 9bdcbe0447
			
		
	
	9bdcbe0447
	
	
	
		
			
			Major integrations and fixes: - Added BACKBEAT SDK integration for P2P operation timing - Implemented beat-aware status tracking for distributed operations - Added Docker secrets support for secure license management - Resolved KACHING license validation via HTTPS/TLS - Updated docker-compose configuration for clean stack deployment - Disabled rollback policies to prevent deployment failures - Added license credential storage (CHORUS-DEV-MULTI-001) Technical improvements: - BACKBEAT P2P operation tracking with phase management - Enhanced configuration system with file-based secrets - Improved error handling for license validation - Clean separation of KACHING and CHORUS deployment stacks 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
		
			
				
	
	
		
			1682 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			1682 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright (c) 2013-2014 The btcsuite developers
 | |
| // Copyright (c) 2015-2022 The Decred developers
 | |
| // Copyright (c) 2013-2022 Dave Collins
 | |
| // Use of this source code is governed by an ISC
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package secp256k1
 | |
| 
 | |
| // References:
 | |
| //   [HAC]: Handbook of Applied Cryptography Menezes, van Oorschot, Vanstone.
 | |
| //     http://cacr.uwaterloo.ca/hac/
 | |
| 
 | |
| // All elliptic curve operations for secp256k1 are done in a finite field
 | |
| // characterized by a 256-bit prime.  Given this precision is larger than the
 | |
| // biggest available native type, obviously some form of bignum math is needed.
 | |
| // This package implements specialized fixed-precision field arithmetic rather
 | |
| // than relying on an arbitrary-precision arithmetic package such as math/big
 | |
| // for dealing with the field math since the size is known.  As a result, rather
 | |
| // large performance gains are achieved by taking advantage of many
 | |
| // optimizations not available to arbitrary-precision arithmetic and generic
 | |
| // modular arithmetic algorithms.
 | |
| //
 | |
| // There are various ways to internally represent each finite field element.
 | |
| // For example, the most obvious representation would be to use an array of 4
 | |
| // uint64s (64 bits * 4 = 256 bits).  However, that representation suffers from
 | |
| // a couple of issues.  First, there is no native Go type large enough to handle
 | |
| // the intermediate results while adding or multiplying two 64-bit numbers, and
 | |
| // second there is no space left for overflows when performing the intermediate
 | |
| // arithmetic between each array element which would lead to expensive carry
 | |
| // propagation.
 | |
| //
 | |
| // Given the above, this implementation represents the field elements as
 | |
| // 10 uint32s with each word (array entry) treated as base 2^26.  This was
 | |
| // chosen for the following reasons:
 | |
| // 1) Most systems at the current time are 64-bit (or at least have 64-bit
 | |
| //    registers available for specialized purposes such as MMX) so the
 | |
| //    intermediate results can typically be done using a native register (and
 | |
| //    using uint64s to avoid the need for additional half-word arithmetic)
 | |
| // 2) In order to allow addition of the internal words without having to
 | |
| //    propagate the carry, the max normalized value for each register must
 | |
| //    be less than the number of bits available in the register
 | |
| // 3) Since we're dealing with 32-bit values, 64-bits of overflow is a
 | |
| //    reasonable choice for #2
 | |
| // 4) Given the need for 256-bits of precision and the properties stated in #1,
 | |
| //    #2, and #3, the representation which best accommodates this is 10 uint32s
 | |
| //    with base 2^26 (26 bits * 10 = 260 bits, so the final word only needs 22
 | |
| //    bits) which leaves the desired 64 bits (32 * 10 = 320, 320 - 256 = 64) for
 | |
| //    overflow
 | |
| //
 | |
| // Since it is so important that the field arithmetic is extremely fast for high
 | |
| // performance crypto, this type does not perform any validation where it
 | |
| // ordinarily would.  See the documentation for FieldVal for more details.
 | |
| 
 | |
| import (
 | |
| 	"encoding/hex"
 | |
| )
 | |
| 
 | |
| // Constants used to make the code more readable.
 | |
| const (
 | |
| 	twoBitsMask   = 0x3
 | |
| 	fourBitsMask  = 0xf
 | |
| 	sixBitsMask   = 0x3f
 | |
| 	eightBitsMask = 0xff
 | |
| )
 | |
| 
 | |
| // Constants related to the field representation.
 | |
| const (
 | |
| 	// fieldWords is the number of words used to internally represent the
 | |
| 	// 256-bit value.
 | |
| 	fieldWords = 10
 | |
| 
 | |
| 	// fieldBase is the exponent used to form the numeric base of each word.
 | |
| 	// 2^(fieldBase*i) where i is the word position.
 | |
| 	fieldBase = 26
 | |
| 
 | |
| 	// fieldBaseMask is the mask for the bits in each word needed to
 | |
| 	// represent the numeric base of each word (except the most significant
 | |
| 	// word).
 | |
| 	fieldBaseMask = (1 << fieldBase) - 1
 | |
| 
 | |
| 	// fieldMSBBits is the number of bits in the most significant word used
 | |
| 	// to represent the value.
 | |
| 	fieldMSBBits = 256 - (fieldBase * (fieldWords - 1))
 | |
| 
 | |
| 	// fieldMSBMask is the mask for the bits in the most significant word
 | |
| 	// needed to represent the value.
 | |
| 	fieldMSBMask = (1 << fieldMSBBits) - 1
 | |
| 
 | |
| 	// These fields provide convenient access to each of the words of the
 | |
| 	// secp256k1 prime in the internal field representation to improve code
 | |
| 	// readability.
 | |
| 	fieldPrimeWordZero  = 0x03fffc2f
 | |
| 	fieldPrimeWordOne   = 0x03ffffbf
 | |
| 	fieldPrimeWordTwo   = 0x03ffffff
 | |
| 	fieldPrimeWordThree = 0x03ffffff
 | |
| 	fieldPrimeWordFour  = 0x03ffffff
 | |
| 	fieldPrimeWordFive  = 0x03ffffff
 | |
| 	fieldPrimeWordSix   = 0x03ffffff
 | |
| 	fieldPrimeWordSeven = 0x03ffffff
 | |
| 	fieldPrimeWordEight = 0x03ffffff
 | |
| 	fieldPrimeWordNine  = 0x003fffff
 | |
| )
 | |
| 
 | |
| // FieldVal implements optimized fixed-precision arithmetic over the
 | |
| // secp256k1 finite field.  This means all arithmetic is performed modulo
 | |
| //
 | |
| //	0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f.
 | |
| //
 | |
| // WARNING: Since it is so important for the field arithmetic to be extremely
 | |
| // fast for high performance crypto, this type does not perform any validation
 | |
| // of documented preconditions where it ordinarily would.  As a result, it is
 | |
| // IMPERATIVE for callers to understand some key concepts that are described
 | |
| // below and ensure the methods are called with the necessary preconditions that
 | |
| // each method is documented with.  For example, some methods only give the
 | |
| // correct result if the field value is normalized and others require the field
 | |
| // values involved to have a maximum magnitude and THERE ARE NO EXPLICIT CHECKS
 | |
| // TO ENSURE THOSE PRECONDITIONS ARE SATISFIED.  This does, unfortunately, make
 | |
| // the type more difficult to use correctly and while I typically prefer to
 | |
| // ensure all state and input is valid for most code, this is a bit of an
 | |
| // exception because those extra checks really add up in what ends up being
 | |
| // critical hot paths.
 | |
| //
 | |
| // The first key concept when working with this type is normalization.  In order
 | |
| // to avoid the need to propagate a ton of carries, the internal representation
 | |
| // provides additional overflow bits for each word of the overall 256-bit value.
 | |
| // This means that there are multiple internal representations for the same
 | |
| // value and, as a result, any methods that rely on comparison of the value,
 | |
| // such as equality and oddness determination, require the caller to provide a
 | |
| // normalized value.
 | |
| //
 | |
| // The second key concept when working with this type is magnitude.  As
 | |
| // previously mentioned, the internal representation provides additional
 | |
| // overflow bits which means that the more math operations that are performed on
 | |
| // the field value between normalizations, the more those overflow bits
 | |
| // accumulate.  The magnitude is effectively that maximum possible number of
 | |
| // those overflow bits that could possibly be required as a result of a given
 | |
| // operation.  Since there are only a limited number of overflow bits available,
 | |
| // this implies that the max possible magnitude MUST be tracked by the caller
 | |
| // and the caller MUST normalize the field value if a given operation would
 | |
| // cause the magnitude of the result to exceed the max allowed value.
 | |
| //
 | |
| // IMPORTANT: The max allowed magnitude of a field value is 64.
 | |
| type FieldVal struct {
 | |
| 	// Each 256-bit value is represented as 10 32-bit integers in base 2^26.
 | |
| 	// This provides 6 bits of overflow in each word (10 bits in the most
 | |
| 	// significant word) for a total of 64 bits of overflow (9*6 + 10 = 64).  It
 | |
| 	// only implements the arithmetic needed for elliptic curve operations.
 | |
| 	//
 | |
| 	// The following depicts the internal representation:
 | |
| 	// 	 -----------------------------------------------------------------
 | |
| 	// 	|        n[9]       |        n[8]       | ... |        n[0]       |
 | |
| 	// 	| 32 bits available | 32 bits available | ... | 32 bits available |
 | |
| 	// 	| 22 bits for value | 26 bits for value | ... | 26 bits for value |
 | |
| 	// 	| 10 bits overflow  |  6 bits overflow  | ... |  6 bits overflow  |
 | |
| 	// 	| Mult: 2^(26*9)    | Mult: 2^(26*8)    | ... | Mult: 2^(26*0)    |
 | |
| 	// 	 -----------------------------------------------------------------
 | |
| 	//
 | |
| 	// For example, consider the number 2^49 + 1.  It would be represented as:
 | |
| 	// 	n[0] = 1
 | |
| 	// 	n[1] = 2^23
 | |
| 	// 	n[2..9] = 0
 | |
| 	//
 | |
| 	// The full 256-bit value is then calculated by looping i from 9..0 and
 | |
| 	// doing sum(n[i] * 2^(26i)) like so:
 | |
| 	// 	n[9] * 2^(26*9) = 0    * 2^234 = 0
 | |
| 	// 	n[8] * 2^(26*8) = 0    * 2^208 = 0
 | |
| 	// 	...
 | |
| 	// 	n[1] * 2^(26*1) = 2^23 * 2^26  = 2^49
 | |
| 	// 	n[0] * 2^(26*0) = 1    * 2^0   = 1
 | |
| 	// 	Sum: 0 + 0 + ... + 2^49 + 1 = 2^49 + 1
 | |
| 	n [10]uint32
 | |
| }
 | |
| 
 | |
| // String returns the field value as a normalized human-readable hex string.
 | |
| //
 | |
| //	Preconditions: None
 | |
| //	Output Normalized: Field is not modified -- same as input value
 | |
| //	Output Max Magnitude: Field is not modified -- same as input value
 | |
| func (f FieldVal) String() string {
 | |
| 	// f is a copy, so it's safe to normalize it without mutating the original.
 | |
| 	f.Normalize()
 | |
| 	return hex.EncodeToString(f.Bytes()[:])
 | |
| }
 | |
| 
 | |
| // Zero sets the field value to zero in constant time.  A newly created field
 | |
| // value is already set to zero.  This function can be useful to clear an
 | |
| // existing field value for reuse.
 | |
| //
 | |
| //	Preconditions: None
 | |
| //	Output Normalized: Yes
 | |
| //	Output Max Magnitude: 1
 | |
| func (f *FieldVal) Zero() {
 | |
| 	f.n[0] = 0
 | |
| 	f.n[1] = 0
 | |
| 	f.n[2] = 0
 | |
| 	f.n[3] = 0
 | |
| 	f.n[4] = 0
 | |
| 	f.n[5] = 0
 | |
| 	f.n[6] = 0
 | |
| 	f.n[7] = 0
 | |
| 	f.n[8] = 0
 | |
| 	f.n[9] = 0
 | |
| }
 | |
| 
 | |
| // Set sets the field value equal to the passed value in constant time.  The
 | |
| // normalization and magnitude of the two fields will be identical.
 | |
| //
 | |
| // The field value is returned to support chaining.  This enables syntax like:
 | |
| // f := new(FieldVal).Set(f2).Add(1) so that f = f2 + 1 where f2 is not
 | |
| // modified.
 | |
| //
 | |
| //	Preconditions: None
 | |
| //	Output Normalized: Same as input value
 | |
| //	Output Max Magnitude: Same as input value
 | |
| func (f *FieldVal) Set(val *FieldVal) *FieldVal {
 | |
| 	*f = *val
 | |
| 	return f
 | |
| }
 | |
| 
 | |
| // SetInt sets the field value to the passed integer in constant time.  This is
 | |
| // a convenience function since it is fairly common to perform some arithmetic
 | |
| // with small native integers.
 | |
| //
 | |
| // The field value is returned to support chaining.  This enables syntax such
 | |
| // as f := new(FieldVal).SetInt(2).Mul(f2) so that f = 2 * f2.
 | |
| //
 | |
| //	Preconditions: None
 | |
| //	Output Normalized: Yes
 | |
| //	Output Max Magnitude: 1
 | |
| func (f *FieldVal) SetInt(ui uint16) *FieldVal {
 | |
| 	f.Zero()
 | |
| 	f.n[0] = uint32(ui)
 | |
| 	return f
 | |
| }
 | |
| 
 | |
| // SetBytes packs the passed 32-byte big-endian value into the internal field
 | |
| // value representation in constant time.  SetBytes interprets the provided
 | |
| // array as a 256-bit big-endian unsigned integer, packs it into the internal
 | |
| // field value representation, and returns either 1 if it is greater than or
 | |
| // equal to the field prime (aka it overflowed) or 0 otherwise in constant time.
 | |
| //
 | |
| // Note that a bool is not used here because it is not possible in Go to convert
 | |
| // from a bool to numeric value in constant time and many constant-time
 | |
| // operations require a numeric value.
 | |
| //
 | |
| //	Preconditions: None
 | |
| //	Output Normalized: Yes if no overflow, no otherwise
 | |
| //	Output Max Magnitude: 1
 | |
| func (f *FieldVal) SetBytes(b *[32]byte) uint32 {
 | |
| 	// Pack the 256 total bits across the 10 uint32 words with a max of
 | |
| 	// 26-bits per word.  This could be done with a couple of for loops,
 | |
| 	// but this unrolled version is significantly faster.  Benchmarks show
 | |
| 	// this is about 34 times faster than the variant which uses loops.
 | |
| 	f.n[0] = uint32(b[31]) | uint32(b[30])<<8 | uint32(b[29])<<16 |
 | |
| 		(uint32(b[28])&twoBitsMask)<<24
 | |
| 	f.n[1] = uint32(b[28])>>2 | uint32(b[27])<<6 | uint32(b[26])<<14 |
 | |
| 		(uint32(b[25])&fourBitsMask)<<22
 | |
| 	f.n[2] = uint32(b[25])>>4 | uint32(b[24])<<4 | uint32(b[23])<<12 |
 | |
| 		(uint32(b[22])&sixBitsMask)<<20
 | |
| 	f.n[3] = uint32(b[22])>>6 | uint32(b[21])<<2 | uint32(b[20])<<10 |
 | |
| 		uint32(b[19])<<18
 | |
| 	f.n[4] = uint32(b[18]) | uint32(b[17])<<8 | uint32(b[16])<<16 |
 | |
| 		(uint32(b[15])&twoBitsMask)<<24
 | |
| 	f.n[5] = uint32(b[15])>>2 | uint32(b[14])<<6 | uint32(b[13])<<14 |
 | |
| 		(uint32(b[12])&fourBitsMask)<<22
 | |
| 	f.n[6] = uint32(b[12])>>4 | uint32(b[11])<<4 | uint32(b[10])<<12 |
 | |
| 		(uint32(b[9])&sixBitsMask)<<20
 | |
| 	f.n[7] = uint32(b[9])>>6 | uint32(b[8])<<2 | uint32(b[7])<<10 |
 | |
| 		uint32(b[6])<<18
 | |
| 	f.n[8] = uint32(b[5]) | uint32(b[4])<<8 | uint32(b[3])<<16 |
 | |
| 		(uint32(b[2])&twoBitsMask)<<24
 | |
| 	f.n[9] = uint32(b[2])>>2 | uint32(b[1])<<6 | uint32(b[0])<<14
 | |
| 
 | |
| 	// The intuition here is that the field value is greater than the prime if
 | |
| 	// one of the higher individual words is greater than corresponding word of
 | |
| 	// the prime and all higher words in the field value are equal to their
 | |
| 	// corresponding word of the prime.  Since this type is modulo the prime,
 | |
| 	// being equal is also an overflow back to 0.
 | |
| 	//
 | |
| 	// Note that because the input is 32 bytes and it was just packed into the
 | |
| 	// field representation, the only words that can possibly be greater are
 | |
| 	// zero and one, because ceil(log_2(2^256 - 1 - P)) = 33 bits max and the
 | |
| 	// internal field representation encodes 26 bits with each word.
 | |
| 	//
 | |
| 	// Thus, there is no need to test if the upper words of the field value
 | |
| 	// exceeds them, hence, only equality is checked for them.
 | |
| 	highWordsEq := constantTimeEq(f.n[9], fieldPrimeWordNine)
 | |
| 	highWordsEq &= constantTimeEq(f.n[8], fieldPrimeWordEight)
 | |
| 	highWordsEq &= constantTimeEq(f.n[7], fieldPrimeWordSeven)
 | |
| 	highWordsEq &= constantTimeEq(f.n[6], fieldPrimeWordSix)
 | |
| 	highWordsEq &= constantTimeEq(f.n[5], fieldPrimeWordFive)
 | |
| 	highWordsEq &= constantTimeEq(f.n[4], fieldPrimeWordFour)
 | |
| 	highWordsEq &= constantTimeEq(f.n[3], fieldPrimeWordThree)
 | |
| 	highWordsEq &= constantTimeEq(f.n[2], fieldPrimeWordTwo)
 | |
| 	overflow := highWordsEq & constantTimeGreater(f.n[1], fieldPrimeWordOne)
 | |
| 	highWordsEq &= constantTimeEq(f.n[1], fieldPrimeWordOne)
 | |
| 	overflow |= highWordsEq & constantTimeGreaterOrEq(f.n[0], fieldPrimeWordZero)
 | |
| 
 | |
| 	return overflow
 | |
| }
 | |
| 
 | |
| // SetByteSlice interprets the provided slice as a 256-bit big-endian unsigned
 | |
| // integer (meaning it is truncated to the first 32 bytes), packs it into the
 | |
| // internal field value representation, and returns whether or not the resulting
 | |
| // truncated 256-bit integer is greater than or equal to the field prime (aka it
 | |
| // overflowed) in constant time.
 | |
| //
 | |
| // Note that since passing a slice with more than 32 bytes is truncated, it is
 | |
| // possible that the truncated value is less than the field prime and hence it
 | |
| // will not be reported as having overflowed in that case.  It is up to the
 | |
| // caller to decide whether it needs to provide numbers of the appropriate size
 | |
| // or it if is acceptable to use this function with the described truncation and
 | |
| // overflow behavior.
 | |
| //
 | |
| //	Preconditions: None
 | |
| //	Output Normalized: Yes if no overflow, no otherwise
 | |
| //	Output Max Magnitude: 1
 | |
| func (f *FieldVal) SetByteSlice(b []byte) bool {
 | |
| 	var b32 [32]byte
 | |
| 	b = b[:constantTimeMin(uint32(len(b)), 32)]
 | |
| 	copy(b32[:], b32[:32-len(b)])
 | |
| 	copy(b32[32-len(b):], b)
 | |
| 	result := f.SetBytes(&b32)
 | |
| 	zeroArray32(&b32)
 | |
| 	return result != 0
 | |
| }
 | |
| 
 | |
| // Normalize normalizes the internal field words into the desired range and
 | |
| // performs fast modular reduction over the secp256k1 prime by making use of the
 | |
| // special form of the prime in constant time.
 | |
| //
 | |
| //	Preconditions: None
 | |
| //	Output Normalized: Yes
 | |
| //	Output Max Magnitude: 1
 | |
| func (f *FieldVal) Normalize() *FieldVal {
 | |
| 	// The field representation leaves 6 bits of overflow in each word so
 | |
| 	// intermediate calculations can be performed without needing to
 | |
| 	// propagate the carry to each higher word during the calculations.  In
 | |
| 	// order to normalize, we need to "compact" the full 256-bit value to
 | |
| 	// the right while propagating any carries through to the high order
 | |
| 	// word.
 | |
| 	//
 | |
| 	// Since this field is doing arithmetic modulo the secp256k1 prime, we
 | |
| 	// also need to perform modular reduction over the prime.
 | |
| 	//
 | |
| 	// Per [HAC] section 14.3.4: Reduction method of moduli of special form,
 | |
| 	// when the modulus is of the special form m = b^t - c, highly efficient
 | |
| 	// reduction can be achieved.
 | |
| 	//
 | |
| 	// The secp256k1 prime is equivalent to 2^256 - 4294968273, so it fits
 | |
| 	// this criteria.
 | |
| 	//
 | |
| 	// 4294968273 in field representation (base 2^26) is:
 | |
| 	// n[0] = 977
 | |
| 	// n[1] = 64
 | |
| 	// That is to say (2^26 * 64) + 977 = 4294968273
 | |
| 	//
 | |
| 	// The algorithm presented in the referenced section typically repeats
 | |
| 	// until the quotient is zero.  However, due to our field representation
 | |
| 	// we already know to within one reduction how many times we would need
 | |
| 	// to repeat as it's the uppermost bits of the high order word.  Thus we
 | |
| 	// can simply multiply the magnitude by the field representation of the
 | |
| 	// prime and do a single iteration.  After this step there might be an
 | |
| 	// additional carry to bit 256 (bit 22 of the high order word).
 | |
| 	t9 := f.n[9]
 | |
| 	m := t9 >> fieldMSBBits
 | |
| 	t9 = t9 & fieldMSBMask
 | |
| 	t0 := f.n[0] + m*977
 | |
| 	t1 := (t0 >> fieldBase) + f.n[1] + (m << 6)
 | |
| 	t0 = t0 & fieldBaseMask
 | |
| 	t2 := (t1 >> fieldBase) + f.n[2]
 | |
| 	t1 = t1 & fieldBaseMask
 | |
| 	t3 := (t2 >> fieldBase) + f.n[3]
 | |
| 	t2 = t2 & fieldBaseMask
 | |
| 	t4 := (t3 >> fieldBase) + f.n[4]
 | |
| 	t3 = t3 & fieldBaseMask
 | |
| 	t5 := (t4 >> fieldBase) + f.n[5]
 | |
| 	t4 = t4 & fieldBaseMask
 | |
| 	t6 := (t5 >> fieldBase) + f.n[6]
 | |
| 	t5 = t5 & fieldBaseMask
 | |
| 	t7 := (t6 >> fieldBase) + f.n[7]
 | |
| 	t6 = t6 & fieldBaseMask
 | |
| 	t8 := (t7 >> fieldBase) + f.n[8]
 | |
| 	t7 = t7 & fieldBaseMask
 | |
| 	t9 = (t8 >> fieldBase) + t9
 | |
| 	t8 = t8 & fieldBaseMask
 | |
| 
 | |
| 	// At this point, the magnitude is guaranteed to be one, however, the
 | |
| 	// value could still be greater than the prime if there was either a
 | |
| 	// carry through to bit 256 (bit 22 of the higher order word) or the
 | |
| 	// value is greater than or equal to the field characteristic.  The
 | |
| 	// following determines if either or these conditions are true and does
 | |
| 	// the final reduction in constant time.
 | |
| 	//
 | |
| 	// Also note that 'm' will be zero when neither of the aforementioned
 | |
| 	// conditions are true and the value will not be changed when 'm' is zero.
 | |
| 	m = constantTimeEq(t9, fieldMSBMask)
 | |
| 	m &= constantTimeEq(t8&t7&t6&t5&t4&t3&t2, fieldBaseMask)
 | |
| 	m &= constantTimeGreater(t1+64+((t0+977)>>fieldBase), fieldBaseMask)
 | |
| 	m |= t9 >> fieldMSBBits
 | |
| 	t0 = t0 + m*977
 | |
| 	t1 = (t0 >> fieldBase) + t1 + (m << 6)
 | |
| 	t0 = t0 & fieldBaseMask
 | |
| 	t2 = (t1 >> fieldBase) + t2
 | |
| 	t1 = t1 & fieldBaseMask
 | |
| 	t3 = (t2 >> fieldBase) + t3
 | |
| 	t2 = t2 & fieldBaseMask
 | |
| 	t4 = (t3 >> fieldBase) + t4
 | |
| 	t3 = t3 & fieldBaseMask
 | |
| 	t5 = (t4 >> fieldBase) + t5
 | |
| 	t4 = t4 & fieldBaseMask
 | |
| 	t6 = (t5 >> fieldBase) + t6
 | |
| 	t5 = t5 & fieldBaseMask
 | |
| 	t7 = (t6 >> fieldBase) + t7
 | |
| 	t6 = t6 & fieldBaseMask
 | |
| 	t8 = (t7 >> fieldBase) + t8
 | |
| 	t7 = t7 & fieldBaseMask
 | |
| 	t9 = (t8 >> fieldBase) + t9
 | |
| 	t8 = t8 & fieldBaseMask
 | |
| 	t9 = t9 & fieldMSBMask // Remove potential multiple of 2^256.
 | |
| 
 | |
| 	// Finally, set the normalized and reduced words.
 | |
| 	f.n[0] = t0
 | |
| 	f.n[1] = t1
 | |
| 	f.n[2] = t2
 | |
| 	f.n[3] = t3
 | |
| 	f.n[4] = t4
 | |
| 	f.n[5] = t5
 | |
| 	f.n[6] = t6
 | |
| 	f.n[7] = t7
 | |
| 	f.n[8] = t8
 | |
| 	f.n[9] = t9
 | |
| 	return f
 | |
| }
 | |
| 
 | |
| // PutBytesUnchecked unpacks the field value to a 32-byte big-endian value
 | |
| // directly into the passed byte slice in constant time.  The target slice must
 | |
| // must have at least 32 bytes available or it will panic.
 | |
| //
 | |
| // There is a similar function, PutBytes, which unpacks the field value into a
 | |
| // 32-byte array directly.  This version is provided since it can be useful
 | |
| // to write directly into part of a larger buffer without needing a separate
 | |
| // allocation.
 | |
| //
 | |
| //	Preconditions:
 | |
| //	  - The field value MUST be normalized
 | |
| //	  - The target slice MUST have at least 32 bytes available
 | |
| func (f *FieldVal) PutBytesUnchecked(b []byte) {
 | |
| 	// Unpack the 256 total bits from the 10 uint32 words with a max of
 | |
| 	// 26-bits per word.  This could be done with a couple of for loops,
 | |
| 	// but this unrolled version is a bit faster.  Benchmarks show this is
 | |
| 	// about 10 times faster than the variant which uses loops.
 | |
| 	b[31] = byte(f.n[0] & eightBitsMask)
 | |
| 	b[30] = byte((f.n[0] >> 8) & eightBitsMask)
 | |
| 	b[29] = byte((f.n[0] >> 16) & eightBitsMask)
 | |
| 	b[28] = byte((f.n[0]>>24)&twoBitsMask | (f.n[1]&sixBitsMask)<<2)
 | |
| 	b[27] = byte((f.n[1] >> 6) & eightBitsMask)
 | |
| 	b[26] = byte((f.n[1] >> 14) & eightBitsMask)
 | |
| 	b[25] = byte((f.n[1]>>22)&fourBitsMask | (f.n[2]&fourBitsMask)<<4)
 | |
| 	b[24] = byte((f.n[2] >> 4) & eightBitsMask)
 | |
| 	b[23] = byte((f.n[2] >> 12) & eightBitsMask)
 | |
| 	b[22] = byte((f.n[2]>>20)&sixBitsMask | (f.n[3]&twoBitsMask)<<6)
 | |
| 	b[21] = byte((f.n[3] >> 2) & eightBitsMask)
 | |
| 	b[20] = byte((f.n[3] >> 10) & eightBitsMask)
 | |
| 	b[19] = byte((f.n[3] >> 18) & eightBitsMask)
 | |
| 	b[18] = byte(f.n[4] & eightBitsMask)
 | |
| 	b[17] = byte((f.n[4] >> 8) & eightBitsMask)
 | |
| 	b[16] = byte((f.n[4] >> 16) & eightBitsMask)
 | |
| 	b[15] = byte((f.n[4]>>24)&twoBitsMask | (f.n[5]&sixBitsMask)<<2)
 | |
| 	b[14] = byte((f.n[5] >> 6) & eightBitsMask)
 | |
| 	b[13] = byte((f.n[5] >> 14) & eightBitsMask)
 | |
| 	b[12] = byte((f.n[5]>>22)&fourBitsMask | (f.n[6]&fourBitsMask)<<4)
 | |
| 	b[11] = byte((f.n[6] >> 4) & eightBitsMask)
 | |
| 	b[10] = byte((f.n[6] >> 12) & eightBitsMask)
 | |
| 	b[9] = byte((f.n[6]>>20)&sixBitsMask | (f.n[7]&twoBitsMask)<<6)
 | |
| 	b[8] = byte((f.n[7] >> 2) & eightBitsMask)
 | |
| 	b[7] = byte((f.n[7] >> 10) & eightBitsMask)
 | |
| 	b[6] = byte((f.n[7] >> 18) & eightBitsMask)
 | |
| 	b[5] = byte(f.n[8] & eightBitsMask)
 | |
| 	b[4] = byte((f.n[8] >> 8) & eightBitsMask)
 | |
| 	b[3] = byte((f.n[8] >> 16) & eightBitsMask)
 | |
| 	b[2] = byte((f.n[8]>>24)&twoBitsMask | (f.n[9]&sixBitsMask)<<2)
 | |
| 	b[1] = byte((f.n[9] >> 6) & eightBitsMask)
 | |
| 	b[0] = byte((f.n[9] >> 14) & eightBitsMask)
 | |
| }
 | |
| 
 | |
| // PutBytes unpacks the field value to a 32-byte big-endian value using the
 | |
| // passed byte array in constant time.
 | |
| //
 | |
| // There is a similar function, PutBytesUnchecked, which unpacks the field value
 | |
| // into a slice that must have at least 32 bytes available.  This version is
 | |
| // provided since it can be useful to write directly into an array that is type
 | |
| // checked.
 | |
| //
 | |
| // Alternatively, there is also Bytes, which unpacks the field value into a new
 | |
| // array and returns that which can sometimes be more ergonomic in applications
 | |
| // that aren't concerned about an additional copy.
 | |
| //
 | |
| //	Preconditions:
 | |
| //	  - The field value MUST be normalized
 | |
| func (f *FieldVal) PutBytes(b *[32]byte) {
 | |
| 	f.PutBytesUnchecked(b[:])
 | |
| }
 | |
| 
 | |
| // Bytes unpacks the field value to a 32-byte big-endian value in constant time.
 | |
| //
 | |
| // See PutBytes and PutBytesUnchecked for variants that allow an array or slice
 | |
| // to be passed which can be useful to cut down on the number of allocations by
 | |
| // allowing the caller to reuse a buffer or write directly into part of a larger
 | |
| // buffer.
 | |
| //
 | |
| //	Preconditions:
 | |
| //	  - The field value MUST be normalized
 | |
| func (f *FieldVal) Bytes() *[32]byte {
 | |
| 	b := new([32]byte)
 | |
| 	f.PutBytesUnchecked(b[:])
 | |
| 	return b
 | |
| }
 | |
| 
 | |
| // IsZeroBit returns 1 when the field value is equal to zero or 0 otherwise in
 | |
| // constant time.
 | |
| //
 | |
| // Note that a bool is not used here because it is not possible in Go to convert
 | |
| // from a bool to numeric value in constant time and many constant-time
 | |
| // operations require a numeric value.  See IsZero for the version that returns
 | |
| // a bool.
 | |
| //
 | |
| //	Preconditions:
 | |
| //	  - The field value MUST be normalized
 | |
| func (f *FieldVal) IsZeroBit() uint32 {
 | |
| 	// The value can only be zero if no bits are set in any of the words.
 | |
| 	// This is a constant time implementation.
 | |
| 	bits := f.n[0] | f.n[1] | f.n[2] | f.n[3] | f.n[4] |
 | |
| 		f.n[5] | f.n[6] | f.n[7] | f.n[8] | f.n[9]
 | |
| 
 | |
| 	return constantTimeEq(bits, 0)
 | |
| }
 | |
| 
 | |
| // IsZero returns whether or not the field value is equal to zero in constant
 | |
| // time.
 | |
| //
 | |
| //	Preconditions:
 | |
| //	  - The field value MUST be normalized
 | |
| func (f *FieldVal) IsZero() bool {
 | |
| 	// The value can only be zero if no bits are set in any of the words.
 | |
| 	// This is a constant time implementation.
 | |
| 	bits := f.n[0] | f.n[1] | f.n[2] | f.n[3] | f.n[4] |
 | |
| 		f.n[5] | f.n[6] | f.n[7] | f.n[8] | f.n[9]
 | |
| 
 | |
| 	return bits == 0
 | |
| }
 | |
| 
 | |
| // IsOneBit returns 1 when the field value is equal to one or 0 otherwise in
 | |
| // constant time.
 | |
| //
 | |
| // Note that a bool is not used here because it is not possible in Go to convert
 | |
| // from a bool to numeric value in constant time and many constant-time
 | |
| // operations require a numeric value.  See IsOne for the version that returns a
 | |
| // bool.
 | |
| //
 | |
| //	Preconditions:
 | |
| //	   - The field value MUST be normalized
 | |
| func (f *FieldVal) IsOneBit() uint32 {
 | |
| 	// The value can only be one if the single lowest significant bit is set in
 | |
| 	// the first word and no other bits are set in any of the other words.
 | |
| 	// This is a constant time implementation.
 | |
| 	bits := (f.n[0] ^ 1) | f.n[1] | f.n[2] | f.n[3] | f.n[4] | f.n[5] |
 | |
| 		f.n[6] | f.n[7] | f.n[8] | f.n[9]
 | |
| 
 | |
| 	return constantTimeEq(bits, 0)
 | |
| }
 | |
| 
 | |
| // IsOne returns whether or not the field value is equal to one in constant
 | |
| // time.
 | |
| //
 | |
| //	Preconditions:
 | |
| //	  - The field value MUST be normalized
 | |
| func (f *FieldVal) IsOne() bool {
 | |
| 	// The value can only be one if the single lowest significant bit is set in
 | |
| 	// the first word and no other bits are set in any of the other words.
 | |
| 	// This is a constant time implementation.
 | |
| 	bits := (f.n[0] ^ 1) | f.n[1] | f.n[2] | f.n[3] | f.n[4] | f.n[5] |
 | |
| 		f.n[6] | f.n[7] | f.n[8] | f.n[9]
 | |
| 
 | |
| 	return bits == 0
 | |
| }
 | |
| 
 | |
| // IsOddBit returns 1 when the field value is an odd number or 0 otherwise in
 | |
| // constant time.
 | |
| //
 | |
| // Note that a bool is not used here because it is not possible in Go to convert
 | |
| // from a bool to numeric value in constant time and many constant-time
 | |
| // operations require a numeric value.  See IsOdd for the version that returns a
 | |
| // bool.
 | |
| //
 | |
| //	Preconditions:
 | |
| //	  - The field value MUST be normalized
 | |
| func (f *FieldVal) IsOddBit() uint32 {
 | |
| 	// Only odd numbers have the bottom bit set.
 | |
| 	return f.n[0] & 1
 | |
| }
 | |
| 
 | |
| // IsOdd returns whether or not the field value is an odd number in constant
 | |
| // time.
 | |
| //
 | |
| //	Preconditions:
 | |
| //	  - The field value MUST be normalized
 | |
| func (f *FieldVal) IsOdd() bool {
 | |
| 	// Only odd numbers have the bottom bit set.
 | |
| 	return f.n[0]&1 == 1
 | |
| }
 | |
| 
 | |
| // Equals returns whether or not the two field values are the same in constant
 | |
| // time.
 | |
| //
 | |
| //	Preconditions:
 | |
| //	  - Both field values being compared MUST be normalized
 | |
| func (f *FieldVal) Equals(val *FieldVal) bool {
 | |
| 	// Xor only sets bits when they are different, so the two field values
 | |
| 	// can only be the same if no bits are set after xoring each word.
 | |
| 	// This is a constant time implementation.
 | |
| 	bits := (f.n[0] ^ val.n[0]) | (f.n[1] ^ val.n[1]) | (f.n[2] ^ val.n[2]) |
 | |
| 		(f.n[3] ^ val.n[3]) | (f.n[4] ^ val.n[4]) | (f.n[5] ^ val.n[5]) |
 | |
| 		(f.n[6] ^ val.n[6]) | (f.n[7] ^ val.n[7]) | (f.n[8] ^ val.n[8]) |
 | |
| 		(f.n[9] ^ val.n[9])
 | |
| 
 | |
| 	return bits == 0
 | |
| }
 | |
| 
 | |
| // NegateVal negates the passed value and stores the result in f in constant
 | |
| // time.  The caller must provide the magnitude of the passed value for a
 | |
| // correct result.
 | |
| //
 | |
| // The field value is returned to support chaining.  This enables syntax like:
 | |
| // f.NegateVal(f2).AddInt(1) so that f = -f2 + 1.
 | |
| //
 | |
| //	Preconditions:
 | |
| //	  - The max magnitude MUST be 63
 | |
| //	Output Normalized: No
 | |
| //	Output Max Magnitude: Input magnitude + 1
 | |
| func (f *FieldVal) NegateVal(val *FieldVal, magnitude uint32) *FieldVal {
 | |
| 	// Negation in the field is just the prime minus the value.  However,
 | |
| 	// in order to allow negation against a field value without having to
 | |
| 	// normalize/reduce it first, multiply by the magnitude (that is how
 | |
| 	// "far" away it is from the normalized value) to adjust.  Also, since
 | |
| 	// negating a value pushes it one more order of magnitude away from the
 | |
| 	// normalized range, add 1 to compensate.
 | |
| 	//
 | |
| 	// For some intuition here, imagine you're performing mod 12 arithmetic
 | |
| 	// (picture a clock) and you are negating the number 7.  So you start at
 | |
| 	// 12 (which is of course 0 under mod 12) and count backwards (left on
 | |
| 	// the clock) 7 times to arrive at 5.  Notice this is just 12-7 = 5.
 | |
| 	// Now, assume you're starting with 19, which is a number that is
 | |
| 	// already larger than the modulus and congruent to 7 (mod 12).  When a
 | |
| 	// value is already in the desired range, its magnitude is 1.  Since 19
 | |
| 	// is an additional "step", its magnitude (mod 12) is 2.  Since any
 | |
| 	// multiple of the modulus is congruent to zero (mod m), the answer can
 | |
| 	// be shortcut by simply multiplying the magnitude by the modulus and
 | |
| 	// subtracting.  Keeping with the example, this would be (2*12)-19 = 5.
 | |
| 	f.n[0] = (magnitude+1)*fieldPrimeWordZero - val.n[0]
 | |
| 	f.n[1] = (magnitude+1)*fieldPrimeWordOne - val.n[1]
 | |
| 	f.n[2] = (magnitude+1)*fieldBaseMask - val.n[2]
 | |
| 	f.n[3] = (magnitude+1)*fieldBaseMask - val.n[3]
 | |
| 	f.n[4] = (magnitude+1)*fieldBaseMask - val.n[4]
 | |
| 	f.n[5] = (magnitude+1)*fieldBaseMask - val.n[5]
 | |
| 	f.n[6] = (magnitude+1)*fieldBaseMask - val.n[6]
 | |
| 	f.n[7] = (magnitude+1)*fieldBaseMask - val.n[7]
 | |
| 	f.n[8] = (magnitude+1)*fieldBaseMask - val.n[8]
 | |
| 	f.n[9] = (magnitude+1)*fieldMSBMask - val.n[9]
 | |
| 
 | |
| 	return f
 | |
| }
 | |
| 
 | |
| // Negate negates the field value in constant time.  The existing field value is
 | |
| // modified.  The caller must provide the magnitude of the field value for a
 | |
| // correct result.
 | |
| //
 | |
| // The field value is returned to support chaining.  This enables syntax like:
 | |
| // f.Negate().AddInt(1) so that f = -f + 1.
 | |
| //
 | |
| //	Preconditions:
 | |
| //	  - The max magnitude MUST be 63
 | |
| //	Output Normalized: No
 | |
| //	Output Max Magnitude: Input magnitude + 1
 | |
| func (f *FieldVal) Negate(magnitude uint32) *FieldVal {
 | |
| 	return f.NegateVal(f, magnitude)
 | |
| }
 | |
| 
 | |
| // AddInt adds the passed integer to the existing field value and stores the
 | |
| // result in f in constant time.  This is a convenience function since it is
 | |
| // fairly common to perform some arithmetic with small native integers.
 | |
| //
 | |
| // The field value is returned to support chaining.  This enables syntax like:
 | |
| // f.AddInt(1).Add(f2) so that f = f + 1 + f2.
 | |
| //
 | |
| //	Preconditions:
 | |
| //	  - The field value MUST have a max magnitude of 63
 | |
| //	Output Normalized: No
 | |
| //	Output Max Magnitude: Existing field magnitude + 1
 | |
| func (f *FieldVal) AddInt(ui uint16) *FieldVal {
 | |
| 	// Since the field representation intentionally provides overflow bits,
 | |
| 	// it's ok to use carryless addition as the carry bit is safely part of
 | |
| 	// the word and will be normalized out.
 | |
| 	f.n[0] += uint32(ui)
 | |
| 
 | |
| 	return f
 | |
| }
 | |
| 
 | |
| // Add adds the passed value to the existing field value and stores the result
 | |
| // in f in constant time.
 | |
| //
 | |
| // The field value is returned to support chaining.  This enables syntax like:
 | |
| // f.Add(f2).AddInt(1) so that f = f + f2 + 1.
 | |
| //
 | |
| //	Preconditions:
 | |
| //	  - The sum of the magnitudes of the two field values MUST be a max of 64
 | |
| //	Output Normalized: No
 | |
| //	Output Max Magnitude: Sum of the magnitude of the two individual field values
 | |
| func (f *FieldVal) Add(val *FieldVal) *FieldVal {
 | |
| 	// Since the field representation intentionally provides overflow bits,
 | |
| 	// it's ok to use carryless addition as the carry bit is safely part of
 | |
| 	// each word and will be normalized out.  This could obviously be done
 | |
| 	// in a loop, but the unrolled version is faster.
 | |
| 	f.n[0] += val.n[0]
 | |
| 	f.n[1] += val.n[1]
 | |
| 	f.n[2] += val.n[2]
 | |
| 	f.n[3] += val.n[3]
 | |
| 	f.n[4] += val.n[4]
 | |
| 	f.n[5] += val.n[5]
 | |
| 	f.n[6] += val.n[6]
 | |
| 	f.n[7] += val.n[7]
 | |
| 	f.n[8] += val.n[8]
 | |
| 	f.n[9] += val.n[9]
 | |
| 
 | |
| 	return f
 | |
| }
 | |
| 
 | |
| // Add2 adds the passed two field values together and stores the result in f in
 | |
| // constant time.
 | |
| //
 | |
| // The field value is returned to support chaining.  This enables syntax like:
 | |
| // f3.Add2(f, f2).AddInt(1) so that f3 = f + f2 + 1.
 | |
| //
 | |
| //	Preconditions:
 | |
| //	  - The sum of the magnitudes of the two field values MUST be a max of 64
 | |
| //	Output Normalized: No
 | |
| //	Output Max Magnitude: Sum of the magnitude of the two field values
 | |
| func (f *FieldVal) Add2(val *FieldVal, val2 *FieldVal) *FieldVal {
 | |
| 	// Since the field representation intentionally provides overflow bits,
 | |
| 	// it's ok to use carryless addition as the carry bit is safely part of
 | |
| 	// each word and will be normalized out.  This could obviously be done
 | |
| 	// in a loop, but the unrolled version is faster.
 | |
| 	f.n[0] = val.n[0] + val2.n[0]
 | |
| 	f.n[1] = val.n[1] + val2.n[1]
 | |
| 	f.n[2] = val.n[2] + val2.n[2]
 | |
| 	f.n[3] = val.n[3] + val2.n[3]
 | |
| 	f.n[4] = val.n[4] + val2.n[4]
 | |
| 	f.n[5] = val.n[5] + val2.n[5]
 | |
| 	f.n[6] = val.n[6] + val2.n[6]
 | |
| 	f.n[7] = val.n[7] + val2.n[7]
 | |
| 	f.n[8] = val.n[8] + val2.n[8]
 | |
| 	f.n[9] = val.n[9] + val2.n[9]
 | |
| 
 | |
| 	return f
 | |
| }
 | |
| 
 | |
| // MulInt multiplies the field value by the passed int and stores the result in
 | |
| // f in constant time.  Note that this function can overflow if multiplying the
 | |
| // value by any of the individual words exceeds a max uint32.  Therefore it is
 | |
| // important that the caller ensures no overflows will occur before using this
 | |
| // function.
 | |
| //
 | |
| // The field value is returned to support chaining.  This enables syntax like:
 | |
| // f.MulInt(2).Add(f2) so that f = 2 * f + f2.
 | |
| //
 | |
| //	Preconditions:
 | |
| //	  - The field value magnitude multiplied by given val MUST be a max of 64
 | |
| //	Output Normalized: No
 | |
| //	Output Max Magnitude: Existing field magnitude times the provided integer val
 | |
| func (f *FieldVal) MulInt(val uint8) *FieldVal {
 | |
| 	// Since each word of the field representation can hold up to
 | |
| 	// 32 - fieldBase extra bits which will be normalized out, it's safe
 | |
| 	// to multiply each word without using a larger type or carry
 | |
| 	// propagation so long as the values won't overflow a uint32.  This
 | |
| 	// could obviously be done in a loop, but the unrolled version is
 | |
| 	// faster.
 | |
| 	ui := uint32(val)
 | |
| 	f.n[0] *= ui
 | |
| 	f.n[1] *= ui
 | |
| 	f.n[2] *= ui
 | |
| 	f.n[3] *= ui
 | |
| 	f.n[4] *= ui
 | |
| 	f.n[5] *= ui
 | |
| 	f.n[6] *= ui
 | |
| 	f.n[7] *= ui
 | |
| 	f.n[8] *= ui
 | |
| 	f.n[9] *= ui
 | |
| 
 | |
| 	return f
 | |
| }
 | |
| 
 | |
| // Mul multiplies the passed value to the existing field value and stores the
 | |
| // result in f in constant time.  Note that this function can overflow if
 | |
| // multiplying any of the individual words exceeds a max uint32.  In practice,
 | |
| // this means the magnitude of either value involved in the multiplication must
 | |
| // be a max of 8.
 | |
| //
 | |
| // The field value is returned to support chaining.  This enables syntax like:
 | |
| // f.Mul(f2).AddInt(1) so that f = (f * f2) + 1.
 | |
| //
 | |
| //	Preconditions:
 | |
| //	  - Both field values MUST have a max magnitude of 8
 | |
| //	Output Normalized: No
 | |
| //	Output Max Magnitude: 1
 | |
| func (f *FieldVal) Mul(val *FieldVal) *FieldVal {
 | |
| 	return f.Mul2(f, val)
 | |
| }
 | |
| 
 | |
| // Mul2 multiplies the passed two field values together and stores the result
 | |
| // result in f in constant time.  Note that this function can overflow if
 | |
| // multiplying any of the individual words exceeds a max uint32.  In practice,
 | |
| // this means the magnitude of either value involved in the multiplication must
 | |
| // be a max of 8.
 | |
| //
 | |
| // The field value is returned to support chaining.  This enables syntax like:
 | |
| // f3.Mul2(f, f2).AddInt(1) so that f3 = (f * f2) + 1.
 | |
| //
 | |
| //	Preconditions:
 | |
| //	  - Both input field values MUST have a max magnitude of 8
 | |
| //	Output Normalized: No
 | |
| //	Output Max Magnitude: 1
 | |
| func (f *FieldVal) Mul2(val *FieldVal, val2 *FieldVal) *FieldVal {
 | |
| 	// This could be done with a couple of for loops and an array to store
 | |
| 	// the intermediate terms, but this unrolled version is significantly
 | |
| 	// faster.
 | |
| 
 | |
| 	// Terms for 2^(fieldBase*0).
 | |
| 	m := uint64(val.n[0]) * uint64(val2.n[0])
 | |
| 	t0 := m & fieldBaseMask
 | |
| 
 | |
| 	// Terms for 2^(fieldBase*1).
 | |
| 	m = (m >> fieldBase) +
 | |
| 		uint64(val.n[0])*uint64(val2.n[1]) +
 | |
| 		uint64(val.n[1])*uint64(val2.n[0])
 | |
| 	t1 := m & fieldBaseMask
 | |
| 
 | |
| 	// Terms for 2^(fieldBase*2).
 | |
| 	m = (m >> fieldBase) +
 | |
| 		uint64(val.n[0])*uint64(val2.n[2]) +
 | |
| 		uint64(val.n[1])*uint64(val2.n[1]) +
 | |
| 		uint64(val.n[2])*uint64(val2.n[0])
 | |
| 	t2 := m & fieldBaseMask
 | |
| 
 | |
| 	// Terms for 2^(fieldBase*3).
 | |
| 	m = (m >> fieldBase) +
 | |
| 		uint64(val.n[0])*uint64(val2.n[3]) +
 | |
| 		uint64(val.n[1])*uint64(val2.n[2]) +
 | |
| 		uint64(val.n[2])*uint64(val2.n[1]) +
 | |
| 		uint64(val.n[3])*uint64(val2.n[0])
 | |
| 	t3 := m & fieldBaseMask
 | |
| 
 | |
| 	// Terms for 2^(fieldBase*4).
 | |
| 	m = (m >> fieldBase) +
 | |
| 		uint64(val.n[0])*uint64(val2.n[4]) +
 | |
| 		uint64(val.n[1])*uint64(val2.n[3]) +
 | |
| 		uint64(val.n[2])*uint64(val2.n[2]) +
 | |
| 		uint64(val.n[3])*uint64(val2.n[1]) +
 | |
| 		uint64(val.n[4])*uint64(val2.n[0])
 | |
| 	t4 := m & fieldBaseMask
 | |
| 
 | |
| 	// Terms for 2^(fieldBase*5).
 | |
| 	m = (m >> fieldBase) +
 | |
| 		uint64(val.n[0])*uint64(val2.n[5]) +
 | |
| 		uint64(val.n[1])*uint64(val2.n[4]) +
 | |
| 		uint64(val.n[2])*uint64(val2.n[3]) +
 | |
| 		uint64(val.n[3])*uint64(val2.n[2]) +
 | |
| 		uint64(val.n[4])*uint64(val2.n[1]) +
 | |
| 		uint64(val.n[5])*uint64(val2.n[0])
 | |
| 	t5 := m & fieldBaseMask
 | |
| 
 | |
| 	// Terms for 2^(fieldBase*6).
 | |
| 	m = (m >> fieldBase) +
 | |
| 		uint64(val.n[0])*uint64(val2.n[6]) +
 | |
| 		uint64(val.n[1])*uint64(val2.n[5]) +
 | |
| 		uint64(val.n[2])*uint64(val2.n[4]) +
 | |
| 		uint64(val.n[3])*uint64(val2.n[3]) +
 | |
| 		uint64(val.n[4])*uint64(val2.n[2]) +
 | |
| 		uint64(val.n[5])*uint64(val2.n[1]) +
 | |
| 		uint64(val.n[6])*uint64(val2.n[0])
 | |
| 	t6 := m & fieldBaseMask
 | |
| 
 | |
| 	// Terms for 2^(fieldBase*7).
 | |
| 	m = (m >> fieldBase) +
 | |
| 		uint64(val.n[0])*uint64(val2.n[7]) +
 | |
| 		uint64(val.n[1])*uint64(val2.n[6]) +
 | |
| 		uint64(val.n[2])*uint64(val2.n[5]) +
 | |
| 		uint64(val.n[3])*uint64(val2.n[4]) +
 | |
| 		uint64(val.n[4])*uint64(val2.n[3]) +
 | |
| 		uint64(val.n[5])*uint64(val2.n[2]) +
 | |
| 		uint64(val.n[6])*uint64(val2.n[1]) +
 | |
| 		uint64(val.n[7])*uint64(val2.n[0])
 | |
| 	t7 := m & fieldBaseMask
 | |
| 
 | |
| 	// Terms for 2^(fieldBase*8).
 | |
| 	m = (m >> fieldBase) +
 | |
| 		uint64(val.n[0])*uint64(val2.n[8]) +
 | |
| 		uint64(val.n[1])*uint64(val2.n[7]) +
 | |
| 		uint64(val.n[2])*uint64(val2.n[6]) +
 | |
| 		uint64(val.n[3])*uint64(val2.n[5]) +
 | |
| 		uint64(val.n[4])*uint64(val2.n[4]) +
 | |
| 		uint64(val.n[5])*uint64(val2.n[3]) +
 | |
| 		uint64(val.n[6])*uint64(val2.n[2]) +
 | |
| 		uint64(val.n[7])*uint64(val2.n[1]) +
 | |
| 		uint64(val.n[8])*uint64(val2.n[0])
 | |
| 	t8 := m & fieldBaseMask
 | |
| 
 | |
| 	// Terms for 2^(fieldBase*9).
 | |
| 	m = (m >> fieldBase) +
 | |
| 		uint64(val.n[0])*uint64(val2.n[9]) +
 | |
| 		uint64(val.n[1])*uint64(val2.n[8]) +
 | |
| 		uint64(val.n[2])*uint64(val2.n[7]) +
 | |
| 		uint64(val.n[3])*uint64(val2.n[6]) +
 | |
| 		uint64(val.n[4])*uint64(val2.n[5]) +
 | |
| 		uint64(val.n[5])*uint64(val2.n[4]) +
 | |
| 		uint64(val.n[6])*uint64(val2.n[3]) +
 | |
| 		uint64(val.n[7])*uint64(val2.n[2]) +
 | |
| 		uint64(val.n[8])*uint64(val2.n[1]) +
 | |
| 		uint64(val.n[9])*uint64(val2.n[0])
 | |
| 	t9 := m & fieldBaseMask
 | |
| 
 | |
| 	// Terms for 2^(fieldBase*10).
 | |
| 	m = (m >> fieldBase) +
 | |
| 		uint64(val.n[1])*uint64(val2.n[9]) +
 | |
| 		uint64(val.n[2])*uint64(val2.n[8]) +
 | |
| 		uint64(val.n[3])*uint64(val2.n[7]) +
 | |
| 		uint64(val.n[4])*uint64(val2.n[6]) +
 | |
| 		uint64(val.n[5])*uint64(val2.n[5]) +
 | |
| 		uint64(val.n[6])*uint64(val2.n[4]) +
 | |
| 		uint64(val.n[7])*uint64(val2.n[3]) +
 | |
| 		uint64(val.n[8])*uint64(val2.n[2]) +
 | |
| 		uint64(val.n[9])*uint64(val2.n[1])
 | |
| 	t10 := m & fieldBaseMask
 | |
| 
 | |
| 	// Terms for 2^(fieldBase*11).
 | |
| 	m = (m >> fieldBase) +
 | |
| 		uint64(val.n[2])*uint64(val2.n[9]) +
 | |
| 		uint64(val.n[3])*uint64(val2.n[8]) +
 | |
| 		uint64(val.n[4])*uint64(val2.n[7]) +
 | |
| 		uint64(val.n[5])*uint64(val2.n[6]) +
 | |
| 		uint64(val.n[6])*uint64(val2.n[5]) +
 | |
| 		uint64(val.n[7])*uint64(val2.n[4]) +
 | |
| 		uint64(val.n[8])*uint64(val2.n[3]) +
 | |
| 		uint64(val.n[9])*uint64(val2.n[2])
 | |
| 	t11 := m & fieldBaseMask
 | |
| 
 | |
| 	// Terms for 2^(fieldBase*12).
 | |
| 	m = (m >> fieldBase) +
 | |
| 		uint64(val.n[3])*uint64(val2.n[9]) +
 | |
| 		uint64(val.n[4])*uint64(val2.n[8]) +
 | |
| 		uint64(val.n[5])*uint64(val2.n[7]) +
 | |
| 		uint64(val.n[6])*uint64(val2.n[6]) +
 | |
| 		uint64(val.n[7])*uint64(val2.n[5]) +
 | |
| 		uint64(val.n[8])*uint64(val2.n[4]) +
 | |
| 		uint64(val.n[9])*uint64(val2.n[3])
 | |
| 	t12 := m & fieldBaseMask
 | |
| 
 | |
| 	// Terms for 2^(fieldBase*13).
 | |
| 	m = (m >> fieldBase) +
 | |
| 		uint64(val.n[4])*uint64(val2.n[9]) +
 | |
| 		uint64(val.n[5])*uint64(val2.n[8]) +
 | |
| 		uint64(val.n[6])*uint64(val2.n[7]) +
 | |
| 		uint64(val.n[7])*uint64(val2.n[6]) +
 | |
| 		uint64(val.n[8])*uint64(val2.n[5]) +
 | |
| 		uint64(val.n[9])*uint64(val2.n[4])
 | |
| 	t13 := m & fieldBaseMask
 | |
| 
 | |
| 	// Terms for 2^(fieldBase*14).
 | |
| 	m = (m >> fieldBase) +
 | |
| 		uint64(val.n[5])*uint64(val2.n[9]) +
 | |
| 		uint64(val.n[6])*uint64(val2.n[8]) +
 | |
| 		uint64(val.n[7])*uint64(val2.n[7]) +
 | |
| 		uint64(val.n[8])*uint64(val2.n[6]) +
 | |
| 		uint64(val.n[9])*uint64(val2.n[5])
 | |
| 	t14 := m & fieldBaseMask
 | |
| 
 | |
| 	// Terms for 2^(fieldBase*15).
 | |
| 	m = (m >> fieldBase) +
 | |
| 		uint64(val.n[6])*uint64(val2.n[9]) +
 | |
| 		uint64(val.n[7])*uint64(val2.n[8]) +
 | |
| 		uint64(val.n[8])*uint64(val2.n[7]) +
 | |
| 		uint64(val.n[9])*uint64(val2.n[6])
 | |
| 	t15 := m & fieldBaseMask
 | |
| 
 | |
| 	// Terms for 2^(fieldBase*16).
 | |
| 	m = (m >> fieldBase) +
 | |
| 		uint64(val.n[7])*uint64(val2.n[9]) +
 | |
| 		uint64(val.n[8])*uint64(val2.n[8]) +
 | |
| 		uint64(val.n[9])*uint64(val2.n[7])
 | |
| 	t16 := m & fieldBaseMask
 | |
| 
 | |
| 	// Terms for 2^(fieldBase*17).
 | |
| 	m = (m >> fieldBase) +
 | |
| 		uint64(val.n[8])*uint64(val2.n[9]) +
 | |
| 		uint64(val.n[9])*uint64(val2.n[8])
 | |
| 	t17 := m & fieldBaseMask
 | |
| 
 | |
| 	// Terms for 2^(fieldBase*18).
 | |
| 	m = (m >> fieldBase) + uint64(val.n[9])*uint64(val2.n[9])
 | |
| 	t18 := m & fieldBaseMask
 | |
| 
 | |
| 	// What's left is for 2^(fieldBase*19).
 | |
| 	t19 := m >> fieldBase
 | |
| 
 | |
| 	// At this point, all of the terms are grouped into their respective
 | |
| 	// base.
 | |
| 	//
 | |
| 	// Per [HAC] section 14.3.4: Reduction method of moduli of special form,
 | |
| 	// when the modulus is of the special form m = b^t - c, highly efficient
 | |
| 	// reduction can be achieved per the provided algorithm.
 | |
| 	//
 | |
| 	// The secp256k1 prime is equivalent to 2^256 - 4294968273, so it fits
 | |
| 	// this criteria.
 | |
| 	//
 | |
| 	// 4294968273 in field representation (base 2^26) is:
 | |
| 	// n[0] = 977
 | |
| 	// n[1] = 64
 | |
| 	// That is to say (2^26 * 64) + 977 = 4294968273
 | |
| 	//
 | |
| 	// Since each word is in base 26, the upper terms (t10 and up) start
 | |
| 	// at 260 bits (versus the final desired range of 256 bits), so the
 | |
| 	// field representation of 'c' from above needs to be adjusted for the
 | |
| 	// extra 4 bits by multiplying it by 2^4 = 16.  4294968273 * 16 =
 | |
| 	// 68719492368.  Thus, the adjusted field representation of 'c' is:
 | |
| 	// n[0] = 977 * 16 = 15632
 | |
| 	// n[1] = 64 * 16 = 1024
 | |
| 	// That is to say (2^26 * 1024) + 15632 = 68719492368
 | |
| 	//
 | |
| 	// To reduce the final term, t19, the entire 'c' value is needed instead
 | |
| 	// of only n[0] because there are no more terms left to handle n[1].
 | |
| 	// This means there might be some magnitude left in the upper bits that
 | |
| 	// is handled below.
 | |
| 	m = t0 + t10*15632
 | |
| 	t0 = m & fieldBaseMask
 | |
| 	m = (m >> fieldBase) + t1 + t10*1024 + t11*15632
 | |
| 	t1 = m & fieldBaseMask
 | |
| 	m = (m >> fieldBase) + t2 + t11*1024 + t12*15632
 | |
| 	t2 = m & fieldBaseMask
 | |
| 	m = (m >> fieldBase) + t3 + t12*1024 + t13*15632
 | |
| 	t3 = m & fieldBaseMask
 | |
| 	m = (m >> fieldBase) + t4 + t13*1024 + t14*15632
 | |
| 	t4 = m & fieldBaseMask
 | |
| 	m = (m >> fieldBase) + t5 + t14*1024 + t15*15632
 | |
| 	t5 = m & fieldBaseMask
 | |
| 	m = (m >> fieldBase) + t6 + t15*1024 + t16*15632
 | |
| 	t6 = m & fieldBaseMask
 | |
| 	m = (m >> fieldBase) + t7 + t16*1024 + t17*15632
 | |
| 	t7 = m & fieldBaseMask
 | |
| 	m = (m >> fieldBase) + t8 + t17*1024 + t18*15632
 | |
| 	t8 = m & fieldBaseMask
 | |
| 	m = (m >> fieldBase) + t9 + t18*1024 + t19*68719492368
 | |
| 	t9 = m & fieldMSBMask
 | |
| 	m = m >> fieldMSBBits
 | |
| 
 | |
| 	// At this point, if the magnitude is greater than 0, the overall value
 | |
| 	// is greater than the max possible 256-bit value.  In particular, it is
 | |
| 	// "how many times larger" than the max value it is.
 | |
| 	//
 | |
| 	// The algorithm presented in [HAC] section 14.3.4 repeats until the
 | |
| 	// quotient is zero.  However, due to the above, we already know at
 | |
| 	// least how many times we would need to repeat as it's the value
 | |
| 	// currently in m.  Thus we can simply multiply the magnitude by the
 | |
| 	// field representation of the prime and do a single iteration.  Notice
 | |
| 	// that nothing will be changed when the magnitude is zero, so we could
 | |
| 	// skip this in that case, however always running regardless allows it
 | |
| 	// to run in constant time.  The final result will be in the range
 | |
| 	// 0 <= result <= prime + (2^64 - c), so it is guaranteed to have a
 | |
| 	// magnitude of 1, but it is denormalized.
 | |
| 	d := t0 + m*977
 | |
| 	f.n[0] = uint32(d & fieldBaseMask)
 | |
| 	d = (d >> fieldBase) + t1 + m*64
 | |
| 	f.n[1] = uint32(d & fieldBaseMask)
 | |
| 	f.n[2] = uint32((d >> fieldBase) + t2)
 | |
| 	f.n[3] = uint32(t3)
 | |
| 	f.n[4] = uint32(t4)
 | |
| 	f.n[5] = uint32(t5)
 | |
| 	f.n[6] = uint32(t6)
 | |
| 	f.n[7] = uint32(t7)
 | |
| 	f.n[8] = uint32(t8)
 | |
| 	f.n[9] = uint32(t9)
 | |
| 
 | |
| 	return f
 | |
| }
 | |
| 
 | |
| // SquareRootVal either calculates the square root of the passed value when it
 | |
| // exists or the square root of the negation of the value when it does not exist
 | |
| // and stores the result in f in constant time.  The return flag is true when
 | |
| // the calculated square root is for the passed value itself and false when it
 | |
| // is for its negation.
 | |
| //
 | |
| // Note that this function can overflow if multiplying any of the individual
 | |
| // words exceeds a max uint32.  In practice, this means the magnitude of the
 | |
| // field must be a max of 8 to prevent overflow.  The magnitude of the result
 | |
| // will be 1.
 | |
| //
 | |
| //	Preconditions:
 | |
| //	  - The input field value MUST have a max magnitude of 8
 | |
| //	Output Normalized: No
 | |
| //	Output Max Magnitude: 1
 | |
| func (f *FieldVal) SquareRootVal(val *FieldVal) bool {
 | |
| 	// This uses the Tonelli-Shanks method for calculating the square root of
 | |
| 	// the value when it exists.  The key principles of the method follow.
 | |
| 	//
 | |
| 	// Fermat's little theorem states that for a nonzero number 'a' and prime
 | |
| 	// 'p', a^(p-1) ≡ 1 (mod p).
 | |
| 	//
 | |
| 	// Further, Euler's criterion states that an integer 'a' has a square root
 | |
| 	// (aka is a quadratic residue) modulo a prime if a^((p-1)/2) ≡ 1 (mod p)
 | |
| 	// and, conversely, when it does NOT have a square root (aka 'a' is a
 | |
| 	// non-residue) a^((p-1)/2) ≡ -1 (mod p).
 | |
| 	//
 | |
| 	// This can be seen by considering that Fermat's little theorem can be
 | |
| 	// written as (a^((p-1)/2) - 1)(a^((p-1)/2) + 1) ≡ 0 (mod p).  Therefore,
 | |
| 	// one of the two factors must be 0.  Then, when a ≡ x^2 (aka 'a' is a
 | |
| 	// quadratic residue), (x^2)^((p-1)/2) ≡ x^(p-1) ≡ 1 (mod p) which implies
 | |
| 	// the first factor must be zero.  Finally, per Lagrange's theorem, the
 | |
| 	// non-residues are the only remaining possible solutions and thus must make
 | |
| 	// the second factor zero to satisfy Fermat's little theorem implying that
 | |
| 	// a^((p-1)/2) ≡ -1 (mod p) for that case.
 | |
| 	//
 | |
| 	// The Tonelli-Shanks method uses these facts along with factoring out
 | |
| 	// powers of two to solve a congruence that results in either the solution
 | |
| 	// when the square root exists or the square root of the negation of the
 | |
| 	// value when it does not.  In the case of primes that are ≡ 3 (mod 4), the
 | |
| 	// possible solutions are r = ±a^((p+1)/4) (mod p).  Therefore, either r^2 ≡
 | |
| 	// a (mod p) is true in which case ±r are the two solutions, or r^2 ≡ -a
 | |
| 	// (mod p) in which case 'a' is a non-residue and there are no solutions.
 | |
| 	//
 | |
| 	// The secp256k1 prime is ≡ 3 (mod 4), so this result applies.
 | |
| 	//
 | |
| 	// In other words, calculate a^((p+1)/4) and then square it and check it
 | |
| 	// against the original value to determine if it is actually the square
 | |
| 	// root.
 | |
| 	//
 | |
| 	// In order to efficiently compute a^((p+1)/4), (p+1)/4 needs to be split
 | |
| 	// into a sequence of squares and multiplications that minimizes the number
 | |
| 	// of multiplications needed (since they are more costly than squarings).
 | |
| 	//
 | |
| 	// The secp256k1 prime + 1 / 4 is 2^254 - 2^30 - 244.  In binary, that is:
 | |
| 	//
 | |
| 	// 00111111 11111111 11111111 11111111
 | |
| 	// 11111111 11111111 11111111 11111111
 | |
| 	// 11111111 11111111 11111111 11111111
 | |
| 	// 11111111 11111111 11111111 11111111
 | |
| 	// 11111111 11111111 11111111 11111111
 | |
| 	// 11111111 11111111 11111111 11111111
 | |
| 	// 11111111 11111111 11111111 11111111
 | |
| 	// 10111111 11111111 11111111 00001100
 | |
| 	//
 | |
| 	// Notice that can be broken up into three windows of consecutive 1s (in
 | |
| 	// order of least to most significant) as:
 | |
| 	//
 | |
| 	//   6-bit window with two bits set (bits 4, 5, 6, 7 unset)
 | |
| 	//   23-bit window with 22 bits set (bit 30 unset)
 | |
| 	//   223-bit window with all 223 bits set
 | |
| 	//
 | |
| 	// Thus, the groups of 1 bits in each window forms the set:
 | |
| 	// S = {2, 22, 223}.
 | |
| 	//
 | |
| 	// The strategy is to calculate a^(2^n - 1) for each grouping via an
 | |
| 	// addition chain with a sliding window.
 | |
| 	//
 | |
| 	// The addition chain used is (credits to Peter Dettman):
 | |
| 	// (0,0),(1,0),(2,2),(3,2),(4,1),(5,5),(6,6),(7,7),(8,8),(9,7),(10,2)
 | |
| 	// => 2^1 2^[2] 2^3 2^6 2^9 2^11 2^[22] 2^44 2^88 2^176 2^220 2^[223]
 | |
| 	//
 | |
| 	// This has a cost of 254 field squarings and 13 field multiplications.
 | |
| 	var a, a2, a3, a6, a9, a11, a22, a44, a88, a176, a220, a223 FieldVal
 | |
| 	a.Set(val)
 | |
| 	a2.SquareVal(&a).Mul(&a)                                  // a2 = a^(2^2 - 1)
 | |
| 	a3.SquareVal(&a2).Mul(&a)                                 // a3 = a^(2^3 - 1)
 | |
| 	a6.SquareVal(&a3).Square().Square()                       // a6 = a^(2^6 - 2^3)
 | |
| 	a6.Mul(&a3)                                               // a6 = a^(2^6 - 1)
 | |
| 	a9.SquareVal(&a6).Square().Square()                       // a9 = a^(2^9 - 2^3)
 | |
| 	a9.Mul(&a3)                                               // a9 = a^(2^9 - 1)
 | |
| 	a11.SquareVal(&a9).Square()                               // a11 = a^(2^11 - 2^2)
 | |
| 	a11.Mul(&a2)                                              // a11 = a^(2^11 - 1)
 | |
| 	a22.SquareVal(&a11).Square().Square().Square().Square()   // a22 = a^(2^16 - 2^5)
 | |
| 	a22.Square().Square().Square().Square().Square()          // a22 = a^(2^21 - 2^10)
 | |
| 	a22.Square()                                              // a22 = a^(2^22 - 2^11)
 | |
| 	a22.Mul(&a11)                                             // a22 = a^(2^22 - 1)
 | |
| 	a44.SquareVal(&a22).Square().Square().Square().Square()   // a44 = a^(2^27 - 2^5)
 | |
| 	a44.Square().Square().Square().Square().Square()          // a44 = a^(2^32 - 2^10)
 | |
| 	a44.Square().Square().Square().Square().Square()          // a44 = a^(2^37 - 2^15)
 | |
| 	a44.Square().Square().Square().Square().Square()          // a44 = a^(2^42 - 2^20)
 | |
| 	a44.Square().Square()                                     // a44 = a^(2^44 - 2^22)
 | |
| 	a44.Mul(&a22)                                             // a44 = a^(2^44 - 1)
 | |
| 	a88.SquareVal(&a44).Square().Square().Square().Square()   // a88 = a^(2^49 - 2^5)
 | |
| 	a88.Square().Square().Square().Square().Square()          // a88 = a^(2^54 - 2^10)
 | |
| 	a88.Square().Square().Square().Square().Square()          // a88 = a^(2^59 - 2^15)
 | |
| 	a88.Square().Square().Square().Square().Square()          // a88 = a^(2^64 - 2^20)
 | |
| 	a88.Square().Square().Square().Square().Square()          // a88 = a^(2^69 - 2^25)
 | |
| 	a88.Square().Square().Square().Square().Square()          // a88 = a^(2^74 - 2^30)
 | |
| 	a88.Square().Square().Square().Square().Square()          // a88 = a^(2^79 - 2^35)
 | |
| 	a88.Square().Square().Square().Square().Square()          // a88 = a^(2^84 - 2^40)
 | |
| 	a88.Square().Square().Square().Square()                   // a88 = a^(2^88 - 2^44)
 | |
| 	a88.Mul(&a44)                                             // a88 = a^(2^88 - 1)
 | |
| 	a176.SquareVal(&a88).Square().Square().Square().Square()  // a176 = a^(2^93 - 2^5)
 | |
| 	a176.Square().Square().Square().Square().Square()         // a176 = a^(2^98 - 2^10)
 | |
| 	a176.Square().Square().Square().Square().Square()         // a176 = a^(2^103 - 2^15)
 | |
| 	a176.Square().Square().Square().Square().Square()         // a176 = a^(2^108 - 2^20)
 | |
| 	a176.Square().Square().Square().Square().Square()         // a176 = a^(2^113 - 2^25)
 | |
| 	a176.Square().Square().Square().Square().Square()         // a176 = a^(2^118 - 2^30)
 | |
| 	a176.Square().Square().Square().Square().Square()         // a176 = a^(2^123 - 2^35)
 | |
| 	a176.Square().Square().Square().Square().Square()         // a176 = a^(2^128 - 2^40)
 | |
| 	a176.Square().Square().Square().Square().Square()         // a176 = a^(2^133 - 2^45)
 | |
| 	a176.Square().Square().Square().Square().Square()         // a176 = a^(2^138 - 2^50)
 | |
| 	a176.Square().Square().Square().Square().Square()         // a176 = a^(2^143 - 2^55)
 | |
| 	a176.Square().Square().Square().Square().Square()         // a176 = a^(2^148 - 2^60)
 | |
| 	a176.Square().Square().Square().Square().Square()         // a176 = a^(2^153 - 2^65)
 | |
| 	a176.Square().Square().Square().Square().Square()         // a176 = a^(2^158 - 2^70)
 | |
| 	a176.Square().Square().Square().Square().Square()         // a176 = a^(2^163 - 2^75)
 | |
| 	a176.Square().Square().Square().Square().Square()         // a176 = a^(2^168 - 2^80)
 | |
| 	a176.Square().Square().Square().Square().Square()         // a176 = a^(2^173 - 2^85)
 | |
| 	a176.Square().Square().Square()                           // a176 = a^(2^176 - 2^88)
 | |
| 	a176.Mul(&a88)                                            // a176 = a^(2^176 - 1)
 | |
| 	a220.SquareVal(&a176).Square().Square().Square().Square() // a220 = a^(2^181 - 2^5)
 | |
| 	a220.Square().Square().Square().Square().Square()         // a220 = a^(2^186 - 2^10)
 | |
| 	a220.Square().Square().Square().Square().Square()         // a220 = a^(2^191 - 2^15)
 | |
| 	a220.Square().Square().Square().Square().Square()         // a220 = a^(2^196 - 2^20)
 | |
| 	a220.Square().Square().Square().Square().Square()         // a220 = a^(2^201 - 2^25)
 | |
| 	a220.Square().Square().Square().Square().Square()         // a220 = a^(2^206 - 2^30)
 | |
| 	a220.Square().Square().Square().Square().Square()         // a220 = a^(2^211 - 2^35)
 | |
| 	a220.Square().Square().Square().Square().Square()         // a220 = a^(2^216 - 2^40)
 | |
| 	a220.Square().Square().Square().Square()                  // a220 = a^(2^220 - 2^44)
 | |
| 	a220.Mul(&a44)                                            // a220 = a^(2^220 - 1)
 | |
| 	a223.SquareVal(&a220).Square().Square()                   // a223 = a^(2^223 - 2^3)
 | |
| 	a223.Mul(&a3)                                             // a223 = a^(2^223 - 1)
 | |
| 
 | |
| 	f.SquareVal(&a223).Square().Square().Square().Square() // f = a^(2^228 - 2^5)
 | |
| 	f.Square().Square().Square().Square().Square()         // f = a^(2^233 - 2^10)
 | |
| 	f.Square().Square().Square().Square().Square()         // f = a^(2^238 - 2^15)
 | |
| 	f.Square().Square().Square().Square().Square()         // f = a^(2^243 - 2^20)
 | |
| 	f.Square().Square().Square()                           // f = a^(2^246 - 2^23)
 | |
| 	f.Mul(&a22)                                            // f = a^(2^246 - 2^22 - 1)
 | |
| 	f.Square().Square().Square().Square().Square()         // f = a^(2^251 - 2^27 - 2^5)
 | |
| 	f.Square()                                             // f = a^(2^252 - 2^28 - 2^6)
 | |
| 	f.Mul(&a2)                                             // f = a^(2^252 - 2^28 - 2^6 - 2^1 - 1)
 | |
| 	f.Square().Square()                                    // f = a^(2^254 - 2^30 - 2^8 - 2^3 - 2^2)
 | |
| 	//                                                     //   = a^(2^254 - 2^30 - 244)
 | |
| 	//                                                     //   = a^((p+1)/4)
 | |
| 
 | |
| 	// Ensure the calculated result is actually the square root by squaring it
 | |
| 	// and checking against the original value.
 | |
| 	var sqr FieldVal
 | |
| 	return sqr.SquareVal(f).Normalize().Equals(val.Normalize())
 | |
| }
 | |
| 
 | |
| // Square squares the field value in constant time.  The existing field value is
 | |
| // modified.  Note that this function can overflow if multiplying any of the
 | |
| // individual words exceeds a max uint32.  In practice, this means the magnitude
 | |
| // of the field must be a max of 8 to prevent overflow.
 | |
| //
 | |
| // The field value is returned to support chaining.  This enables syntax like:
 | |
| // f.Square().Mul(f2) so that f = f^2 * f2.
 | |
| //
 | |
| //	Preconditions:
 | |
| //	  - The field value MUST have a max magnitude of 8
 | |
| //	Output Normalized: No
 | |
| //	Output Max Magnitude: 1
 | |
| func (f *FieldVal) Square() *FieldVal {
 | |
| 	return f.SquareVal(f)
 | |
| }
 | |
| 
 | |
| // SquareVal squares the passed value and stores the result in f in constant
 | |
| // time.  Note that this function can overflow if multiplying any of the
 | |
| // individual words exceeds a max uint32.  In practice, this means the magnitude
 | |
| // of the field being squared must be a max of 8 to prevent overflow.
 | |
| //
 | |
| // The field value is returned to support chaining.  This enables syntax like:
 | |
| // f3.SquareVal(f).Mul(f) so that f3 = f^2 * f = f^3.
 | |
| //
 | |
| //	Preconditions:
 | |
| //	  - The input field value MUST have a max magnitude of 8
 | |
| //	Output Normalized: No
 | |
| //	Output Max Magnitude: 1
 | |
| func (f *FieldVal) SquareVal(val *FieldVal) *FieldVal {
 | |
| 	// This could be done with a couple of for loops and an array to store
 | |
| 	// the intermediate terms, but this unrolled version is significantly
 | |
| 	// faster.
 | |
| 
 | |
| 	// Terms for 2^(fieldBase*0).
 | |
| 	m := uint64(val.n[0]) * uint64(val.n[0])
 | |
| 	t0 := m & fieldBaseMask
 | |
| 
 | |
| 	// Terms for 2^(fieldBase*1).
 | |
| 	m = (m >> fieldBase) + 2*uint64(val.n[0])*uint64(val.n[1])
 | |
| 	t1 := m & fieldBaseMask
 | |
| 
 | |
| 	// Terms for 2^(fieldBase*2).
 | |
| 	m = (m >> fieldBase) +
 | |
| 		2*uint64(val.n[0])*uint64(val.n[2]) +
 | |
| 		uint64(val.n[1])*uint64(val.n[1])
 | |
| 	t2 := m & fieldBaseMask
 | |
| 
 | |
| 	// Terms for 2^(fieldBase*3).
 | |
| 	m = (m >> fieldBase) +
 | |
| 		2*uint64(val.n[0])*uint64(val.n[3]) +
 | |
| 		2*uint64(val.n[1])*uint64(val.n[2])
 | |
| 	t3 := m & fieldBaseMask
 | |
| 
 | |
| 	// Terms for 2^(fieldBase*4).
 | |
| 	m = (m >> fieldBase) +
 | |
| 		2*uint64(val.n[0])*uint64(val.n[4]) +
 | |
| 		2*uint64(val.n[1])*uint64(val.n[3]) +
 | |
| 		uint64(val.n[2])*uint64(val.n[2])
 | |
| 	t4 := m & fieldBaseMask
 | |
| 
 | |
| 	// Terms for 2^(fieldBase*5).
 | |
| 	m = (m >> fieldBase) +
 | |
| 		2*uint64(val.n[0])*uint64(val.n[5]) +
 | |
| 		2*uint64(val.n[1])*uint64(val.n[4]) +
 | |
| 		2*uint64(val.n[2])*uint64(val.n[3])
 | |
| 	t5 := m & fieldBaseMask
 | |
| 
 | |
| 	// Terms for 2^(fieldBase*6).
 | |
| 	m = (m >> fieldBase) +
 | |
| 		2*uint64(val.n[0])*uint64(val.n[6]) +
 | |
| 		2*uint64(val.n[1])*uint64(val.n[5]) +
 | |
| 		2*uint64(val.n[2])*uint64(val.n[4]) +
 | |
| 		uint64(val.n[3])*uint64(val.n[3])
 | |
| 	t6 := m & fieldBaseMask
 | |
| 
 | |
| 	// Terms for 2^(fieldBase*7).
 | |
| 	m = (m >> fieldBase) +
 | |
| 		2*uint64(val.n[0])*uint64(val.n[7]) +
 | |
| 		2*uint64(val.n[1])*uint64(val.n[6]) +
 | |
| 		2*uint64(val.n[2])*uint64(val.n[5]) +
 | |
| 		2*uint64(val.n[3])*uint64(val.n[4])
 | |
| 	t7 := m & fieldBaseMask
 | |
| 
 | |
| 	// Terms for 2^(fieldBase*8).
 | |
| 	m = (m >> fieldBase) +
 | |
| 		2*uint64(val.n[0])*uint64(val.n[8]) +
 | |
| 		2*uint64(val.n[1])*uint64(val.n[7]) +
 | |
| 		2*uint64(val.n[2])*uint64(val.n[6]) +
 | |
| 		2*uint64(val.n[3])*uint64(val.n[5]) +
 | |
| 		uint64(val.n[4])*uint64(val.n[4])
 | |
| 	t8 := m & fieldBaseMask
 | |
| 
 | |
| 	// Terms for 2^(fieldBase*9).
 | |
| 	m = (m >> fieldBase) +
 | |
| 		2*uint64(val.n[0])*uint64(val.n[9]) +
 | |
| 		2*uint64(val.n[1])*uint64(val.n[8]) +
 | |
| 		2*uint64(val.n[2])*uint64(val.n[7]) +
 | |
| 		2*uint64(val.n[3])*uint64(val.n[6]) +
 | |
| 		2*uint64(val.n[4])*uint64(val.n[5])
 | |
| 	t9 := m & fieldBaseMask
 | |
| 
 | |
| 	// Terms for 2^(fieldBase*10).
 | |
| 	m = (m >> fieldBase) +
 | |
| 		2*uint64(val.n[1])*uint64(val.n[9]) +
 | |
| 		2*uint64(val.n[2])*uint64(val.n[8]) +
 | |
| 		2*uint64(val.n[3])*uint64(val.n[7]) +
 | |
| 		2*uint64(val.n[4])*uint64(val.n[6]) +
 | |
| 		uint64(val.n[5])*uint64(val.n[5])
 | |
| 	t10 := m & fieldBaseMask
 | |
| 
 | |
| 	// Terms for 2^(fieldBase*11).
 | |
| 	m = (m >> fieldBase) +
 | |
| 		2*uint64(val.n[2])*uint64(val.n[9]) +
 | |
| 		2*uint64(val.n[3])*uint64(val.n[8]) +
 | |
| 		2*uint64(val.n[4])*uint64(val.n[7]) +
 | |
| 		2*uint64(val.n[5])*uint64(val.n[6])
 | |
| 	t11 := m & fieldBaseMask
 | |
| 
 | |
| 	// Terms for 2^(fieldBase*12).
 | |
| 	m = (m >> fieldBase) +
 | |
| 		2*uint64(val.n[3])*uint64(val.n[9]) +
 | |
| 		2*uint64(val.n[4])*uint64(val.n[8]) +
 | |
| 		2*uint64(val.n[5])*uint64(val.n[7]) +
 | |
| 		uint64(val.n[6])*uint64(val.n[6])
 | |
| 	t12 := m & fieldBaseMask
 | |
| 
 | |
| 	// Terms for 2^(fieldBase*13).
 | |
| 	m = (m >> fieldBase) +
 | |
| 		2*uint64(val.n[4])*uint64(val.n[9]) +
 | |
| 		2*uint64(val.n[5])*uint64(val.n[8]) +
 | |
| 		2*uint64(val.n[6])*uint64(val.n[7])
 | |
| 	t13 := m & fieldBaseMask
 | |
| 
 | |
| 	// Terms for 2^(fieldBase*14).
 | |
| 	m = (m >> fieldBase) +
 | |
| 		2*uint64(val.n[5])*uint64(val.n[9]) +
 | |
| 		2*uint64(val.n[6])*uint64(val.n[8]) +
 | |
| 		uint64(val.n[7])*uint64(val.n[7])
 | |
| 	t14 := m & fieldBaseMask
 | |
| 
 | |
| 	// Terms for 2^(fieldBase*15).
 | |
| 	m = (m >> fieldBase) +
 | |
| 		2*uint64(val.n[6])*uint64(val.n[9]) +
 | |
| 		2*uint64(val.n[7])*uint64(val.n[8])
 | |
| 	t15 := m & fieldBaseMask
 | |
| 
 | |
| 	// Terms for 2^(fieldBase*16).
 | |
| 	m = (m >> fieldBase) +
 | |
| 		2*uint64(val.n[7])*uint64(val.n[9]) +
 | |
| 		uint64(val.n[8])*uint64(val.n[8])
 | |
| 	t16 := m & fieldBaseMask
 | |
| 
 | |
| 	// Terms for 2^(fieldBase*17).
 | |
| 	m = (m >> fieldBase) + 2*uint64(val.n[8])*uint64(val.n[9])
 | |
| 	t17 := m & fieldBaseMask
 | |
| 
 | |
| 	// Terms for 2^(fieldBase*18).
 | |
| 	m = (m >> fieldBase) + uint64(val.n[9])*uint64(val.n[9])
 | |
| 	t18 := m & fieldBaseMask
 | |
| 
 | |
| 	// What's left is for 2^(fieldBase*19).
 | |
| 	t19 := m >> fieldBase
 | |
| 
 | |
| 	// At this point, all of the terms are grouped into their respective
 | |
| 	// base.
 | |
| 	//
 | |
| 	// Per [HAC] section 14.3.4: Reduction method of moduli of special form,
 | |
| 	// when the modulus is of the special form m = b^t - c, highly efficient
 | |
| 	// reduction can be achieved per the provided algorithm.
 | |
| 	//
 | |
| 	// The secp256k1 prime is equivalent to 2^256 - 4294968273, so it fits
 | |
| 	// this criteria.
 | |
| 	//
 | |
| 	// 4294968273 in field representation (base 2^26) is:
 | |
| 	// n[0] = 977
 | |
| 	// n[1] = 64
 | |
| 	// That is to say (2^26 * 64) + 977 = 4294968273
 | |
| 	//
 | |
| 	// Since each word is in base 26, the upper terms (t10 and up) start
 | |
| 	// at 260 bits (versus the final desired range of 256 bits), so the
 | |
| 	// field representation of 'c' from above needs to be adjusted for the
 | |
| 	// extra 4 bits by multiplying it by 2^4 = 16.  4294968273 * 16 =
 | |
| 	// 68719492368.  Thus, the adjusted field representation of 'c' is:
 | |
| 	// n[0] = 977 * 16 = 15632
 | |
| 	// n[1] = 64 * 16 = 1024
 | |
| 	// That is to say (2^26 * 1024) + 15632 = 68719492368
 | |
| 	//
 | |
| 	// To reduce the final term, t19, the entire 'c' value is needed instead
 | |
| 	// of only n[0] because there are no more terms left to handle n[1].
 | |
| 	// This means there might be some magnitude left in the upper bits that
 | |
| 	// is handled below.
 | |
| 	m = t0 + t10*15632
 | |
| 	t0 = m & fieldBaseMask
 | |
| 	m = (m >> fieldBase) + t1 + t10*1024 + t11*15632
 | |
| 	t1 = m & fieldBaseMask
 | |
| 	m = (m >> fieldBase) + t2 + t11*1024 + t12*15632
 | |
| 	t2 = m & fieldBaseMask
 | |
| 	m = (m >> fieldBase) + t3 + t12*1024 + t13*15632
 | |
| 	t3 = m & fieldBaseMask
 | |
| 	m = (m >> fieldBase) + t4 + t13*1024 + t14*15632
 | |
| 	t4 = m & fieldBaseMask
 | |
| 	m = (m >> fieldBase) + t5 + t14*1024 + t15*15632
 | |
| 	t5 = m & fieldBaseMask
 | |
| 	m = (m >> fieldBase) + t6 + t15*1024 + t16*15632
 | |
| 	t6 = m & fieldBaseMask
 | |
| 	m = (m >> fieldBase) + t7 + t16*1024 + t17*15632
 | |
| 	t7 = m & fieldBaseMask
 | |
| 	m = (m >> fieldBase) + t8 + t17*1024 + t18*15632
 | |
| 	t8 = m & fieldBaseMask
 | |
| 	m = (m >> fieldBase) + t9 + t18*1024 + t19*68719492368
 | |
| 	t9 = m & fieldMSBMask
 | |
| 	m = m >> fieldMSBBits
 | |
| 
 | |
| 	// At this point, if the magnitude is greater than 0, the overall value
 | |
| 	// is greater than the max possible 256-bit value.  In particular, it is
 | |
| 	// "how many times larger" than the max value it is.
 | |
| 	//
 | |
| 	// The algorithm presented in [HAC] section 14.3.4 repeats until the
 | |
| 	// quotient is zero.  However, due to the above, we already know at
 | |
| 	// least how many times we would need to repeat as it's the value
 | |
| 	// currently in m.  Thus we can simply multiply the magnitude by the
 | |
| 	// field representation of the prime and do a single iteration.  Notice
 | |
| 	// that nothing will be changed when the magnitude is zero, so we could
 | |
| 	// skip this in that case, however always running regardless allows it
 | |
| 	// to run in constant time.  The final result will be in the range
 | |
| 	// 0 <= result <= prime + (2^64 - c), so it is guaranteed to have a
 | |
| 	// magnitude of 1, but it is denormalized.
 | |
| 	n := t0 + m*977
 | |
| 	f.n[0] = uint32(n & fieldBaseMask)
 | |
| 	n = (n >> fieldBase) + t1 + m*64
 | |
| 	f.n[1] = uint32(n & fieldBaseMask)
 | |
| 	f.n[2] = uint32((n >> fieldBase) + t2)
 | |
| 	f.n[3] = uint32(t3)
 | |
| 	f.n[4] = uint32(t4)
 | |
| 	f.n[5] = uint32(t5)
 | |
| 	f.n[6] = uint32(t6)
 | |
| 	f.n[7] = uint32(t7)
 | |
| 	f.n[8] = uint32(t8)
 | |
| 	f.n[9] = uint32(t9)
 | |
| 
 | |
| 	return f
 | |
| }
 | |
| 
 | |
| // Inverse finds the modular multiplicative inverse of the field value in
 | |
| // constant time.  The existing field value is modified.
 | |
| //
 | |
| // The field value is returned to support chaining.  This enables syntax like:
 | |
| // f.Inverse().Mul(f2) so that f = f^-1 * f2.
 | |
| //
 | |
| //	Preconditions:
 | |
| //	  - The field value MUST have a max magnitude of 8
 | |
| //	Output Normalized: No
 | |
| //	Output Max Magnitude: 1
 | |
| func (f *FieldVal) Inverse() *FieldVal {
 | |
| 	// Fermat's little theorem states that for a nonzero number a and prime
 | |
| 	// prime p, a^(p-1) = 1 (mod p).  Since the multiplicative inverse is
 | |
| 	// a*b = 1 (mod p), it follows that b = a*a^(p-2) = a^(p-1) = 1 (mod p).
 | |
| 	// Thus, a^(p-2) is the multiplicative inverse.
 | |
| 	//
 | |
| 	// In order to efficiently compute a^(p-2), p-2 needs to be split into
 | |
| 	// a sequence of squares and multiplications that minimizes the number
 | |
| 	// of multiplications needed (since they are more costly than
 | |
| 	// squarings). Intermediate results are saved and reused as well.
 | |
| 	//
 | |
| 	// The secp256k1 prime - 2 is 2^256 - 4294968275.
 | |
| 	//
 | |
| 	// This has a cost of 258 field squarings and 33 field multiplications.
 | |
| 	var a2, a3, a4, a10, a11, a21, a42, a45, a63, a1019, a1023 FieldVal
 | |
| 	a2.SquareVal(f)
 | |
| 	a3.Mul2(&a2, f)
 | |
| 	a4.SquareVal(&a2)
 | |
| 	a10.SquareVal(&a4).Mul(&a2)
 | |
| 	a11.Mul2(&a10, f)
 | |
| 	a21.Mul2(&a10, &a11)
 | |
| 	a42.SquareVal(&a21)
 | |
| 	a45.Mul2(&a42, &a3)
 | |
| 	a63.Mul2(&a42, &a21)
 | |
| 	a1019.SquareVal(&a63).Square().Square().Square().Mul(&a11)
 | |
| 	a1023.Mul2(&a1019, &a4)
 | |
| 	f.Set(&a63)                                    // f = a^(2^6 - 1)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^11 - 32)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^16 - 1024)
 | |
| 	f.Mul(&a1023)                                  // f = a^(2^16 - 1)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^21 - 32)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^26 - 1024)
 | |
| 	f.Mul(&a1023)                                  // f = a^(2^26 - 1)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^31 - 32)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^36 - 1024)
 | |
| 	f.Mul(&a1023)                                  // f = a^(2^36 - 1)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^41 - 32)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^46 - 1024)
 | |
| 	f.Mul(&a1023)                                  // f = a^(2^46 - 1)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^51 - 32)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^56 - 1024)
 | |
| 	f.Mul(&a1023)                                  // f = a^(2^56 - 1)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^61 - 32)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^66 - 1024)
 | |
| 	f.Mul(&a1023)                                  // f = a^(2^66 - 1)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^71 - 32)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^76 - 1024)
 | |
| 	f.Mul(&a1023)                                  // f = a^(2^76 - 1)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^81 - 32)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^86 - 1024)
 | |
| 	f.Mul(&a1023)                                  // f = a^(2^86 - 1)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^91 - 32)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^96 - 1024)
 | |
| 	f.Mul(&a1023)                                  // f = a^(2^96 - 1)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^101 - 32)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^106 - 1024)
 | |
| 	f.Mul(&a1023)                                  // f = a^(2^106 - 1)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^111 - 32)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^116 - 1024)
 | |
| 	f.Mul(&a1023)                                  // f = a^(2^116 - 1)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^121 - 32)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^126 - 1024)
 | |
| 	f.Mul(&a1023)                                  // f = a^(2^126 - 1)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^131 - 32)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^136 - 1024)
 | |
| 	f.Mul(&a1023)                                  // f = a^(2^136 - 1)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^141 - 32)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^146 - 1024)
 | |
| 	f.Mul(&a1023)                                  // f = a^(2^146 - 1)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^151 - 32)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^156 - 1024)
 | |
| 	f.Mul(&a1023)                                  // f = a^(2^156 - 1)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^161 - 32)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^166 - 1024)
 | |
| 	f.Mul(&a1023)                                  // f = a^(2^166 - 1)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^171 - 32)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^176 - 1024)
 | |
| 	f.Mul(&a1023)                                  // f = a^(2^176 - 1)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^181 - 32)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^186 - 1024)
 | |
| 	f.Mul(&a1023)                                  // f = a^(2^186 - 1)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^191 - 32)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^196 - 1024)
 | |
| 	f.Mul(&a1023)                                  // f = a^(2^196 - 1)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^201 - 32)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^206 - 1024)
 | |
| 	f.Mul(&a1023)                                  // f = a^(2^206 - 1)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^211 - 32)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^216 - 1024)
 | |
| 	f.Mul(&a1023)                                  // f = a^(2^216 - 1)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^221 - 32)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^226 - 1024)
 | |
| 	f.Mul(&a1019)                                  // f = a^(2^226 - 5)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^231 - 160)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^236 - 5120)
 | |
| 	f.Mul(&a1023)                                  // f = a^(2^236 - 4097)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^241 - 131104)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^246 - 4195328)
 | |
| 	f.Mul(&a1023)                                  // f = a^(2^246 - 4194305)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^251 - 134217760)
 | |
| 	f.Square().Square().Square().Square().Square() // f = a^(2^256 - 4294968320)
 | |
| 	return f.Mul(&a45)                             // f = a^(2^256 - 4294968275) = a^(p-2)
 | |
| }
 | |
| 
 | |
| // IsGtOrEqPrimeMinusOrder returns whether or not the field value exceeds the
 | |
| // group order divided by 2 in constant time.
 | |
| //
 | |
| //	Preconditions:
 | |
| //	  - The field value MUST be normalized
 | |
| func (f *FieldVal) IsGtOrEqPrimeMinusOrder() bool {
 | |
| 	// The secp256k1 prime is equivalent to 2^256 - 4294968273 and the group
 | |
| 	// order is 2^256 - 432420386565659656852420866394968145599.  Thus,
 | |
| 	// the prime minus the group order is:
 | |
| 	// 432420386565659656852420866390673177326
 | |
| 	//
 | |
| 	// In hex that is:
 | |
| 	// 0x00000000 00000000 00000000 00000001 45512319 50b75fc4 402da172 2fc9baee
 | |
| 	//
 | |
| 	// Converting that to field representation (base 2^26) is:
 | |
| 	//
 | |
| 	// n[0] = 0x03c9baee
 | |
| 	// n[1] = 0x03685c8b
 | |
| 	// n[2] = 0x01fc4402
 | |
| 	// n[3] = 0x006542dd
 | |
| 	// n[4] = 0x01455123
 | |
| 	//
 | |
| 	// This can be verified with the following test code:
 | |
| 	//   pMinusN := new(big.Int).Sub(curveParams.P, curveParams.N)
 | |
| 	//   var fv FieldVal
 | |
| 	//   fv.SetByteSlice(pMinusN.Bytes())
 | |
| 	//   t.Logf("%x", fv.n)
 | |
| 	//
 | |
| 	//   Outputs: [3c9baee 3685c8b 1fc4402 6542dd 1455123 0 0 0 0 0]
 | |
| 	const (
 | |
| 		pMinusNWordZero  = 0x03c9baee
 | |
| 		pMinusNWordOne   = 0x03685c8b
 | |
| 		pMinusNWordTwo   = 0x01fc4402
 | |
| 		pMinusNWordThree = 0x006542dd
 | |
| 		pMinusNWordFour  = 0x01455123
 | |
| 		pMinusNWordFive  = 0x00000000
 | |
| 		pMinusNWordSix   = 0x00000000
 | |
| 		pMinusNWordSeven = 0x00000000
 | |
| 		pMinusNWordEight = 0x00000000
 | |
| 		pMinusNWordNine  = 0x00000000
 | |
| 	)
 | |
| 
 | |
| 	// The intuition here is that the value is greater than field prime minus
 | |
| 	// the group order if one of the higher individual words is greater than the
 | |
| 	// corresponding word and all higher words in the value are equal.
 | |
| 	result := constantTimeGreater(f.n[9], pMinusNWordNine)
 | |
| 	highWordsEqual := constantTimeEq(f.n[9], pMinusNWordNine)
 | |
| 	result |= highWordsEqual & constantTimeGreater(f.n[8], pMinusNWordEight)
 | |
| 	highWordsEqual &= constantTimeEq(f.n[8], pMinusNWordEight)
 | |
| 	result |= highWordsEqual & constantTimeGreater(f.n[7], pMinusNWordSeven)
 | |
| 	highWordsEqual &= constantTimeEq(f.n[7], pMinusNWordSeven)
 | |
| 	result |= highWordsEqual & constantTimeGreater(f.n[6], pMinusNWordSix)
 | |
| 	highWordsEqual &= constantTimeEq(f.n[6], pMinusNWordSix)
 | |
| 	result |= highWordsEqual & constantTimeGreater(f.n[5], pMinusNWordFive)
 | |
| 	highWordsEqual &= constantTimeEq(f.n[5], pMinusNWordFive)
 | |
| 	result |= highWordsEqual & constantTimeGreater(f.n[4], pMinusNWordFour)
 | |
| 	highWordsEqual &= constantTimeEq(f.n[4], pMinusNWordFour)
 | |
| 	result |= highWordsEqual & constantTimeGreater(f.n[3], pMinusNWordThree)
 | |
| 	highWordsEqual &= constantTimeEq(f.n[3], pMinusNWordThree)
 | |
| 	result |= highWordsEqual & constantTimeGreater(f.n[2], pMinusNWordTwo)
 | |
| 	highWordsEqual &= constantTimeEq(f.n[2], pMinusNWordTwo)
 | |
| 	result |= highWordsEqual & constantTimeGreater(f.n[1], pMinusNWordOne)
 | |
| 	highWordsEqual &= constantTimeEq(f.n[1], pMinusNWordOne)
 | |
| 	result |= highWordsEqual & constantTimeGreaterOrEq(f.n[0], pMinusNWordZero)
 | |
| 
 | |
| 	return result != 0
 | |
| }
 |