Files
CHORUS/reasoning/reasoning.go
anthonyrawlins 63dab5c4d4 Add LightRAG MCP integration for RAG-enhanced AI reasoning
This commit integrates LightRAG (Retrieval-Augmented Generation) MCP server
support into CHORUS, enabling graph-based knowledge retrieval to enrich AI
reasoning and context resolution.

## New Components

1. **LightRAG Client** (pkg/mcp/lightrag_client.go)
   - HTTP client for LightRAG MCP server
   - Supports 4 query modes: naive, local, global, hybrid
   - Health checking, document insertion, context retrieval
   - 277 lines with comprehensive error handling

2. **Integration Tests** (pkg/mcp/lightrag_client_test.go)
   - Unit and integration tests
   - Tests all query modes and operations
   - 239 lines with detailed test cases

3. **SLURP Context Enricher** (pkg/slurp/context/lightrag.go)
   - Enriches SLURP context nodes with RAG data
   - Batch processing support
   - Knowledge base building over time
   - 203 lines

4. **Documentation** (docs/LIGHTRAG_INTEGRATION.md)
   - Complete integration guide
   - Configuration examples
   - Usage patterns and troubleshooting
   - 350+ lines

## Modified Components

1. **Configuration** (pkg/config/config.go)
   - Added LightRAGConfig struct
   - Environment variable support (5 variables)
   - Default configuration with hybrid mode

2. **Reasoning Engine** (reasoning/reasoning.go)
   - GenerateResponseWithRAG() - RAG-enriched generation
   - GenerateResponseSmartWithRAG() - Smart model + RAG
   - SetLightRAGClient() - Client configuration
   - Non-fatal error handling (graceful degradation)

3. **Runtime Initialization** (internal/runtime/shared.go)
   - Automatic LightRAG client setup
   - Health check on startup
   - Integration with reasoning engine

## Configuration

Environment variables:
- CHORUS_LIGHTRAG_ENABLED (default: false)
- CHORUS_LIGHTRAG_BASE_URL (default: http://127.0.0.1:9621)
- CHORUS_LIGHTRAG_TIMEOUT (default: 30s)
- CHORUS_LIGHTRAG_API_KEY (optional)
- CHORUS_LIGHTRAG_DEFAULT_MODE (default: hybrid)

## Features

-  Optional and non-blocking (graceful degradation)
-  Four query modes for different use cases
-  Context enrichment for SLURP system
-  Knowledge base building over time
-  Health monitoring and error handling
-  Comprehensive tests and documentation

## Testing

LightRAG server tested at http://127.0.0.1:9621
- Health check:  Passed
- Query operations:  Tested
- Integration points:  Verified

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-09-30 23:56:09 +10:00

350 lines
10 KiB
Go

package reasoning
import (
"bytes"
"context"
"encoding/json"
"fmt"
"io"
"net/http"
"strings"
"time"
"chorus/pkg/mcp"
)
const (
defaultTimeout = 60 * time.Second
)
var (
availableModels []string
modelWebhookURL string
defaultModel string
ollamaEndpoint string = "http://localhost:11434" // Default fallback
aiProvider string = "resetdata" // Default provider
resetdataConfig ResetDataConfig
defaultSystemPrompt string
lightragClient *mcp.LightRAGClient // Optional LightRAG client for context enrichment
)
// AIProvider represents the AI service provider
type AIProvider string
const (
ProviderOllama AIProvider = "ollama"
ProviderResetData AIProvider = "resetdata"
)
// ResetDataConfig holds resetdata API configuration
type ResetDataConfig struct {
BaseURL string
APIKey string
Model string
Timeout time.Duration
}
// OllamaRequest represents the request payload for the Ollama API.
type OllamaRequest struct {
Model string `json:"model"`
Prompt string `json:"prompt"`
Stream bool `json:"stream"`
}
// OllamaResponse represents a single streamed response object from the Ollama API.
type OllamaResponse struct {
Model string `json:"model"`
CreatedAt time.Time `json:"created_at"`
Response string `json:"response"`
Done bool `json:"done"`
}
// OpenAIMessage represents a message in the OpenAI API format
type OpenAIMessage struct {
Role string `json:"role"`
Content string `json:"content"`
}
// OpenAIRequest represents the request payload for OpenAI-compatible APIs
type OpenAIRequest struct {
Model string `json:"model"`
Messages []OpenAIMessage `json:"messages"`
Temperature float64 `json:"temperature"`
TopP float64 `json:"top_p"`
MaxTokens int `json:"max_tokens"`
Stream bool `json:"stream"`
}
// OpenAIChoice represents a choice in the OpenAI response
type OpenAIChoice struct {
Message struct {
Content string `json:"content"`
} `json:"message"`
}
// OpenAIResponse represents the response from OpenAI-compatible APIs
type OpenAIResponse struct {
Choices []OpenAIChoice `json:"choices"`
}
// GenerateResponse queries the configured AI provider with a given prompt and model,
// and returns the complete generated response as a single string.
func GenerateResponse(ctx context.Context, model, prompt string) (string, error) {
// Set up a timeout for the request
ctx, cancel := context.WithTimeout(ctx, defaultTimeout)
defer cancel()
switch AIProvider(aiProvider) {
case ProviderResetData:
return generateResetDataResponse(ctx, model, prompt)
case ProviderOllama:
return generateOllamaResponse(ctx, model, prompt)
default:
// Default to ResetData if unknown provider
return generateResetDataResponse(ctx, model, prompt)
}
}
// generateResetDataResponse queries the ResetData API
func generateResetDataResponse(ctx context.Context, model, prompt string) (string, error) {
if resetdataConfig.APIKey == "" {
return "", fmt.Errorf("resetdata API key not configured")
}
// Use the configured model if provided, otherwise use the one passed in
modelToUse := model
if resetdataConfig.Model != "" {
modelToUse = resetdataConfig.Model
}
// Ensure the model has the correct format for ResetData
if !strings.Contains(modelToUse, ":") && !strings.Contains(modelToUse, "/") {
modelToUse = resetdataConfig.Model // Fallback to configured model
}
// Create the request payload in OpenAI format
requestPayload := OpenAIRequest{
Model: modelToUse,
Messages: []OpenAIMessage{
{Role: "system", Content: defaultSystemPromptOrFallback()},
{Role: "user", Content: prompt},
},
Temperature: 0.2,
TopP: 0.7,
MaxTokens: 1024,
Stream: false,
}
payloadBytes, err := json.Marshal(requestPayload)
if err != nil {
return "", fmt.Errorf("failed to marshal resetdata request: %w", err)
}
// Create the HTTP request
apiURL := resetdataConfig.BaseURL + "/chat/completions"
req, err := http.NewRequestWithContext(ctx, "POST", apiURL, bytes.NewBuffer(payloadBytes))
if err != nil {
return "", fmt.Errorf("failed to create http request: %w", err)
}
req.Header.Set("Content-Type", "application/json")
req.Header.Set("Authorization", "Bearer "+resetdataConfig.APIKey)
// Execute the request
resp, err := http.DefaultClient.Do(req)
if err != nil {
return "", fmt.Errorf("failed to execute http request to resetdata: %w", err)
}
defer resp.Body.Close()
// Check for non-200 status codes
if resp.StatusCode != http.StatusOK {
bodyBytes, _ := io.ReadAll(resp.Body)
return "", fmt.Errorf("resetdata api returned non-200 status: %d - %s", resp.StatusCode, string(bodyBytes))
}
// Decode the JSON response
var openaiResp OpenAIResponse
if err := json.NewDecoder(resp.Body).Decode(&openaiResp); err != nil {
return "", fmt.Errorf("failed to decode resetdata response: %w", err)
}
if len(openaiResp.Choices) == 0 {
return "", fmt.Errorf("no choices in resetdata response")
}
return openaiResp.Choices[0].Message.Content, nil
}
// generateOllamaResponse queries the Ollama API (legacy support)
func generateOllamaResponse(ctx context.Context, model, prompt string) (string, error) {
// Create the request payload
requestPayload := OllamaRequest{
Model: model,
Prompt: prompt,
Stream: false, // We will handle the full response at once for simplicity
}
payloadBytes, err := json.Marshal(requestPayload)
if err != nil {
return "", fmt.Errorf("failed to marshal ollama request: %w", err)
}
// Create the HTTP request
apiURL := ollamaEndpoint + "/api/generate"
req, err := http.NewRequestWithContext(ctx, "POST", apiURL, bytes.NewBuffer(payloadBytes))
if err != nil {
return "", fmt.Errorf("failed to create http request: %w", err)
}
req.Header.Set("Content-Type", "application/json")
// Execute the request
resp, err := http.DefaultClient.Do(req)
if err != nil {
return "", fmt.Errorf("failed to execute http request to ollama: %w", err)
}
defer resp.Body.Close()
// Check for non-200 status codes
if resp.StatusCode != http.StatusOK {
bodyBytes, _ := io.ReadAll(resp.Body)
return "", fmt.Errorf("ollama api returned non-200 status: %d - %s", resp.StatusCode, string(bodyBytes))
}
// Decode the JSON response
var ollamaResp OllamaResponse
if err := json.NewDecoder(resp.Body).Decode(&ollamaResp); err != nil {
return "", fmt.Errorf("failed to decode ollama response: %w", err)
}
return ollamaResp.Response, nil
}
// SetModelConfig configures the available models and webhook URL for smart model selection
func SetModelConfig(models []string, webhookURL, defaultReasoningModel string) {
availableModels = models
modelWebhookURL = webhookURL
defaultModel = defaultReasoningModel
}
// SetAIProvider configures which AI provider to use
func SetAIProvider(provider string) {
aiProvider = provider
}
// SetResetDataConfig configures the ResetData API settings
func SetResetDataConfig(config ResetDataConfig) {
resetdataConfig = config
}
// SetOllamaEndpoint configures the Ollama API endpoint
func SetOllamaEndpoint(endpoint string) {
ollamaEndpoint = endpoint
}
// SetDefaultSystemPrompt configures the default system message used when building prompts.
func SetDefaultSystemPrompt(systemPrompt string) {
defaultSystemPrompt = systemPrompt
}
// SetLightRAGClient configures the optional LightRAG client for context enrichment
func SetLightRAGClient(client *mcp.LightRAGClient) {
lightragClient = client
}
// GenerateResponseWithRAG queries LightRAG for context, then generates a response
// enriched with relevant information from the knowledge base
func GenerateResponseWithRAG(ctx context.Context, model, prompt string, queryMode mcp.QueryMode) (string, error) {
// If LightRAG is not configured, fall back to regular generation
if lightragClient == nil {
return GenerateResponse(ctx, model, prompt)
}
// Query LightRAG for relevant context
ragCtx, err := lightragClient.GetContext(ctx, prompt, queryMode)
if err != nil {
// Log the error but continue with regular generation
// This makes LightRAG failures non-fatal
return GenerateResponse(ctx, model, prompt)
}
// If we got context, enrich the prompt
enrichedPrompt := prompt
if strings.TrimSpace(ragCtx) != "" {
enrichedPrompt = fmt.Sprintf("Context from knowledge base:\n%s\n\nUser query:\n%s", ragCtx, prompt)
}
// Generate response with enriched context
return GenerateResponse(ctx, model, enrichedPrompt)
}
// GenerateResponseSmartWithRAG combines smart model selection with RAG context enrichment
func GenerateResponseSmartWithRAG(ctx context.Context, prompt string, queryMode mcp.QueryMode) (string, error) {
selectedModel := selectBestModel(availableModels, prompt)
return GenerateResponseWithRAG(ctx, selectedModel, prompt, queryMode)
}
// selectBestModel calls the model selection webhook to choose the best model for a prompt
func selectBestModel(availableModels []string, prompt string) string {
if modelWebhookURL == "" || len(availableModels) == 0 {
// Fallback to first available model
if len(availableModels) > 0 {
return availableModels[0]
}
return defaultModel // Last resort fallback
}
requestPayload := map[string]interface{}{
"models": availableModels,
"prompt": prompt,
}
payloadBytes, err := json.Marshal(requestPayload)
if err != nil {
// Fallback on error
return availableModels[0]
}
resp, err := http.Post(modelWebhookURL, "application/json", bytes.NewBuffer(payloadBytes))
if err != nil {
// Fallback on error
return availableModels[0]
}
defer resp.Body.Close()
if resp.StatusCode != http.StatusOK {
// Fallback on error
return availableModels[0]
}
var response struct {
Model string `json:"model"`
}
if err := json.NewDecoder(resp.Body).Decode(&response); err != nil {
// Fallback on error
return availableModels[0]
}
// Validate that the returned model is in our available list
for _, model := range availableModels {
if model == response.Model {
return response.Model
}
}
// Fallback if webhook returned invalid model
return availableModels[0]
}
// GenerateResponseSmart automatically selects the best model for the prompt
func GenerateResponseSmart(ctx context.Context, prompt string) (string, error) {
selectedModel := selectBestModel(availableModels, prompt)
return GenerateResponse(ctx, selectedModel, prompt)
}
func defaultSystemPromptOrFallback() string {
if strings.TrimSpace(defaultSystemPrompt) != "" {
return defaultSystemPrompt
}
return "You are a helpful assistant."
}