Files
CHORUS/vendor/github.com/libp2p/go-libp2p-kbucket/table.go
anthonyrawlins 9bdcbe0447 Integrate BACKBEAT SDK and resolve KACHING license validation
Major integrations and fixes:
- Added BACKBEAT SDK integration for P2P operation timing
- Implemented beat-aware status tracking for distributed operations
- Added Docker secrets support for secure license management
- Resolved KACHING license validation via HTTPS/TLS
- Updated docker-compose configuration for clean stack deployment
- Disabled rollback policies to prevent deployment failures
- Added license credential storage (CHORUS-DEV-MULTI-001)

Technical improvements:
- BACKBEAT P2P operation tracking with phase management
- Enhanced configuration system with file-based secrets
- Improved error handling for license validation
- Clean separation of KACHING and CHORUS deployment stacks

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-09-06 07:56:26 +10:00

571 lines
17 KiB
Go

// Package kbucket implements a kademlia 'k-bucket' routing table.
package kbucket
import (
"context"
"errors"
"fmt"
"sync"
"time"
"github.com/libp2p/go-libp2p/core/peer"
"github.com/libp2p/go-libp2p/core/peerstore"
"github.com/libp2p/go-libp2p-kbucket/peerdiversity"
logging "github.com/ipfs/go-log"
)
var log = logging.Logger("table")
var ErrPeerRejectedHighLatency = errors.New("peer rejected; latency too high")
var ErrPeerRejectedNoCapacity = errors.New("peer rejected; insufficient capacity")
// RoutingTable defines the routing table.
type RoutingTable struct {
// the routing table context
ctx context.Context
// function to cancel the RT context
ctxCancel context.CancelFunc
// ID of the local peer
local ID
// Blanket lock, refine later for better performance
tabLock sync.RWMutex
// latency metrics
metrics peerstore.Metrics
// Maximum acceptable latency for peers in this cluster
maxLatency time.Duration
// kBuckets define all the fingers to other nodes.
buckets []*bucket
bucketsize int
cplRefreshLk sync.RWMutex
cplRefreshedAt map[uint]time.Time
// notification functions
PeerRemoved func(peer.ID)
PeerAdded func(peer.ID)
// usefulnessGracePeriod is the maximum grace period we will give to a
// peer in the bucket to be useful to us, failing which, we will evict
// it to make place for a new peer if the bucket is full
usefulnessGracePeriod time.Duration
df *peerdiversity.Filter
}
// NewRoutingTable creates a new routing table with a given bucketsize, local ID, and latency tolerance.
func NewRoutingTable(bucketsize int, localID ID, latency time.Duration, m peerstore.Metrics, usefulnessGracePeriod time.Duration,
df *peerdiversity.Filter) (*RoutingTable, error) {
rt := &RoutingTable{
buckets: []*bucket{newBucket()},
bucketsize: bucketsize,
local: localID,
maxLatency: latency,
metrics: m,
cplRefreshedAt: make(map[uint]time.Time),
PeerRemoved: func(peer.ID) {},
PeerAdded: func(peer.ID) {},
usefulnessGracePeriod: usefulnessGracePeriod,
df: df,
}
rt.ctx, rt.ctxCancel = context.WithCancel(context.Background())
return rt, nil
}
// Close shuts down the Routing Table & all associated processes.
// It is safe to call this multiple times.
func (rt *RoutingTable) Close() error {
rt.ctxCancel()
return nil
}
// NPeersForCpl returns the number of peers we have for a given Cpl
func (rt *RoutingTable) NPeersForCpl(cpl uint) int {
rt.tabLock.RLock()
defer rt.tabLock.RUnlock()
// it's in the last bucket
if int(cpl) >= len(rt.buckets)-1 {
count := 0
b := rt.buckets[len(rt.buckets)-1]
for _, p := range b.peers() {
if CommonPrefixLen(rt.local, p.dhtId) == int(cpl) {
count++
}
}
return count
} else {
return rt.buckets[cpl].len()
}
}
// UsefulNewPeer verifies whether the given peer.ID would be a good fit for the
// routing table. It returns true if the peer isn't in the routing table yet, if
// the bucket corresponding to peer.ID isn't full, if it contains replaceable
// peers or if it is the last bucket and adding a peer would unfold it.
func (rt *RoutingTable) UsefulNewPeer(p peer.ID) bool {
rt.tabLock.RLock()
defer rt.tabLock.RUnlock()
// bucket corresponding to p
bucketID := rt.bucketIdForPeer(p)
bucket := rt.buckets[bucketID]
if bucket.getPeer(p) != nil {
// peer already exists in the routing table, so it isn't useful
return false
}
// bucket isn't full
if bucket.len() < rt.bucketsize {
return true
}
// bucket is full, check if it contains replaceable peers
for e := bucket.list.Front(); e != nil; e = e.Next() {
peer := e.Value.(*PeerInfo)
if peer.replaceable {
// at least 1 peer is replaceable
return true
}
}
// the last bucket potentially contains peer ids with different CPL,
// and can be split in 2 buckets if needed
if bucketID == len(rt.buckets)-1 {
peers := bucket.peers()
cpl := CommonPrefixLen(rt.local, ConvertPeerID(p))
for _, peer := range peers {
// if at least 2 peers have a different CPL, the new peer is
// useful and will trigger a bucket split
if CommonPrefixLen(rt.local, peer.dhtId) != cpl {
return true
}
}
}
// the appropriate bucket is full of non replaceable peers
return false
}
// TryAddPeer tries to add a peer to the Routing table.
// If the peer ALREADY exists in the Routing Table and has been queried before, this call is a no-op.
// If the peer ALREADY exists in the Routing Table but hasn't been queried before, we set it's LastUsefulAt value to
// the current time. This needs to done because we don't mark peers as "Useful"(by setting the LastUsefulAt value)
// when we first connect to them.
//
// If the peer is a queryPeer i.e. we queried it or it queried us, we set the LastSuccessfulOutboundQuery to the current time.
// If the peer is just a peer that we connect to/it connected to us without any DHT query, we consider it as having
// no LastSuccessfulOutboundQuery.
//
//
// If the logical bucket to which the peer belongs is full and it's not the last bucket, we try to replace an existing peer
// whose LastSuccessfulOutboundQuery is above the maximum allowed threshold in that bucket with the new peer.
// If no such peer exists in that bucket, we do NOT add the peer to the Routing Table and return error "ErrPeerRejectedNoCapacity".
// TryAddPeer returns a boolean value set to true if the peer was newly added to the Routing Table, false otherwise.
// It also returns any error that occurred while adding the peer to the Routing Table. If the error is not nil,
// the boolean value will ALWAYS be false i.e. the peer wont be added to the Routing Table it it's not already there.
//
// A return value of false with error=nil indicates that the peer ALREADY exists in the Routing Table.
func (rt *RoutingTable) TryAddPeer(p peer.ID, queryPeer bool, isReplaceable bool) (bool, error) {
rt.tabLock.Lock()
defer rt.tabLock.Unlock()
return rt.addPeer(p, queryPeer, isReplaceable)
}
// locking is the responsibility of the caller
func (rt *RoutingTable) addPeer(p peer.ID, queryPeer bool, isReplaceable bool) (bool, error) {
bucketID := rt.bucketIdForPeer(p)
bucket := rt.buckets[bucketID]
now := time.Now()
var lastUsefulAt time.Time
if queryPeer {
lastUsefulAt = now
}
// peer already exists in the Routing Table.
if peerInfo := bucket.getPeer(p); peerInfo != nil {
// if we're querying the peer first time after adding it, let's give it a
// usefulness bump. This will ONLY happen once.
if peerInfo.LastUsefulAt.IsZero() && queryPeer {
peerInfo.LastUsefulAt = lastUsefulAt
}
return false, nil
}
// peer's latency threshold is NOT acceptable
if rt.metrics.LatencyEWMA(p) > rt.maxLatency {
// Connection doesnt meet requirements, skip!
return false, ErrPeerRejectedHighLatency
}
// add it to the diversity filter for now.
// if we aren't able to find a place for the peer in the table,
// we will simply remove it from the Filter later.
if rt.df != nil {
if !rt.df.TryAdd(p) {
return false, errors.New("peer rejected by the diversity filter")
}
}
// We have enough space in the bucket (whether spawned or grouped).
if bucket.len() < rt.bucketsize {
bucket.pushFront(&PeerInfo{
Id: p,
LastUsefulAt: lastUsefulAt,
LastSuccessfulOutboundQueryAt: now,
AddedAt: now,
dhtId: ConvertPeerID(p),
replaceable: isReplaceable,
})
rt.PeerAdded(p)
return true, nil
}
if bucketID == len(rt.buckets)-1 {
// if the bucket is too large and this is the last bucket (i.e. wildcard), unfold it.
rt.nextBucket()
// the structure of the table has changed, so let's recheck if the peer now has a dedicated bucket.
bucketID = rt.bucketIdForPeer(p)
bucket = rt.buckets[bucketID]
// push the peer only if the bucket isn't overflowing after slitting
if bucket.len() < rt.bucketsize {
bucket.pushFront(&PeerInfo{
Id: p,
LastUsefulAt: lastUsefulAt,
LastSuccessfulOutboundQueryAt: now,
AddedAt: now,
dhtId: ConvertPeerID(p),
replaceable: isReplaceable,
})
rt.PeerAdded(p)
return true, nil
}
}
// the bucket to which the peer belongs is full. Let's try to find a peer
// in that bucket which is replaceable.
// we don't really need a stable sort here as it dosen't matter which peer we evict
// as long as it's a replaceable peer.
replaceablePeer := bucket.min(func(p1 *PeerInfo, p2 *PeerInfo) bool {
return p1.replaceable
})
if replaceablePeer != nil && replaceablePeer.replaceable {
// we found a replaceable peer, let's replace it with the new peer.
// add new peer to the bucket. needs to happen before we remove the replaceable peer
// as if the bucket size is 1, we will end up removing the only peer, and deleting
// the bucket.
bucket.pushFront(&PeerInfo{
Id: p,
LastUsefulAt: lastUsefulAt,
LastSuccessfulOutboundQueryAt: now,
AddedAt: now,
dhtId: ConvertPeerID(p),
replaceable: isReplaceable,
})
rt.PeerAdded(p)
// remove the replaceable peer
rt.removePeer(replaceablePeer.Id)
return true, nil
}
// we weren't able to find place for the peer, remove it from the filter state.
if rt.df != nil {
rt.df.Remove(p)
}
return false, ErrPeerRejectedNoCapacity
}
// MarkAllPeersIrreplaceable marks all peers in the routing table as irreplaceable
// This means that we will never replace an existing peer in the table to make space for a new peer.
// However, they can still be removed by calling the `RemovePeer` API.
func (rt *RoutingTable) MarkAllPeersIrreplaceable() {
rt.tabLock.Lock()
defer rt.tabLock.Unlock()
for i := range rt.buckets {
b := rt.buckets[i]
b.updateAllWith(func(p *PeerInfo) {
p.replaceable = false
})
}
}
// GetPeerInfos returns the peer information that we've stored in the buckets
func (rt *RoutingTable) GetPeerInfos() []PeerInfo {
rt.tabLock.RLock()
defer rt.tabLock.RUnlock()
var pis []PeerInfo
for _, b := range rt.buckets {
pis = append(pis, b.peers()...)
}
return pis
}
// UpdateLastSuccessfulOutboundQueryAt updates the LastSuccessfulOutboundQueryAt time of the peer.
// Returns true if the update was successful, false otherwise.
func (rt *RoutingTable) UpdateLastSuccessfulOutboundQueryAt(p peer.ID, t time.Time) bool {
rt.tabLock.Lock()
defer rt.tabLock.Unlock()
bucketID := rt.bucketIdForPeer(p)
bucket := rt.buckets[bucketID]
if pc := bucket.getPeer(p); pc != nil {
pc.LastSuccessfulOutboundQueryAt = t
return true
}
return false
}
// UpdateLastUsefulAt updates the LastUsefulAt time of the peer.
// Returns true if the update was successful, false otherwise.
func (rt *RoutingTable) UpdateLastUsefulAt(p peer.ID, t time.Time) bool {
rt.tabLock.Lock()
defer rt.tabLock.Unlock()
bucketID := rt.bucketIdForPeer(p)
bucket := rt.buckets[bucketID]
if pc := bucket.getPeer(p); pc != nil {
pc.LastUsefulAt = t
return true
}
return false
}
// RemovePeer should be called when the caller is sure that a peer is not useful for queries.
// For eg: the peer could have stopped supporting the DHT protocol.
// It evicts the peer from the Routing Table.
func (rt *RoutingTable) RemovePeer(p peer.ID) {
rt.tabLock.Lock()
defer rt.tabLock.Unlock()
rt.removePeer(p)
}
// locking is the responsibility of the caller
func (rt *RoutingTable) removePeer(p peer.ID) bool {
bucketID := rt.bucketIdForPeer(p)
bucket := rt.buckets[bucketID]
if bucket.remove(p) {
if rt.df != nil {
rt.df.Remove(p)
}
for {
lastBucketIndex := len(rt.buckets) - 1
// remove the last bucket if it's empty and it isn't the only bucket we have
if len(rt.buckets) > 1 && rt.buckets[lastBucketIndex].len() == 0 {
rt.buckets[lastBucketIndex] = nil
rt.buckets = rt.buckets[:lastBucketIndex]
} else if len(rt.buckets) >= 2 && rt.buckets[lastBucketIndex-1].len() == 0 {
// if the second last bucket just became empty, remove and replace it with the last bucket.
rt.buckets[lastBucketIndex-1] = rt.buckets[lastBucketIndex]
rt.buckets[lastBucketIndex] = nil
rt.buckets = rt.buckets[:lastBucketIndex]
} else {
break
}
}
// peer removed callback
rt.PeerRemoved(p)
return true
}
return false
}
func (rt *RoutingTable) nextBucket() {
// This is the last bucket, which allegedly is a mixed bag containing peers not belonging in dedicated (unfolded) buckets.
// _allegedly_ is used here to denote that *all* peers in the last bucket might feasibly belong to another bucket.
// This could happen if e.g. we've unfolded 4 buckets, and all peers in folded bucket 5 really belong in bucket 8.
bucket := rt.buckets[len(rt.buckets)-1]
newBucket := bucket.split(len(rt.buckets)-1, rt.local)
rt.buckets = append(rt.buckets, newBucket)
// The newly formed bucket still contains too many peers. We probably just unfolded a empty bucket.
if newBucket.len() >= rt.bucketsize {
// Keep unfolding the table until the last bucket is not overflowing.
rt.nextBucket()
}
}
// Find a specific peer by ID or return nil
func (rt *RoutingTable) Find(id peer.ID) peer.ID {
srch := rt.NearestPeers(ConvertPeerID(id), 1)
if len(srch) == 0 || srch[0] != id {
return ""
}
return srch[0]
}
// NearestPeer returns a single peer that is nearest to the given ID
func (rt *RoutingTable) NearestPeer(id ID) peer.ID {
peers := rt.NearestPeers(id, 1)
if len(peers) > 0 {
return peers[0]
}
log.Debugf("NearestPeer: Returning nil, table size = %d", rt.Size())
return ""
}
// NearestPeers returns a list of the 'count' closest peers to the given ID
func (rt *RoutingTable) NearestPeers(id ID, count int) []peer.ID {
// This is the number of bits _we_ share with the key. All peers in this
// bucket share cpl bits with us and will therefore share at least cpl+1
// bits with the given key. +1 because both the target and all peers in
// this bucket differ from us in the cpl bit.
cpl := CommonPrefixLen(id, rt.local)
// It's assumed that this also protects the buckets.
rt.tabLock.RLock()
// Get bucket index or last bucket
if cpl >= len(rt.buckets) {
cpl = len(rt.buckets) - 1
}
pds := peerDistanceSorter{
peers: make([]peerDistance, 0, count+rt.bucketsize),
target: id,
}
// Add peers from the target bucket (cpl+1 shared bits).
pds.appendPeersFromList(rt.buckets[cpl].list)
// If we're short, add peers from all buckets to the right. All buckets
// to the right share exactly cpl bits (as opposed to the cpl+1 bits
// shared by the peers in the cpl bucket).
//
// This is, unfortunately, less efficient than we'd like. We will switch
// to a trie implementation eventually which will allow us to find the
// closest N peers to any target key.
if pds.Len() < count {
for i := cpl + 1; i < len(rt.buckets); i++ {
pds.appendPeersFromList(rt.buckets[i].list)
}
}
// If we're still short, add in buckets that share _fewer_ bits. We can
// do this bucket by bucket because each bucket will share 1 fewer bit
// than the last.
//
// * bucket cpl-1: cpl-1 shared bits.
// * bucket cpl-2: cpl-2 shared bits.
// ...
for i := cpl - 1; i >= 0 && pds.Len() < count; i-- {
pds.appendPeersFromList(rt.buckets[i].list)
}
rt.tabLock.RUnlock()
// Sort by distance to local peer
pds.sort()
if count < pds.Len() {
pds.peers = pds.peers[:count]
}
out := make([]peer.ID, 0, pds.Len())
for _, p := range pds.peers {
out = append(out, p.p)
}
return out
}
// Size returns the total number of peers in the routing table
func (rt *RoutingTable) Size() int {
var tot int
rt.tabLock.RLock()
for _, buck := range rt.buckets {
tot += buck.len()
}
rt.tabLock.RUnlock()
return tot
}
// ListPeers takes a RoutingTable and returns a list of all peers from all buckets in the table.
func (rt *RoutingTable) ListPeers() []peer.ID {
rt.tabLock.RLock()
defer rt.tabLock.RUnlock()
var peers []peer.ID
for _, buck := range rt.buckets {
peers = append(peers, buck.peerIds()...)
}
return peers
}
// Print prints a descriptive statement about the provided RoutingTable
func (rt *RoutingTable) Print() {
fmt.Printf("Routing Table, bs = %d, Max latency = %d\n", rt.bucketsize, rt.maxLatency)
rt.tabLock.RLock()
for i, b := range rt.buckets {
fmt.Printf("\tbucket: %d\n", i)
for e := b.list.Front(); e != nil; e = e.Next() {
p := e.Value.(*PeerInfo).Id
fmt.Printf("\t\t- %s %s\n", p.String(), rt.metrics.LatencyEWMA(p).String())
}
}
rt.tabLock.RUnlock()
}
// GetDiversityStats returns the diversity stats for the Routing Table if a diversity Filter
// is configured.
func (rt *RoutingTable) GetDiversityStats() []peerdiversity.CplDiversityStats {
if rt.df != nil {
return rt.df.GetDiversityStats()
}
return nil
}
// the caller is responsible for the locking
func (rt *RoutingTable) bucketIdForPeer(p peer.ID) int {
peerID := ConvertPeerID(p)
cpl := CommonPrefixLen(peerID, rt.local)
bucketID := cpl
if bucketID >= len(rt.buckets) {
bucketID = len(rt.buckets) - 1
}
return bucketID
}
// maxCommonPrefix returns the maximum common prefix length between any peer in
// the table and the current peer.
func (rt *RoutingTable) maxCommonPrefix() uint {
rt.tabLock.RLock()
defer rt.tabLock.RUnlock()
for i := len(rt.buckets) - 1; i >= 0; i-- {
if rt.buckets[i].len() > 0 {
return rt.buckets[i].maxCommonPrefix(rt.local)
}
}
return 0
}