Files
CHORUS/vendor/github.com/blevesearch/bleve_index_api/vector.go
anthonyrawlins 9bdcbe0447 Integrate BACKBEAT SDK and resolve KACHING license validation
Major integrations and fixes:
- Added BACKBEAT SDK integration for P2P operation timing
- Implemented beat-aware status tracking for distributed operations
- Added Docker secrets support for secure license management
- Resolved KACHING license validation via HTTPS/TLS
- Updated docker-compose configuration for clean stack deployment
- Disabled rollback policies to prevent deployment failures
- Added license credential storage (CHORUS-DEV-MULTI-001)

Technical improvements:
- BACKBEAT P2P operation tracking with phase management
- Enhanced configuration system with file-based secrets
- Improved error handling for license validation
- Clean separation of KACHING and CHORUS deployment stacks

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-09-06 07:56:26 +10:00

71 lines
2.0 KiB
Go

// Copyright (c) 2023 Couchbase, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//go:build vectors
// +build vectors
package index
type VectorField interface {
Vector() []float32
// Dimensionality of the vector
Dims() int
// Similarity metric to be used for scoring the vectors
Similarity() string
// nlist/nprobe config (recall/latency) the index is optimized for
IndexOptimizedFor() string
}
// -----------------------------------------------------------------------------
const (
EuclideanDistance = "l2_norm"
InnerProduct = "dot_product"
CosineSimilarity = "cosine"
)
const DefaultVectorSimilarityMetric = EuclideanDistance
// Supported similarity metrics for vector fields
var SupportedVectorSimilarityMetrics = map[string]struct{}{
EuclideanDistance: {},
InnerProduct: {},
CosineSimilarity: {},
}
// -----------------------------------------------------------------------------
const (
IndexOptimizedForRecall = "recall"
IndexOptimizedForLatency = "latency"
IndexOptimizedForMemoryEfficient = "memory-efficient"
)
const DefaultIndexOptimization = IndexOptimizedForRecall
var SupportedVectorIndexOptimizations = map[string]int{
IndexOptimizedForRecall: 0,
IndexOptimizedForLatency: 1,
IndexOptimizedForMemoryEfficient: 2,
}
// Reverse maps vector index optimizations': int -> string
var VectorIndexOptimizationsReverseLookup = map[int]string{
0: IndexOptimizedForRecall,
1: IndexOptimizedForLatency,
2: IndexOptimizedForMemoryEfficient,
}