Files
CHORUS/vendor/github.com/blevesearch/geo/geojson/geojson_s2_util.go
anthonyrawlins 9bdcbe0447 Integrate BACKBEAT SDK and resolve KACHING license validation
Major integrations and fixes:
- Added BACKBEAT SDK integration for P2P operation timing
- Implemented beat-aware status tracking for distributed operations
- Added Docker secrets support for secure license management
- Resolved KACHING license validation via HTTPS/TLS
- Updated docker-compose configuration for clean stack deployment
- Disabled rollback policies to prevent deployment failures
- Added license credential storage (CHORUS-DEV-MULTI-001)

Technical improvements:
- BACKBEAT P2P operation tracking with phase management
- Enhanced configuration system with file-based secrets
- Improved error handling for license validation
- Clean separation of KACHING and CHORUS deployment stacks

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-09-06 07:56:26 +10:00

333 lines
9.0 KiB
Go

// Copyright (c) 2022 Couchbase, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package geojson
import (
"strconv"
"strings"
index "github.com/blevesearch/bleve_index_api"
"github.com/blevesearch/geo/s1"
"github.com/blevesearch/geo/s2"
)
// ------------------------------------------------------------------------
// project the point to all of the linestrings and check if
// any of the projections are equal to the point.
func polylineIntersectsPoint(pls []*s2.Polyline,
point *s2.Point) bool {
for _, pl := range pls {
closest, _ := pl.Project(*point)
if closest.ApproxEqual(*point) {
return true
}
}
return false
}
// check if any of the polyline vertices lie inside or
// on the boundary of any of the polygons. Then check if
// any of the polylines intersect with any of the edges of
// the polygons
func polylineIntersectsPolygons(pls []*s2.Polyline,
s2pgns []*s2.Polygon) bool {
idx := s2.NewShapeIndex()
for _, pgn := range s2pgns {
idx.Add(pgn)
}
containsQuery := s2.NewContainsPointQuery(idx, s2.VertexModelClosed)
for _, pl := range pls {
for _, point := range *pl {
// Precheck points within the bounds of the polygon
// and for small polygons, check if the point is contained
for _, s2pgn := range s2pgns {
if !s2pgn.PointWithinBound(point) {
continue
}
if small, inside := s2pgn.SmallPolygonContainsPoint(point); small {
if inside {
return true
}
}
}
if containsQuery.Contains(point) {
return true
}
}
}
for _, pl := range pls {
for _, s2pgn := range s2pgns {
for i := 0; i < s2pgn.NumEdges(); i++ {
edgeB := s2pgn.Edge(i)
latLng1 := s2.LatLngFromPoint(edgeB.V0)
latLng2 := s2.LatLngFromPoint(edgeB.V1)
pl2 := s2.PolylineFromLatLngs([]s2.LatLng{latLng1, latLng2})
if pl.Intersects(pl2) {
return true
}
}
}
}
return false
}
// check if the point is contained within the polygon.
// polygon contains point will consider vertices to be outside
// so we create a shape index and query it instead
// s2.VertexModelClosed will not consider points on the edges, so
// behaviour there is arbitrary
func polygonsIntersectsPoint(s2pgns []*s2.Polygon,
point *s2.Point) bool {
idx := s2.NewShapeIndex()
for _, pgn := range s2pgns {
if !pgn.PointWithinBound(*point) {
continue
}
// We don't early exit here because the point may be contained
// on the vertices of the polygon, which is not considered
if small, inside := pgn.SmallPolygonContainsPoint(*point); small {
if inside {
return true
}
}
idx.Add(pgn)
}
if idx.Len() == 0 {
return false
}
return s2.NewContainsPointQuery(idx, s2.VertexModelClosed).Contains(*point)
}
func geometryCollectionIntersectsShape(gc *GeometryCollection,
shapeIn index.GeoJSON) bool {
for _, shape := range gc.Members() {
intersects, err := shapeIn.Intersects(shape)
if err == nil && intersects {
return true
}
}
return false
}
func polygonsContainsLineStrings(s2pgns []*s2.Polygon,
pls []*s2.Polyline) bool {
linesWithIn := make(map[int]struct{})
checker := s2.NewCrossingEdgeQuery(s2.NewShapeIndex())
nextLine:
for lineIndex, pl := range pls {
for i := 0; i < len(*pl)-1; i++ {
start := (*pl)[i]
end := (*pl)[i+1]
for _, s2pgn := range s2pgns {
containsStart := s2pgn.ContainsPoint(start)
containsEnd := s2pgn.ContainsPoint(end)
if containsStart && containsEnd {
crossings := checker.Crossings(start, end, s2pgn, s2.CrossingTypeInterior)
if len(crossings) > 0 {
continue nextLine
}
linesWithIn[lineIndex] = struct{}{}
continue nextLine
} else {
for _, loop := range s2pgn.Loops() {
for i := 0; i < loop.NumVertices(); i++ {
if !containsStart && start.ApproxEqual(loop.Vertex(i)) {
containsStart = true
} else if !containsEnd && end.ApproxEqual(loop.Vertex(i)) {
containsEnd = true
}
if containsStart && containsEnd {
linesWithIn[lineIndex] = struct{}{}
continue nextLine
}
}
}
}
}
}
}
return len(pls) == len(linesWithIn)
}
func rectangleIntersectsWithPolygons(s2rect *s2.Rect,
s2pgns []*s2.Polygon) bool {
s2pgnFromRect := s2PolygonFromS2Rectangle(s2rect)
for _, s2pgn := range s2pgns {
if s2pgn.Intersects(s2pgnFromRect) {
return true
}
}
return false
}
func rectangleIntersectsWithLineStrings(s2rect *s2.Rect,
polylines []*s2.Polyline) bool {
s2pgnFromRect := s2PolygonFromS2Rectangle(s2rect)
return polylineIntersectsPolygons(polylines, []*s2.Polygon{s2pgnFromRect})
}
func s2PolygonFromCoordinates(coordinates [][][]float64) *s2.Polygon {
loops := make([]*s2.Loop, 0, len(coordinates))
for _, loop := range coordinates {
var points []s2.Point
if loop[0][0] == loop[len(loop)-1][0] && loop[0][1] == loop[len(loop)-1][1] {
loop = loop[:len(loop)-1]
}
for _, point := range loop {
p := s2.PointFromLatLng(s2.LatLngFromDegrees(point[1], point[0]))
points = append(points, p)
}
s2loop := s2.LoopFromPoints(points)
loops = append(loops, s2loop)
}
rv := s2.PolygonFromOrientedLoops(loops)
return rv
}
func s2PolygonFromS2Rectangle(s2rect *s2.Rect) *s2.Polygon {
loops := make([]*s2.Loop, 0, 1)
var points []s2.Point
for j := 0; j < 4; j++ {
points = append(points, s2.PointFromLatLng(s2rect.Vertex(j%4)))
}
loops = append(loops, s2.LoopFromPoints(points))
return s2.PolygonFromLoops(loops)
}
func DeduplicateTerms(terms []string) []string {
var rv []string
hash := make(map[string]struct{}, len(terms))
for _, term := range terms {
if _, exists := hash[term]; !exists {
rv = append(rv, term)
hash[term] = struct{}{}
}
}
return rv
}
//----------------------------------------------------------------------
var earthRadiusInMeter = 6378137.0
func radiusInMetersToS1Angle(radius float64) s1.Angle {
return s1.Angle(radius / earthRadiusInMeter)
}
func s2PolylinesFromCoordinates(coordinates [][][]float64) []*s2.Polyline {
var polylines []*s2.Polyline
for _, lines := range coordinates {
var latlngs []s2.LatLng
for _, line := range lines {
v := s2.LatLngFromDegrees(line[1], line[0])
latlngs = append(latlngs, v)
}
polylines = append(polylines, s2.PolylineFromLatLngs(latlngs))
}
return polylines
}
func s2RectFromBounds(topLeft, bottomRight []float64) *s2.Rect {
rect := s2.EmptyRect()
rect = rect.AddPoint(s2.LatLngFromDegrees(topLeft[1], topLeft[0]))
rect = rect.AddPoint(s2.LatLngFromDegrees(bottomRight[1], bottomRight[0]))
return &rect
}
func s2Cap(vertices []float64, radiusInMeter float64) *s2.Cap {
cp := s2.PointFromLatLng(s2.LatLngFromDegrees(vertices[1], vertices[0]))
angle := radiusInMetersToS1Angle(float64(radiusInMeter))
cap := s2.CapFromCenterAngle(cp, angle)
return &cap
}
func StripCoveringTerms(terms []string) []string {
rv := make([]string, 0, len(terms))
for _, term := range terms {
if strings.HasPrefix(term, "$") {
rv = append(rv, term[1:])
continue
}
rv = append(rv, term)
}
return DeduplicateTerms(rv)
}
type distanceUnit struct {
conv float64
suffixes []string
}
var inch = distanceUnit{0.0254, []string{"in", "inch"}}
var yard = distanceUnit{0.9144, []string{"yd", "yards"}}
var feet = distanceUnit{0.3048, []string{"ft", "feet"}}
var kilom = distanceUnit{1000, []string{"km", "kilometers"}}
var nauticalm = distanceUnit{1852.0, []string{"nm", "nauticalmiles"}}
var millim = distanceUnit{0.001, []string{"mm", "millimeters"}}
var centim = distanceUnit{0.01, []string{"cm", "centimeters"}}
var miles = distanceUnit{1609.344, []string{"mi", "miles"}}
var meters = distanceUnit{1, []string{"m", "meters"}}
var distanceUnits = []*distanceUnit{
&inch, &yard, &feet, &kilom, &nauticalm, &millim, &centim, &miles, &meters,
}
// ParseDistance attempts to parse a distance string and return distance in
// meters. Example formats supported:
// "5in" "5inch" "7yd" "7yards" "9ft" "9feet" "11km" "11kilometers"
// "3nm" "3nauticalmiles" "13mm" "13millimeters" "15cm" "15centimeters"
// "17mi" "17miles" "19m" "19meters"
// If the unit cannot be determined, the entire string is parsed and the
// unit of meters is assumed.
// If the number portion cannot be parsed, 0 and the parse error are returned.
func ParseDistance(d string) (float64, error) {
for _, unit := range distanceUnits {
for _, unitSuffix := range unit.suffixes {
if strings.HasSuffix(d, unitSuffix) {
parsedNum, err := strconv.ParseFloat(d[0:len(d)-len(unitSuffix)], 64)
if err != nil {
return 0, err
}
return parsedNum * unit.conv, nil
}
}
}
// no unit matched, try assuming meters?
parsedNum, err := strconv.ParseFloat(d, 64)
if err != nil {
return 0, err
}
return parsedNum, nil
}