Files
CHORUS/vendor/google.golang.org/protobuf/internal/impl/encode.go
anthonyrawlins 8d9b62daf3 Phase 2: Implement Execution Environment Abstraction (v0.3.0)
This commit implements Phase 2 of the CHORUS Task Execution Engine development plan,
providing a comprehensive execution environment abstraction layer with Docker
container sandboxing support.

## New Features

### Core Sandbox Interface
- Comprehensive ExecutionSandbox interface with isolated task execution
- Support for command execution, file I/O, environment management
- Resource usage monitoring and sandbox lifecycle management
- Standardized error handling with SandboxError types and categories

### Docker Container Sandbox Implementation
- Full Docker API integration with secure container creation
- Transparent repository mounting with configurable read/write access
- Advanced security policies with capability dropping and privilege controls
- Comprehensive resource limits (CPU, memory, disk, processes, file handles)
- Support for tmpfs mounts, masked paths, and read-only bind mounts
- Container lifecycle management with proper cleanup and health monitoring

### Security & Resource Management
- Configurable security policies with SELinux, AppArmor, and Seccomp support
- Fine-grained capability management with secure defaults
- Network isolation options with configurable DNS and proxy settings
- Resource monitoring with real-time CPU, memory, and network usage tracking
- Comprehensive ulimits configuration for process and file handle limits

### Repository Integration
- Seamless repository mounting from local paths to container workspaces
- Git configuration support with user credentials and global settings
- File inclusion/exclusion patterns for selective repository access
- Configurable permissions and ownership for mounted repositories

### Testing Infrastructure
- Comprehensive test suite with 60+ test cases covering all functionality
- Docker integration tests with Alpine Linux containers (skipped in short mode)
- Mock sandbox implementation for unit testing without Docker dependencies
- Security policy validation tests with read-only filesystem enforcement
- Resource usage monitoring and cleanup verification tests

## Technical Details

### Dependencies Added
- github.com/docker/docker v28.4.0+incompatible - Docker API client
- github.com/docker/go-connections v0.6.0 - Docker connection utilities
- github.com/docker/go-units v0.5.0 - Docker units and formatting
- Associated Docker API dependencies for complete container management

### Architecture
- Interface-driven design enabling multiple sandbox implementations
- Comprehensive configuration structures for all sandbox aspects
- Resource usage tracking with detailed metrics collection
- Error handling with retryable error classification
- Proper cleanup and resource management throughout sandbox lifecycle

### Compatibility
- Maintains backward compatibility with existing CHORUS architecture
- Designed for future integration with Phase 3 Core Task Execution Engine
- Extensible design supporting additional sandbox implementations (VM, process)

This Phase 2 implementation provides the foundation for secure, isolated task
execution that will be integrated with the AI model providers from Phase 1
in the upcoming Phase 3 development.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-09-25 14:28:08 +10:00

238 lines
6.5 KiB
Go

// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package impl
import (
"math"
"sort"
"sync/atomic"
"google.golang.org/protobuf/internal/flags"
proto "google.golang.org/protobuf/proto"
piface "google.golang.org/protobuf/runtime/protoiface"
)
type marshalOptions struct {
flags piface.MarshalInputFlags
}
func (o marshalOptions) Options() proto.MarshalOptions {
return proto.MarshalOptions{
AllowPartial: true,
Deterministic: o.Deterministic(),
UseCachedSize: o.UseCachedSize(),
}
}
func (o marshalOptions) Deterministic() bool { return o.flags&piface.MarshalDeterministic != 0 }
func (o marshalOptions) UseCachedSize() bool { return o.flags&piface.MarshalUseCachedSize != 0 }
// size is protoreflect.Methods.Size.
func (mi *MessageInfo) size(in piface.SizeInput) piface.SizeOutput {
var p pointer
if ms, ok := in.Message.(*messageState); ok {
p = ms.pointer()
} else {
p = in.Message.(*messageReflectWrapper).pointer()
}
size := mi.sizePointer(p, marshalOptions{
flags: in.Flags,
})
return piface.SizeOutput{Size: size}
}
func (mi *MessageInfo) sizePointer(p pointer, opts marshalOptions) (size int) {
mi.init()
if p.IsNil() {
return 0
}
if opts.UseCachedSize() && mi.sizecacheOffset.IsValid() {
// The size cache contains the size + 1, to allow the
// zero value to be invalid, while also allowing for a
// 0 size to be cached.
if size := atomic.LoadInt32(p.Apply(mi.sizecacheOffset).Int32()); size > 0 {
return int(size - 1)
}
}
return mi.sizePointerSlow(p, opts)
}
func (mi *MessageInfo) sizePointerSlow(p pointer, opts marshalOptions) (size int) {
if flags.ProtoLegacy && mi.isMessageSet {
size = sizeMessageSet(mi, p, opts)
if mi.sizecacheOffset.IsValid() {
atomic.StoreInt32(p.Apply(mi.sizecacheOffset).Int32(), int32(size+1))
}
return size
}
if mi.extensionOffset.IsValid() {
e := p.Apply(mi.extensionOffset).Extensions()
size += mi.sizeExtensions(e, opts)
}
for _, f := range mi.orderedCoderFields {
if f.funcs.size == nil {
continue
}
fptr := p.Apply(f.offset)
if f.isPointer && fptr.Elem().IsNil() {
continue
}
size += f.funcs.size(fptr, f, opts)
}
if mi.unknownOffset.IsValid() {
if u := mi.getUnknownBytes(p); u != nil {
size += len(*u)
}
}
if mi.sizecacheOffset.IsValid() {
if size > (math.MaxInt32 - 1) {
// The size is too large for the int32 sizecache field.
// We will need to recompute the size when encoding;
// unfortunately expensive, but better than invalid output.
atomic.StoreInt32(p.Apply(mi.sizecacheOffset).Int32(), 0)
} else {
// The size cache contains the size + 1, to allow the
// zero value to be invalid, while also allowing for a
// 0 size to be cached.
atomic.StoreInt32(p.Apply(mi.sizecacheOffset).Int32(), int32(size+1))
}
}
return size
}
// marshal is protoreflect.Methods.Marshal.
func (mi *MessageInfo) marshal(in piface.MarshalInput) (out piface.MarshalOutput, err error) {
var p pointer
if ms, ok := in.Message.(*messageState); ok {
p = ms.pointer()
} else {
p = in.Message.(*messageReflectWrapper).pointer()
}
b, err := mi.marshalAppendPointer(in.Buf, p, marshalOptions{
flags: in.Flags,
})
return piface.MarshalOutput{Buf: b}, err
}
func (mi *MessageInfo) marshalAppendPointer(b []byte, p pointer, opts marshalOptions) ([]byte, error) {
mi.init()
if p.IsNil() {
return b, nil
}
if flags.ProtoLegacy && mi.isMessageSet {
return marshalMessageSet(mi, b, p, opts)
}
var err error
// The old marshaler encodes extensions at beginning.
if mi.extensionOffset.IsValid() {
e := p.Apply(mi.extensionOffset).Extensions()
// TODO: Special handling for MessageSet?
b, err = mi.appendExtensions(b, e, opts)
if err != nil {
return b, err
}
}
for _, f := range mi.orderedCoderFields {
if f.funcs.marshal == nil {
continue
}
fptr := p.Apply(f.offset)
if f.isPointer && fptr.Elem().IsNil() {
continue
}
b, err = f.funcs.marshal(b, fptr, f, opts)
if err != nil {
return b, err
}
}
if mi.unknownOffset.IsValid() && !mi.isMessageSet {
if u := mi.getUnknownBytes(p); u != nil {
b = append(b, (*u)...)
}
}
return b, nil
}
// fullyLazyExtensions returns true if we should attempt to keep extensions lazy over size and marshal.
func fullyLazyExtensions(opts marshalOptions) bool {
// When deterministic marshaling is requested, force an unmarshal for lazy
// extensions to produce a deterministic result, instead of passing through
// bytes lazily that may or may not match what Go Protobuf would produce.
return opts.flags&piface.MarshalDeterministic == 0
}
func (mi *MessageInfo) sizeExtensions(ext *map[int32]ExtensionField, opts marshalOptions) (n int) {
if ext == nil {
return 0
}
for _, x := range *ext {
xi := getExtensionFieldInfo(x.Type())
if xi.funcs.size == nil {
continue
}
if fullyLazyExtensions(opts) {
// Don't expand the extension, instead use the buffer to calculate size
if lb := x.lazyBuffer(); lb != nil {
// We got hold of the buffer, so it's still lazy.
n += len(lb)
continue
}
}
n += xi.funcs.size(x.Value(), xi.tagsize, opts)
}
return n
}
func (mi *MessageInfo) appendExtensions(b []byte, ext *map[int32]ExtensionField, opts marshalOptions) ([]byte, error) {
if ext == nil {
return b, nil
}
switch len(*ext) {
case 0:
return b, nil
case 1:
// Fast-path for one extension: Don't bother sorting the keys.
var err error
for _, x := range *ext {
xi := getExtensionFieldInfo(x.Type())
if fullyLazyExtensions(opts) {
// Don't expand the extension if it's still in wire format, instead use the buffer content.
if lb := x.lazyBuffer(); lb != nil {
b = append(b, lb...)
continue
}
}
b, err = xi.funcs.marshal(b, x.Value(), xi.wiretag, opts)
}
return b, err
default:
// Sort the keys to provide a deterministic encoding.
// Not sure this is required, but the old code does it.
keys := make([]int, 0, len(*ext))
for k := range *ext {
keys = append(keys, int(k))
}
sort.Ints(keys)
var err error
for _, k := range keys {
x := (*ext)[int32(k)]
xi := getExtensionFieldInfo(x.Type())
if fullyLazyExtensions(opts) {
// Don't expand the extension if it's still in wire format, instead use the buffer content.
if lb := x.lazyBuffer(); lb != nil {
b = append(b, lb...)
continue
}
}
b, err = xi.funcs.marshal(b, x.Value(), xi.wiretag, opts)
if err != nil {
return b, err
}
}
return b, nil
}
}