Files
CHORUS/vendor/gonum.org/v1/gonum/mathext/gamma_inc.go
anthonyrawlins 9bdcbe0447 Integrate BACKBEAT SDK and resolve KACHING license validation
Major integrations and fixes:
- Added BACKBEAT SDK integration for P2P operation timing
- Implemented beat-aware status tracking for distributed operations
- Added Docker secrets support for secure license management
- Resolved KACHING license validation via HTTPS/TLS
- Updated docker-compose configuration for clean stack deployment
- Disabled rollback policies to prevent deployment failures
- Added license credential storage (CHORUS-DEV-MULTI-001)

Technical improvements:
- BACKBEAT P2P operation tracking with phase management
- Enhanced configuration system with file-based secrets
- Improved error handling for license validation
- Clean separation of KACHING and CHORUS deployment stacks

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-09-06 07:56:26 +10:00

59 lines
2.0 KiB
Go

// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mathext
import (
"gonum.org/v1/gonum/mathext/internal/cephes"
)
// GammaIncReg computes the regularized incomplete Gamma integral.
//
// GammaIncReg(a,x) = (1/ Γ(a)) \int_0^x e^{-t} t^{a-1} dt
//
// The input argument a must be positive and x must be non-negative or GammaIncReg
// will panic.
//
// See http://mathworld.wolfram.com/IncompleteGammaFunction.html
// or https://en.wikipedia.org/wiki/Incomplete_gamma_function for more detailed
// information.
func GammaIncReg(a, x float64) float64 {
return cephes.Igam(a, x)
}
// GammaIncRegComp computes the complemented regularized incomplete Gamma integral.
//
// GammaIncRegComp(a,x) = 1 - GammaIncReg(a,x)
// = (1/ Γ(a)) \int_x^\infty e^{-t} t^{a-1} dt
//
// The input argument a must be positive and x must be non-negative or
// GammaIncRegComp will panic.
func GammaIncRegComp(a, x float64) float64 {
return cephes.IgamC(a, x)
}
// GammaIncRegInv computes the inverse of the regularized incomplete Gamma integral. That is,
// it returns the x such that:
//
// GammaIncReg(a, x) = y
//
// The input argument a must be positive and y must be between 0 and 1
// inclusive or GammaIncRegInv will panic. GammaIncRegInv should return a positive
// number, but can return NaN if there is a failure to converge.
func GammaIncRegInv(a, y float64) float64 {
return gammaIncRegInv(a, y)
}
// GammaIncRegCompInv computes the inverse of the complemented regularized incomplete Gamma
// integral. That is, it returns the x such that:
//
// GammaIncRegComp(a, x) = y
//
// The input argument a must be positive and y must be between 0 and 1
// inclusive or GammaIncRegCompInv will panic. GammaIncRegCompInv should return a
// positive number, but can return 0 even with non-zero y due to underflow.
func GammaIncRegCompInv(a, y float64) float64 {
return cephes.IgamI(a, y)
}