 9bdcbe0447
			
		
	
	9bdcbe0447
	
	
	
		
			
			Major integrations and fixes: - Added BACKBEAT SDK integration for P2P operation timing - Implemented beat-aware status tracking for distributed operations - Added Docker secrets support for secure license management - Resolved KACHING license validation via HTTPS/TLS - Updated docker-compose configuration for clean stack deployment - Disabled rollback policies to prevent deployment failures - Added license credential storage (CHORUS-DEV-MULTI-001) Technical improvements: - BACKBEAT P2P operation tracking with phase management - Enhanced configuration system with file-based secrets - Improved error handling for license validation - Clean separation of KACHING and CHORUS deployment stacks 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
		
			
				
	
	
		
			59 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			59 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright ©2016 The Gonum Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package mathext
 | |
| 
 | |
| import (
 | |
| 	"gonum.org/v1/gonum/mathext/internal/cephes"
 | |
| )
 | |
| 
 | |
| // GammaIncReg computes the regularized incomplete Gamma integral.
 | |
| //
 | |
| //	GammaIncReg(a,x) = (1/ Γ(a)) \int_0^x e^{-t} t^{a-1} dt
 | |
| //
 | |
| // The input argument a must be positive and x must be non-negative or GammaIncReg
 | |
| // will panic.
 | |
| //
 | |
| // See http://mathworld.wolfram.com/IncompleteGammaFunction.html
 | |
| // or https://en.wikipedia.org/wiki/Incomplete_gamma_function for more detailed
 | |
| // information.
 | |
| func GammaIncReg(a, x float64) float64 {
 | |
| 	return cephes.Igam(a, x)
 | |
| }
 | |
| 
 | |
| // GammaIncRegComp computes the complemented regularized incomplete Gamma integral.
 | |
| //
 | |
| //	GammaIncRegComp(a,x) = 1 - GammaIncReg(a,x)
 | |
| //	                     = (1/ Γ(a)) \int_x^\infty e^{-t} t^{a-1} dt
 | |
| //
 | |
| // The input argument a must be positive and x must be non-negative or
 | |
| // GammaIncRegComp will panic.
 | |
| func GammaIncRegComp(a, x float64) float64 {
 | |
| 	return cephes.IgamC(a, x)
 | |
| }
 | |
| 
 | |
| // GammaIncRegInv computes the inverse of the regularized incomplete Gamma integral. That is,
 | |
| // it returns the x such that:
 | |
| //
 | |
| //	GammaIncReg(a, x) = y
 | |
| //
 | |
| // The input argument a must be positive and y must be between 0 and 1
 | |
| // inclusive or GammaIncRegInv will panic. GammaIncRegInv should return a positive
 | |
| // number, but can return NaN if there is a failure to converge.
 | |
| func GammaIncRegInv(a, y float64) float64 {
 | |
| 	return gammaIncRegInv(a, y)
 | |
| }
 | |
| 
 | |
| // GammaIncRegCompInv computes the inverse of the complemented regularized incomplete Gamma
 | |
| // integral. That is, it returns the x such that:
 | |
| //
 | |
| //	GammaIncRegComp(a, x) = y
 | |
| //
 | |
| // The input argument a must be positive and y must be between 0 and 1
 | |
| // inclusive or GammaIncRegCompInv will panic. GammaIncRegCompInv should return a
 | |
| // positive number, but can return 0 even with non-zero y due to underflow.
 | |
| func GammaIncRegCompInv(a, y float64) float64 {
 | |
| 	return cephes.IgamI(a, y)
 | |
| }
 |