). For a loop of radius r, the loop vertices have the form
|
|
// (x, y, z) where x^2 + y^2 = sin(r) and z = cos(r). The distance on the
|
|
// sphere (arc length) from each vertex to the center is acos(cos(r)) = r.
|
|
z := math.Cos(radius.Radians())
|
|
r := math.Sin(radius.Radians())
|
|
radianStep := 2 * math.Pi / float64(numVertices)
|
|
var vertices []Point
|
|
|
|
for i := 0; i < numVertices; i++ {
|
|
angle := float64(i) * radianStep
|
|
p := Point{r3.Vector{X: r * math.Cos(angle), Y: r * math.Sin(angle), Z: z}}
|
|
vertices = append(vertices, Point{fromFrame(frame, p).Normalize()})
|
|
}
|
|
|
|
return vertices
|
|
}
|
|
|
|
// CapBound returns a bounding cap for this point.
|
|
func (p Point) CapBound() Cap {
|
|
return CapFromPoint(p)
|
|
}
|
|
|
|
// RectBound returns a bounding latitude-longitude rectangle from this point.
|
|
func (p Point) RectBound() Rect {
|
|
return RectFromLatLng(LatLngFromPoint(p))
|
|
}
|
|
|
|
// ContainsCell returns false as Points do not contain any other S2 types.
|
|
func (p Point) ContainsCell(c Cell) bool { return false }
|
|
|
|
// IntersectsCell reports whether this Point intersects the given cell.
|
|
func (p Point) IntersectsCell(c Cell) bool {
|
|
return c.ContainsPoint(p)
|
|
}
|
|
|
|
// ContainsPoint reports if this Point contains the other Point.
|
|
// (This method is named to satisfy the Region interface.)
|
|
func (p Point) ContainsPoint(other Point) bool {
|
|
return p.Contains(other)
|
|
}
|
|
|
|
// CellUnionBound computes a covering of the Point.
|
|
func (p Point) CellUnionBound() []CellID {
|
|
return p.CapBound().CellUnionBound()
|
|
}
|
|
|
|
// Contains reports if this Point contains the other Point.
|
|
// (This method matches all other s2 types where the reflexive Contains
|
|
// method does not contain the type's name.)
|
|
func (p Point) Contains(other Point) bool { return p == other }
|
|
|
|
// Encode encodes the Point.
|
|
func (p Point) Encode(w io.Writer) error {
|
|
e := &encoder{w: w}
|
|
p.encode(e)
|
|
return e.err
|
|
}
|
|
|
|
func (p Point) encode(e *encoder) {
|
|
e.writeInt8(encodingVersion)
|
|
e.writeFloat64(p.X)
|
|
e.writeFloat64(p.Y)
|
|
e.writeFloat64(p.Z)
|
|
}
|
|
|
|
// Decode decodes the Point.
|
|
func (p *Point) Decode(r io.Reader) error {
|
|
d := &decoder{r: asByteReader(r)}
|
|
p.decode(d)
|
|
return d.err
|
|
}
|
|
|
|
func (p *Point) decode(d *decoder) {
|
|
version := d.readInt8()
|
|
if d.err != nil {
|
|
return
|
|
}
|
|
if version != encodingVersion {
|
|
d.err = fmt.Errorf("only version %d is supported", encodingVersion)
|
|
return
|
|
}
|
|
p.X = d.readFloat64()
|
|
p.Y = d.readFloat64()
|
|
p.Z = d.readFloat64()
|
|
}
|
|
|
|
// Ortho returns a unit-length vector that is orthogonal to "a". Satisfies
|
|
// Ortho(-a) = -Ortho(a) for all a.
|
|
//
|
|
// Note that Vector3 also defines an "Ortho" method, but this one is
|
|
// preferred for use in S2 code because it explicitly tries to avoid result
|
|
// coordinates that are zero. (This is a performance optimization that
|
|
// reduces the amount of time spent in functions that handle degeneracies.)
|
|
func Ortho(a Point) Point {
|
|
temp := r3.Vector{X: 0.012, Y: 0.0053, Z: 0.00457}
|
|
switch a.LargestComponent() {
|
|
case r3.XAxis:
|
|
temp.Z = 1
|
|
case r3.YAxis:
|
|
temp.X = 1
|
|
case r3.ZAxis:
|
|
temp.Y = 1
|
|
}
|
|
return Point{a.Cross(temp).Normalize()}
|
|
}
|
|
|
|
// referenceDir returns a unit-length vector to use as the reference direction for
|
|
// deciding whether a polygon with semi-open boundaries contains the given vertex "a"
|
|
// (see ContainsVertexQuery). The result is unit length and is guaranteed
|
|
// to be different from the given point "a".
|
|
func (p Point) referenceDir() Point {
|
|
return Ortho(p)
|
|
}
|
|
|
|
// Rotate the given point about the given axis by the given angle. p and
|
|
// axis must be unit length; angle has no restrictions (e.g., it can be
|
|
// positive, negative, greater than 360 degrees, etc).
|
|
func Rotate(p, axis Point, angle s1.Angle) Point {
|
|
// Let M be the plane through P that is perpendicular to axis, and let
|
|
// center be the point where M intersects axis. We construct a
|
|
// right-handed orthogonal frame (dx, dy, center) such that dx is the
|
|
// vector from center to P, and dy has the same length as dx. The
|
|
// result can then be expressed as (cos(angle)*dx + sin(angle)*dy + center).
|
|
center := axis.Mul(p.Dot(axis.Vector))
|
|
dx := p.Sub(center)
|
|
dy := axis.Cross(p.Vector)
|
|
// Mathematically the result is unit length, but normalization is necessary
|
|
// to ensure that numerical errors don't accumulate.
|
|
return Point{dx.Mul(math.Cos(angle.Radians())).Add(dy.Mul(math.Sin(angle.Radians()))).Add(center).Normalize()}
|
|
}
|
|
|
|
// stableAngle reports the angle between two vectors with better precision when
|
|
// the two are nearly parallel.
|
|
//
|
|
// The .Angle() member function uses atan(|AxB|, A.B) to compute the angle
|
|
// between A and B, which can lose about half its precision when A and B are
|
|
// nearly (anti-)parallel.
|
|
//
|
|
// Kahan provides a much more stable form:
|
|
//
|
|
// 2*atan2(| A*|B| - |A|*B |, | A*|B| + |A|*B |)
|
|
//
|
|
// Since Points are unit magnitude by construction we can simplify further:
|
|
//
|
|
// 2*atan2(|A-B|,|A+B|)
|
|
//
|
|
// This likely can't replace Vectors Angle since it requires four magnitude
|
|
// calculations, each of which takes 5 operations + a square root, plus 6
|
|
// operations to find the sum and difference of the vectors, for a total of 26 +
|
|
// 4 square roots. Vectors Angle requires 19 + 1 square root.
|
|
//
|
|
// Since we always have unit vectors, we can elide two of those magnitude
|
|
// calculations for a total of 16 + 2 square roots which is competitive with
|
|
// Vectors Angle performance.
|
|
//
|
|
// Reference: Kahan, W. (2006, Jan 11). "How Futile are Mindless Assessments of
|
|
// Roundoff in Floating-Point Computation?" (p. 47).
|
|
// https://people.eecs.berkeley.edu/~wkahan/Mindless.pdf
|
|
//
|
|
// The 2 points must be normalized.
|
|
func (p Point) stableAngle(o Point) s1.Angle {
|
|
return s1.Angle(2 * math.Atan2(p.Sub(o.Vector).Norm(), p.Add(o.Vector).Norm()))
|
|
}
|
|
|
|
// IsNormalizable reports if the given Point's magnitude is large enough such that the
|
|
// angle to another vector of the same magnitude can be measured using Angle()
|
|
// without loss of precision due to floating-point underflow. (This requirement
|
|
// is also sufficient to ensure that Normalize() can be called without risk of
|
|
// precision loss.)
|
|
func (p Point) IsNormalizable() bool {
|
|
// Let ab = RobustCrossProd(a, b) and cd = RobustCrossProd(cd). In order for
|
|
// ab.Angle(cd) to not lose precision, the squared magnitudes of ab and cd
|
|
// must each be at least 2**-484. This ensures that the sum of the squared
|
|
// magnitudes of ab.CrossProd(cd) and ab.DotProd(cd) is at least 2**-968,
|
|
// which ensures that any denormalized terms in these two calculations do
|
|
// not affect the accuracy of the result (since all denormalized numbers are
|
|
// smaller than 2**-1022, which is less than dblError * 2**-968).
|
|
//
|
|
// The fastest way to ensure this is to test whether the largest component of
|
|
// the result has a magnitude of at least 2**-242.
|
|
return maxFloat64(math.Abs(p.X), math.Abs(p.Y), math.Abs(p.Z)) >= math.Ldexp(1, -242)
|
|
}
|
|
|
|
// EnsureNormalizable scales a vector as necessary to ensure that the result can
|
|
// be normalized without loss of precision due to floating-point underflow.
|
|
//
|
|
// This requires p != (0, 0, 0)
|
|
func (p Point) EnsureNormalizable() Point {
|
|
// TODO(rsned): Zero vector isn't normalizable, and we don't have DCHECK in Go.
|
|
// What is the appropriate return value in this case? Is it {NaN, NaN, NaN}?
|
|
if p == (Point{r3.Vector{X: 0, Y: 0, Z: 0}}) {
|
|
return p
|
|
}
|
|
if !p.IsNormalizable() {
|
|
// We can't just scale by a fixed factor because the smallest representable
|
|
// double is 2**-1074, so if we multiplied by 2**(1074 - 242) then the
|
|
// result might be so large that we couldn't square it without overflow.
|
|
//
|
|
// Note that we must scale by a power of two to avoid rounding errors.
|
|
// The code below scales "p" such that the largest component is
|
|
// in the range [1, 2).
|
|
pMax := maxFloat64(math.Abs(p.X), math.Abs(p.Y), math.Abs(p.Z))
|
|
|
|
// This avoids signed overflow for any value of Ilogb().
|
|
return Point{p.Mul(math.Ldexp(2, -1-math.Ilogb(pMax)))}
|
|
}
|
|
return p
|
|
}
|