Major integrations and fixes: - Added BACKBEAT SDK integration for P2P operation timing - Implemented beat-aware status tracking for distributed operations - Added Docker secrets support for secure license management - Resolved KACHING license validation via HTTPS/TLS - Updated docker-compose configuration for clean stack deployment - Disabled rollback policies to prevent deployment failures - Added license credential storage (CHORUS-DEV-MULTI-001) Technical improvements: - BACKBEAT P2P operation tracking with phase management - Enhanced configuration system with file-based secrets - Improved error handling for license validation - Clean separation of KACHING and CHORUS deployment stacks 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
1119 lines
40 KiB
Go
1119 lines
40 KiB
Go
// Copyright 2016 Google Inc. All rights reserved.
|
||
//
|
||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
// you may not use this file except in compliance with the License.
|
||
// You may obtain a copy of the License at
|
||
//
|
||
// http://www.apache.org/licenses/LICENSE-2.0
|
||
//
|
||
// Unless required by applicable law or agreed to in writing, software
|
||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
// See the License for the specific language governing permissions and
|
||
// limitations under the License.
|
||
|
||
package s2
|
||
|
||
// This file contains various predicates that are guaranteed to produce
|
||
// correct, consistent results. They are also relatively efficient. This is
|
||
// achieved by computing conservative error bounds and falling back to high
|
||
// precision or even exact arithmetic when the result is uncertain. Such
|
||
// predicates are useful in implementing robust algorithms.
|
||
//
|
||
// See also EdgeCrosser, which implements various exact
|
||
// edge-crossing predicates more efficiently than can be done here.
|
||
|
||
import (
|
||
"math"
|
||
"math/big"
|
||
|
||
"github.com/blevesearch/geo/r3"
|
||
"github.com/blevesearch/geo/s1"
|
||
)
|
||
|
||
const (
|
||
// If any other machine architectures need to be supported, these next
|
||
// values will need to be updated.
|
||
|
||
// dblEpsilon is a smaller number for values that require more precision.
|
||
// This is the C++ DBL_EPSILON equivalent.
|
||
dblEpsilon = 2.220446049250313e-16
|
||
// dblError is the C++ value for S2 rounding_epsilon().
|
||
dblError = 1.110223024625156e-16
|
||
|
||
// sqrt3 is used many times throughout but computed every time,
|
||
// so use the OEIS value like package math does for Sqrt2, etc.
|
||
// https://oeis.org/A002194
|
||
sqrt3 = 1.73205080756887729352744634150587236694280525381038062805580
|
||
|
||
// maxDeterminantError is the maximum error in computing (AxB).C where all vectors
|
||
// are unit length. Using standard inequalities, it can be shown that
|
||
//
|
||
// fl(AxB) = AxB + D where |D| <= (|AxB| + (2/sqrt(3))*|A|*|B|) * e
|
||
//
|
||
// where "fl()" denotes a calculation done in floating-point arithmetic,
|
||
// |x| denotes either absolute value or the L2-norm as appropriate, and
|
||
// e is a reasonably small value near the noise level of floating point
|
||
// number accuracy. Similarly,
|
||
//
|
||
// fl(B.C) = B.C + d where |d| <= (|B.C| + 2*|B|*|C|) * e .
|
||
//
|
||
// Applying these bounds to the unit-length vectors A,B,C and neglecting
|
||
// relative error (which does not affect the sign of the result), we get
|
||
//
|
||
// fl((AxB).C) = (AxB).C + d where |d| <= (3 + 2/sqrt(3)) * e
|
||
maxDeterminantError = 1.8274 * dblEpsilon
|
||
|
||
// detErrorMultiplier is the factor to scale the magnitudes by when checking
|
||
// for the sign of set of points with certainty. Using a similar technique to
|
||
// the one used for maxDeterminantError, the error is at most:
|
||
//
|
||
// |d| <= (3 + 6/sqrt(3)) * |A-C| * |B-C| * e
|
||
//
|
||
// If the determinant magnitude is larger than this value then we know
|
||
// its sign with certainty.
|
||
detErrorMultiplier = 3.2321 * dblEpsilon
|
||
)
|
||
|
||
// epsilonForDigits reports the epsilon for the given number of digits of mantissa.
|
||
// This is essentially 2 ** (-digits).
|
||
func epsilonForDigits(digits int) float64 {
|
||
// IEEE floats have either 24 (32-bit floating point) or 53
|
||
// (64 bit floating point) digits or mantissa.
|
||
if digits < 64 {
|
||
return 1.0 / float64(uint64(1)<<digits)
|
||
}
|
||
return epsilonForDigits(digits-63) / float64(1<<63)
|
||
}
|
||
|
||
// roundingEpsilon reports the maximum rounding error for arithmetic operations for
|
||
// given type t.
|
||
//
|
||
// We could simply return 0.5 * epsilon, but that is not always the correct approach
|
||
// on all platforms.
|
||
func roundingEpsilon(t any) float64 {
|
||
switch t.(type) {
|
||
case float32:
|
||
return epsilonForDigits(24)
|
||
case float64:
|
||
return epsilonForDigits(53)
|
||
default:
|
||
// TODO(rsned): If go adds any other size floating point types, revisit this.
|
||
panic("unsupported type for rounding epsilon")
|
||
}
|
||
}
|
||
|
||
// Direction is an indication of the ordering of a set of points.
|
||
type Direction int
|
||
|
||
// These are the three options for the direction of a set of points.
|
||
const (
|
||
Clockwise Direction = -1
|
||
Indeterminate Direction = 0
|
||
CounterClockwise Direction = 1
|
||
)
|
||
|
||
// These big.Float methods are copied from r3/precisevector.go
|
||
|
||
// newBigFloat constructs a new big.Float with maximum precision.
|
||
func newBigFloat() *big.Float { return new(big.Float).SetPrec(big.MaxPrec) }
|
||
|
||
// precSub is a helper to wrap the boilerplate of subtracting two big.Floats.
|
||
func precSub(a, b *big.Float) *big.Float {
|
||
return new(big.Float).SetPrec(big.MaxPrec).Sub(a, b)
|
||
}
|
||
|
||
// precMul is a helper to wrap the boilerplate of multiplying two big.Floats.
|
||
func precMul(a, b *big.Float) *big.Float {
|
||
return new(big.Float).SetPrec(big.MaxPrec).Mul(a, b)
|
||
}
|
||
|
||
// Sign returns true if the points A, B, C are strictly counterclockwise,
|
||
// and returns false if the points are clockwise or collinear (i.e. if they are all
|
||
// contained on some great circle).
|
||
//
|
||
// Due to numerical errors, situations may arise that are mathematically
|
||
// impossible, e.g. ABC may be considered strictly CCW while BCA is not.
|
||
// However, the implementation guarantees the following:
|
||
//
|
||
// If Sign(a,b,c), then !Sign(c,b,a) for all a,b,c.
|
||
func Sign(a, b, c Point) bool {
|
||
// NOTE(dnadasi): In the C++ API the equivalent method here was known as "SimpleSign".
|
||
|
||
// We compute the signed volume of the parallelepiped ABC. The usual
|
||
// formula for this is (A ⨯ B) · C, but we compute it here using (C ⨯ A) · B
|
||
// in order to ensure that ABC and CBA are not both CCW. This follows
|
||
// from the following identities (which are true numerically, not just
|
||
// mathematically):
|
||
//
|
||
// (1) x ⨯ y == -(y ⨯ x)
|
||
// (2) -x · y == -(x · y)
|
||
return c.Cross(a.Vector).Dot(b.Vector) > 0
|
||
}
|
||
|
||
// RobustSign returns a Direction representing the ordering of the points.
|
||
// CounterClockwise is returned if the points are in counter-clockwise order,
|
||
// Clockwise for clockwise, and Indeterminate if any two points are the same (collinear),
|
||
// or the sign could not completely be determined.
|
||
//
|
||
// This function has additional logic to make sure that the above properties hold even
|
||
// when the three points are coplanar, and to deal with the limitations of
|
||
// floating-point arithmetic.
|
||
//
|
||
// RobustSign satisfies the following conditions:
|
||
//
|
||
// (1) RobustSign(a,b,c) == Indeterminate if and only if a == b, b == c, or c == a
|
||
// (2) RobustSign(b,c,a) == RobustSign(a,b,c) for all a,b,c
|
||
// (3) RobustSign(c,b,a) == -RobustSign(a,b,c) for all a,b,c
|
||
//
|
||
// In other words:
|
||
//
|
||
// (1) The result is Indeterminate if and only if two points are the same.
|
||
// (2) Rotating the order of the arguments does not affect the result.
|
||
// (3) Exchanging any two arguments inverts the result.
|
||
//
|
||
// On the other hand, note that it is not true in general that
|
||
// RobustSign(-a,b,c) == -RobustSign(a,b,c), or any similar identities
|
||
// involving antipodal points.
|
||
func RobustSign(a, b, c Point) Direction {
|
||
sign := triageSign(a, b, c)
|
||
if sign == Indeterminate {
|
||
sign = expensiveSign(a, b, c)
|
||
}
|
||
return sign
|
||
}
|
||
|
||
// stableSign reports the direction sign of the points in a numerically stable way.
|
||
// Unlike triageSign, this method can usually compute the correct determinant sign
|
||
// even when all three points are as collinear as possible. For example if three
|
||
// points are spaced 1km apart along a random line on the Earth's surface using
|
||
// the nearest representable points, there is only a 0.4% chance that this method
|
||
// will not be able to find the determinant sign. The probability of failure
|
||
// decreases as the points get closer together; if the collinear points are 1 meter
|
||
// apart, the failure rate drops to 0.0004%.
|
||
//
|
||
// This method could be extended to also handle nearly-antipodal points, but antipodal
|
||
// points are rare in practice so it seems better to simply fall back to
|
||
// exact arithmetic in that case.
|
||
func stableSign(a, b, c Point) Direction {
|
||
ab := b.Sub(a.Vector)
|
||
ab2 := ab.Norm2()
|
||
bc := c.Sub(b.Vector)
|
||
bc2 := bc.Norm2()
|
||
ca := a.Sub(c.Vector)
|
||
ca2 := ca.Norm2()
|
||
|
||
// Now compute the determinant ((A-C)x(B-C)).C, where the vertices have been
|
||
// cyclically permuted if necessary so that AB is the longest edge. (This
|
||
// minimizes the magnitude of cross product.) At the same time we also
|
||
// compute the maximum error in the determinant.
|
||
|
||
// The two shortest edges, pointing away from their common point.
|
||
var e1, e2, op r3.Vector
|
||
if ab2 >= bc2 && ab2 >= ca2 {
|
||
// AB is the longest edge.
|
||
e1, e2, op = ca, bc, c.Vector
|
||
} else if bc2 >= ca2 {
|
||
// BC is the longest edge.
|
||
e1, e2, op = ab, ca, a.Vector
|
||
} else {
|
||
// CA is the longest edge.
|
||
e1, e2, op = bc, ab, b.Vector
|
||
}
|
||
|
||
det := -e1.Cross(e2).Dot(op)
|
||
maxErr := detErrorMultiplier * math.Sqrt(e1.Norm2()*e2.Norm2())
|
||
|
||
// If the determinant isn't zero, within maxErr, we know definitively the point ordering.
|
||
if det > maxErr {
|
||
return CounterClockwise
|
||
}
|
||
if det < -maxErr {
|
||
return Clockwise
|
||
}
|
||
return Indeterminate
|
||
}
|
||
|
||
// triageSign returns the direction sign of the points. It returns Indeterminate if two
|
||
// points are identical or the result is uncertain. Uncertain cases can be resolved, if
|
||
// desired, by calling expensiveSign.
|
||
//
|
||
// The purpose of this method is to allow additional cheap tests to be done without
|
||
// calling expensiveSign.
|
||
func triageSign(a, b, c Point) Direction {
|
||
det := a.Cross(b.Vector).Dot(c.Vector)
|
||
if det > maxDeterminantError {
|
||
return CounterClockwise
|
||
}
|
||
if det < -maxDeterminantError {
|
||
return Clockwise
|
||
}
|
||
return Indeterminate
|
||
}
|
||
|
||
// expensiveSign reports the direction sign of the points. It returns Indeterminate
|
||
// if two of the input points are the same. It uses multiple-precision arithmetic
|
||
// to ensure that its results are always self-consistent.
|
||
func expensiveSign(a, b, c Point) Direction {
|
||
// Return Indeterminate if and only if two points are the same.
|
||
// This ensures RobustSign(a,b,c) == Indeterminate if and only if a == b, b == c, or c == a.
|
||
// ie. Property 1 of RobustSign.
|
||
if a == b || b == c || c == a {
|
||
return Indeterminate
|
||
}
|
||
|
||
// Next we try recomputing the determinant still using floating-point
|
||
// arithmetic but in a more precise way. This is more expensive than the
|
||
// simple calculation done by triageSign, but it is still *much* cheaper
|
||
// than using arbitrary-precision arithmetic. This optimization is able to
|
||
// compute the correct determinant sign in virtually all cases except when
|
||
// the three points are truly collinear (e.g., three points on the equator).
|
||
detSign := stableSign(a, b, c)
|
||
if detSign != Indeterminate {
|
||
return detSign
|
||
}
|
||
|
||
// Otherwise fall back to exact arithmetic and symbolic permutations.
|
||
return exactSign(a, b, c, true)
|
||
}
|
||
|
||
// exactSign reports the direction sign of the points computed using high-precision
|
||
// arithmetic and/or symbolic perturbations.
|
||
func exactSign(a, b, c Point, perturb bool) Direction {
|
||
// Sort the three points in lexicographic order, keeping track of the sign
|
||
// of the permutation. (Each exchange inverts the sign of the determinant.)
|
||
permSign := CounterClockwise
|
||
pa := &a
|
||
pb := &b
|
||
pc := &c
|
||
if pa.Cmp(pb.Vector) > 0 {
|
||
pa, pb = pb, pa
|
||
permSign = -permSign
|
||
}
|
||
if pb.Cmp(pc.Vector) > 0 {
|
||
pb, pc = pc, pb
|
||
permSign = -permSign
|
||
}
|
||
if pa.Cmp(pb.Vector) > 0 {
|
||
pa, pb = pb, pa
|
||
permSign = -permSign
|
||
}
|
||
|
||
// Construct multiple-precision versions of the sorted points and compute
|
||
// their precise 3x3 determinant.
|
||
xa := r3.PreciseVectorFromVector(pa.Vector)
|
||
xb := r3.PreciseVectorFromVector(pb.Vector)
|
||
xc := r3.PreciseVectorFromVector(pc.Vector)
|
||
xbCrossXc := xb.Cross(xc)
|
||
det := xa.Dot(xbCrossXc)
|
||
|
||
// The precision of big.Float is high enough that the result should always
|
||
// be exact enough (no rounding was performed).
|
||
|
||
// If the exact determinant is non-zero, we're done.
|
||
detSign := Direction(det.Sign())
|
||
if detSign == Indeterminate && perturb {
|
||
// Otherwise, we need to resort to symbolic perturbations to resolve the
|
||
// sign of the determinant.
|
||
detSign = symbolicallyPerturbedSign(xa, xb, xc, xbCrossXc)
|
||
}
|
||
return permSign * detSign
|
||
}
|
||
|
||
// symbolicallyPerturbedSign reports the sign of the determinant of three points
|
||
// A, B, C under a model where every possible Point is slightly perturbed by
|
||
// a unique infinitesmal amount such that no three perturbed points are
|
||
// collinear and no four points are coplanar. The perturbations are so small
|
||
// that they do not change the sign of any determinant that was non-zero
|
||
// before the perturbations, and therefore can be safely ignored unless the
|
||
// determinant of three points is exactly zero (using multiple-precision
|
||
// arithmetic). This returns CounterClockwise or Clockwise according to the
|
||
// sign of the determinant after the symbolic perturbations are taken into account.
|
||
//
|
||
// Since the symbolic perturbation of a given point is fixed (i.e., the
|
||
// perturbation is the same for all calls to this method and does not depend
|
||
// on the other two arguments), the results of this method are always
|
||
// self-consistent. It will never return results that would correspond to an
|
||
// impossible configuration of non-degenerate points.
|
||
//
|
||
// This requires that the 3x3 determinant of A, B, C must be exactly zero.
|
||
// And the points must be distinct, with A < B < C in lexicographic order.
|
||
//
|
||
// Reference:
|
||
//
|
||
// "Simulation of Simplicity" (Edelsbrunner and Muecke, ACM Transactions on
|
||
// Graphics, 1990).
|
||
func symbolicallyPerturbedSign(a, b, c, bCrossC r3.PreciseVector) Direction {
|
||
// This method requires that the points are sorted in lexicographically
|
||
// increasing order. This is because every possible Point has its own
|
||
// symbolic perturbation such that if A < B then the symbolic perturbation
|
||
// for A is much larger than the perturbation for B.
|
||
//
|
||
// Alternatively, we could sort the points in this method and keep track of
|
||
// the sign of the permutation, but it is more efficient to do this before
|
||
// converting the inputs to the multi-precision representation, and this
|
||
// also lets us re-use the result of the cross product B x C.
|
||
//
|
||
// Every input coordinate x[i] is assigned a symbolic perturbation dx[i].
|
||
// We then compute the sign of the determinant of the perturbed points,
|
||
// i.e.
|
||
// | a.X+da.X a.Y+da.Y a.Z+da.Z |
|
||
// | b.X+db.X b.Y+db.Y b.Z+db.Z |
|
||
// | c.X+dc.X c.Y+dc.Y c.Z+dc.Z |
|
||
//
|
||
// The perturbations are chosen such that
|
||
//
|
||
// da.Z > da.Y > da.X > db.Z > db.Y > db.X > dc.Z > dc.Y > dc.X
|
||
//
|
||
// where each perturbation is so much smaller than the previous one that we
|
||
// don't even need to consider it unless the coefficients of all previous
|
||
// perturbations are zero. In fact, it is so small that we don't need to
|
||
// consider it unless the coefficient of all products of the previous
|
||
// perturbations are zero. For example, we don't need to consider the
|
||
// coefficient of db.Y unless the coefficient of db.Z *da.X is zero.
|
||
//
|
||
// The follow code simply enumerates the coefficients of the perturbations
|
||
// (and products of perturbations) that appear in the determinant above, in
|
||
// order of decreasing perturbation magnitude. The first non-zero
|
||
// coefficient determines the sign of the result. The easiest way to
|
||
// enumerate the coefficients in the correct order is to pretend that each
|
||
// perturbation is some tiny value "eps" raised to a power of two:
|
||
//
|
||
// eps** 1 2 4 8 16 32 64 128 256
|
||
// da.Z da.Y da.X db.Z db.Y db.X dc.Z dc.Y dc.X
|
||
//
|
||
// Essentially we can then just count in binary and test the corresponding
|
||
// subset of perturbations at each step. So for example, we must test the
|
||
// coefficient of db.Z*da.X before db.Y because eps**12 > eps**16.
|
||
//
|
||
// Of course, not all products of these perturbations appear in the
|
||
// determinant above, since the determinant only contains the products of
|
||
// elements in distinct rows and columns. Thus we don't need to consider
|
||
// da.Z*da.Y, db.Y *da.Y, etc. Furthermore, sometimes different pairs of
|
||
// perturbations have the same coefficient in the determinant; for example,
|
||
// da.Y*db.X and db.Y*da.X have the same coefficient (c.Z). Therefore
|
||
// we only need to test this coefficient the first time we encounter it in
|
||
// the binary order above (which will be db.Y*da.X).
|
||
//
|
||
// The sequence of tests below also appears in Table 4-ii of the paper
|
||
// referenced above, if you just want to look it up, with the following
|
||
// translations: [a,b,c] -> [i,j,k] and [0,1,2] -> [1,2,3]. Also note that
|
||
// some of the signs are different because the opposite cross product is
|
||
// used (e.g., B x C rather than C x B).
|
||
|
||
detSign := bCrossC.Z.Sign() // da.Z
|
||
if detSign != 0 {
|
||
return Direction(detSign)
|
||
}
|
||
detSign = bCrossC.Y.Sign() // da.Y
|
||
if detSign != 0 {
|
||
return Direction(detSign)
|
||
}
|
||
detSign = bCrossC.X.Sign() // da.X
|
||
if detSign != 0 {
|
||
return Direction(detSign)
|
||
}
|
||
|
||
detSign = newBigFloat().Sub(newBigFloat().Mul(c.X, a.Y), newBigFloat().Mul(c.Y, a.X)).Sign() // db.Z
|
||
if detSign != 0 {
|
||
return Direction(detSign)
|
||
}
|
||
detSign = c.X.Sign() // db.Z * da.Y
|
||
if detSign != 0 {
|
||
return Direction(detSign)
|
||
}
|
||
detSign = -(c.Y.Sign()) // db.Z * da.X
|
||
if detSign != 0 {
|
||
return Direction(detSign)
|
||
}
|
||
|
||
detSign = newBigFloat().Sub(newBigFloat().Mul(c.Z, a.X), newBigFloat().Mul(c.X, a.Z)).Sign() // db.Y
|
||
if detSign != 0 {
|
||
return Direction(detSign)
|
||
}
|
||
detSign = c.Z.Sign() // db.Y * da.X
|
||
if detSign != 0 {
|
||
return Direction(detSign)
|
||
}
|
||
|
||
// The following test is listed in the paper, but it is redundant because
|
||
// the previous tests guarantee that C == (0, 0, 0).
|
||
// (c.Y*a.Z - c.Z*a.Y).Sign() // db.X
|
||
|
||
detSign = newBigFloat().Sub(newBigFloat().Mul(a.X, b.Y), newBigFloat().Mul(a.Y, b.X)).Sign() // dc.Z
|
||
if detSign != 0 {
|
||
return Direction(detSign)
|
||
}
|
||
detSign = -(b.X.Sign()) // dc.Z * da.Y
|
||
if detSign != 0 {
|
||
return Direction(detSign)
|
||
}
|
||
detSign = b.Y.Sign() // dc.Z * da.X
|
||
if detSign != 0 {
|
||
return Direction(detSign)
|
||
}
|
||
detSign = a.X.Sign() // dc.Z * db.Y
|
||
if detSign != 0 {
|
||
return Direction(detSign)
|
||
}
|
||
return CounterClockwise // dc.Z * db.Y * da.X
|
||
}
|
||
|
||
// CompareDistances returns -1, 0, or +1 according to whether AX < BX, A == B,
|
||
// or AX > BX respectively. Distances are measured with respect to the positions
|
||
// of X, A, and B as though they were reprojected to lie exactly on the surface of
|
||
// the unit sphere. Furthermore, this method uses symbolic perturbations to
|
||
// ensure that the result is non-zero whenever A != B, even when AX == BX
|
||
// exactly, or even when A and B project to the same point on the sphere.
|
||
// Such results are guaranteed to be self-consistent, i.e. if AB < BC and
|
||
// BC < AC, then AB < AC.
|
||
func CompareDistances(x, a, b Point) int {
|
||
// We start by comparing distances using dot products (i.e., cosine of the
|
||
// angle), because (1) this is the cheapest technique, and (2) it is valid
|
||
// over the entire range of possible angles. (We can only use the sin^2
|
||
// technique if both angles are less than 90 degrees or both angles are
|
||
// greater than 90 degrees.)
|
||
sign := triageCompareCosDistances(x, a, b)
|
||
if sign != 0 {
|
||
return sign
|
||
}
|
||
|
||
// Optimization for (a == b) to avoid falling back to exact arithmetic.
|
||
if a == b {
|
||
return 0
|
||
}
|
||
|
||
// It is much better numerically to compare distances using cos(angle) if
|
||
// the distances are near 90 degrees and sin^2(angle) if the distances are
|
||
// near 0 or 180 degrees. We only need to check one of the two angles when
|
||
// making this decision because the fact that the test above failed means
|
||
// that angles "a" and "b" are very close together.
|
||
cosAX := a.Dot(x.Vector)
|
||
if cosAX > 1/math.Sqrt2 {
|
||
// Angles < 45 degrees.
|
||
sign = triageCompareSin2Distances(x, a, b)
|
||
} else if cosAX < -1/math.Sqrt2 {
|
||
// Angles > 135 degrees. sin^2(angle) is decreasing in this range.
|
||
sign = -triageCompareSin2Distances(x, a, b)
|
||
}
|
||
// C++ adds an additional check here using 80-bit floats.
|
||
// This is skipped in Go because we only have 32 and 64 bit floats.
|
||
|
||
if sign != 0 {
|
||
return sign
|
||
}
|
||
|
||
sign = exactCompareDistances(r3.PreciseVectorFromVector(x.Vector), r3.PreciseVectorFromVector(a.Vector), r3.PreciseVectorFromVector(b.Vector))
|
||
if sign != 0 {
|
||
return sign
|
||
}
|
||
return symbolicCompareDistances(x, a, b)
|
||
}
|
||
|
||
// cosDistance returns cos(XY) where XY is the angle between X and Y, and the
|
||
// maximum error amount in the result. This requires X and Y be normalized.
|
||
func cosDistance(x, y Point) (cos, err float64) {
|
||
cos = x.Dot(y.Vector)
|
||
return cos, 9.5*dblError*math.Abs(cos) + 1.5*dblError
|
||
}
|
||
|
||
// sin2Distance returns sin**2(XY), where XY is the angle between X and Y,
|
||
// and the maximum error amount in the result. This requires X and Y be normalized.
|
||
func sin2Distance(x, y Point) (sin2, err float64) {
|
||
// The (x-y).Cross(x+y) trick eliminates almost all of error due to x
|
||
// and y being not quite unit length. This method is extremely accurate
|
||
// for small distances; the *relative* error in the result is O(dblError) for
|
||
// distances as small as dblError.
|
||
n := x.Sub(y.Vector).Cross(x.Add(y.Vector))
|
||
sin2 = 0.25 * n.Norm2()
|
||
err = ((21+4*sqrt3)*dblError*sin2 +
|
||
32*sqrt3*dblError*dblError*math.Sqrt(sin2) +
|
||
768*dblError*dblError*dblError*dblError)
|
||
return sin2, err
|
||
}
|
||
|
||
// triageCompareCosDistances returns -1, 0, or +1 according to whether AX < BX,
|
||
// A == B, or AX > BX by comparing the distances between them using cosDistance.
|
||
func triageCompareCosDistances(x, a, b Point) int {
|
||
cosAX, cosAXerror := cosDistance(a, x)
|
||
cosBX, cosBXerror := cosDistance(b, x)
|
||
diff := cosAX - cosBX
|
||
err := cosAXerror + cosBXerror
|
||
if diff > err {
|
||
return -1
|
||
}
|
||
if diff < -err {
|
||
return 1
|
||
}
|
||
return 0
|
||
}
|
||
|
||
// triageCompareSin2Distances returns -1, 0, or +1 according to whether AX < BX,
|
||
// A == B, or AX > BX by comparing the distances between them using sin2Distance.
|
||
func triageCompareSin2Distances(x, a, b Point) int {
|
||
sin2AX, sin2AXerror := sin2Distance(a, x)
|
||
sin2BX, sin2BXerror := sin2Distance(b, x)
|
||
diff := sin2AX - sin2BX
|
||
err := sin2AXerror + sin2BXerror
|
||
if diff > err {
|
||
return 1
|
||
}
|
||
if diff < -err {
|
||
return -1
|
||
}
|
||
return 0
|
||
}
|
||
|
||
// exactCompareDistances returns -1, 0, or 1 after comparing using the values as
|
||
// PreciseVectors.
|
||
func exactCompareDistances(x, a, b r3.PreciseVector) int {
|
||
// This code produces the same result as though all points were reprojected
|
||
// to lie exactly on the surface of the unit sphere. It is based on testing
|
||
// whether x.Dot(a.Normalize()) < x.Dot(b.Normalize()), reformulated
|
||
// so that it can be evaluated using exact arithmetic.
|
||
cosAX := x.Dot(a)
|
||
cosBX := x.Dot(b)
|
||
|
||
// If the two values have different signs, we need to handle that case now
|
||
// before squaring them below.
|
||
aSign := cosAX.Sign()
|
||
bSign := cosBX.Sign()
|
||
if aSign != bSign {
|
||
// If cos(AX) > cos(BX), then AX < BX.
|
||
if aSign > bSign {
|
||
return -1
|
||
}
|
||
return 1
|
||
}
|
||
cosAX2 := newBigFloat().Mul(cosAX, cosAX)
|
||
cosBX2 := newBigFloat().Mul(cosBX, cosBX)
|
||
cmp := newBigFloat().Sub(cosBX2.Mul(cosBX2, a.Norm2()), cosAX2.Mul(cosAX2, b.Norm2()))
|
||
return aSign * cmp.Sign()
|
||
}
|
||
|
||
// symbolicCompareDistances returns -1, 0, or +1 given three points such that AX == BX
|
||
// (exactly) according to whether AX < BX, AX == BX, or AX > BX after symbolic
|
||
// perturbations are taken into account.
|
||
func symbolicCompareDistances(x, a, b Point) int {
|
||
// Our symbolic perturbation strategy is based on the following model.
|
||
// Similar to "simulation of simplicity", we assign a perturbation to every
|
||
// point such that if A < B, then the symbolic perturbation for A is much,
|
||
// much larger than the symbolic perturbation for B. We imagine that
|
||
// rather than projecting every point to lie exactly on the unit sphere,
|
||
// instead each point is positioned on its own tiny pedestal that raises it
|
||
// just off the surface of the unit sphere. This means that the distance AX
|
||
// is actually the true distance AX plus the (symbolic) heights of the
|
||
// pedestals for A and X. The pedestals are infinitesmally thin, so they do
|
||
// not affect distance measurements except at the two endpoints. If several
|
||
// points project to exactly the same point on the unit sphere, we imagine
|
||
// that they are placed on separate pedestals placed close together, where
|
||
// the distance between pedestals is much, much less than the height of any
|
||
// pedestal. (There are a finite number of Points, and therefore a finite
|
||
// number of pedestals, so this is possible.)
|
||
//
|
||
// If A < B, then A is on a higher pedestal than B, and therefore AX > BX.
|
||
switch a.Cmp(b.Vector) {
|
||
case -1:
|
||
return 1
|
||
case 1:
|
||
return -1
|
||
default:
|
||
return 0
|
||
}
|
||
}
|
||
|
||
var (
|
||
// ca45Degrees is a predefined ChordAngle representing (approximately) 45 degrees.
|
||
ca45Degrees = s1.ChordAngleFromSquaredLength(2 - math.Sqrt2)
|
||
)
|
||
|
||
// CompareDistance returns -1, 0, or +1 according to whether the distance XY is
|
||
// respectively less than, equal to, or greater than the provided chord angle. Distances are measured
|
||
// with respect to the positions of all points as though they are projected to lie
|
||
// exactly on the surface of the unit sphere.
|
||
func CompareDistance(x, y Point, r s1.ChordAngle) int {
|
||
// As with CompareDistances, we start by comparing dot products because
|
||
// the sin^2 method is only valid when the distance XY and the limit "r" are
|
||
// both less than 90 degrees.
|
||
sign := triageCompareCosDistance(x, y, float64(r))
|
||
if sign != 0 {
|
||
return sign
|
||
}
|
||
|
||
// Unlike with CompareDistances, it's not worth using the sin^2 method
|
||
// when the distance limit is near 180 degrees because the ChordAngle
|
||
// representation itself has has a rounding error of up to 2e-8 radians for
|
||
// distances near 180 degrees.
|
||
if r < ca45Degrees {
|
||
sign = triageCompareSin2Distance(x, y, float64(r))
|
||
if sign != 0 {
|
||
return sign
|
||
}
|
||
}
|
||
return exactCompareDistance(r3.PreciseVectorFromVector(x.Vector), r3.PreciseVectorFromVector(y.Vector), big.NewFloat(float64(r)).SetPrec(big.MaxPrec))
|
||
}
|
||
|
||
// triageCompareCosDistance returns -1, 0, or +1 according to whether the distance XY is
|
||
// less than, equal to, or greater than r2 respectively using cos distance.
|
||
func triageCompareCosDistance(x, y Point, r2 float64) int {
|
||
cosXY, cosXYError := cosDistance(x, y)
|
||
cosR := 1.0 - 0.5*r2
|
||
cosRError := 2.0 * dblError * cosR
|
||
diff := cosXY - cosR
|
||
err := cosXYError + cosRError
|
||
if diff > err {
|
||
return -1
|
||
}
|
||
if diff < -err {
|
||
return 1
|
||
}
|
||
return 0
|
||
}
|
||
|
||
// triageCompareSin2Distance returns -1, 0, or +1 according to whether the distance XY is
|
||
// less than, equal to, or greater than r2 respectively using sin^2 distance.
|
||
func triageCompareSin2Distance(x, y Point, r2 float64) int {
|
||
// Only valid for distance limits < 90 degrees.
|
||
sin2XY, sin2XYError := sin2Distance(x, y)
|
||
sin2R := r2 * (1.0 - 0.25*r2)
|
||
sin2RError := 3.0 * dblError * sin2R
|
||
diff := sin2XY - sin2R
|
||
err := sin2XYError + sin2RError
|
||
if diff > err {
|
||
return 1
|
||
}
|
||
if diff < -err {
|
||
return -1
|
||
}
|
||
return 0
|
||
}
|
||
|
||
var (
|
||
bigOne = big.NewFloat(1.0).SetPrec(big.MaxPrec)
|
||
bigHalf = big.NewFloat(0.5).SetPrec(big.MaxPrec)
|
||
)
|
||
|
||
// exactCompareDistance returns -1, 0, or +1 after comparing using PreciseVectors.
|
||
func exactCompareDistance(x, y r3.PreciseVector, r2 *big.Float) int {
|
||
// This code produces the same result as though all points were reprojected
|
||
// to lie exactly on the surface of the unit sphere. It is based on
|
||
// comparing the cosine of the angle XY (when both points are projected to
|
||
// lie exactly on the sphere) to the given threshold.
|
||
cosXY := x.Dot(y)
|
||
cosR := newBigFloat().Sub(bigOne, newBigFloat().Mul(bigHalf, r2))
|
||
|
||
// If the two values have different signs, we need to handle that case now
|
||
// before squaring them below.
|
||
xySign := cosXY.Sign()
|
||
rSign := cosR.Sign()
|
||
if xySign != rSign {
|
||
if xySign > rSign {
|
||
return -1
|
||
}
|
||
return 1 // If cos(XY) > cos(r), then XY < r.
|
||
}
|
||
cmp := newBigFloat().Sub(
|
||
newBigFloat().Mul(
|
||
newBigFloat().Mul(cosR, cosR), newBigFloat().Mul(x.Norm2(), y.Norm2())),
|
||
newBigFloat().Mul(cosXY, cosXY))
|
||
return xySign * cmp.Sign()
|
||
}
|
||
|
||
// SignDotProd reports the exact sign of the dot product between A and B.
|
||
//
|
||
// REQUIRES: |a|^2 <= 2 and |b|^2 <= 2
|
||
func SignDotProd(a, b Point) int {
|
||
sign := triageSignDotProd(a, b)
|
||
if sign != 0 {
|
||
return sign
|
||
}
|
||
|
||
// big.Float.Sign() returns -1/0/+1 already, so the C++
|
||
// ExactSignDotProd is not necessary.
|
||
return r3.PreciseVectorFromVector(a.Vector).Dot(r3.PreciseVectorFromVector(b.Vector)).Sign()
|
||
}
|
||
|
||
func triageSignDotProd(a, b Point) int {
|
||
// The dot product error can be bound as 1.01nu|a||b| assuming nu < .01,
|
||
// where u is the rounding unit (epsilon/2). n=3 because we have 3
|
||
// components, and we require that our vectors be <= sqrt(2) in length (so
|
||
// that we can support the un-normalized edge normals for cells).
|
||
//
|
||
// So we have 1.01*3*ε/2*2 = 3.03ε, which we'll round up to 3.046875ε
|
||
// which is exactly representable.
|
||
//
|
||
// Reference:
|
||
// Error Estimation Of Floating-Point Summation And Dot Product, Rump
|
||
// 2011
|
||
const maxError = 3.046875 * dblEpsilon
|
||
|
||
na := a.Dot(b.Vector)
|
||
if math.Abs(na) <= maxError {
|
||
return 0
|
||
}
|
||
|
||
if na > 0 {
|
||
return 1
|
||
}
|
||
return -1
|
||
}
|
||
|
||
// CircleEdgeIntersectionOrdering reports the relative position of two edges crossing
|
||
// a great circle relative to a given point.
|
||
//
|
||
// Given two edges AB and CD that cross a great circle defined by a normal
|
||
// vector M, orders the crossings of AB and CD relative to another great circle
|
||
// N representing a zero point.
|
||
//
|
||
// This predicate can be used in any circumstance where we have an exact normal
|
||
// vector to order edge crossings relative to some zero point.
|
||
//
|
||
// As an example, if we have edges AB and CD that cross boundary 2 of a cell:
|
||
//
|
||
// B D
|
||
// • 2 •
|
||
// ┌─\───/─┐
|
||
// 3 │ • • │ 1
|
||
// A C
|
||
//
|
||
// We could order them by using the normal of boundary 2 as M, and the normal of
|
||
// either boundary 1 or 3 as N. If we use boundary 1 as N, then:
|
||
//
|
||
// CircleEdgeIntersectionOrdering(A, B, C, D, M, N) == +1
|
||
//
|
||
// Indicating that CD is closer to boundary 1 than AB is.
|
||
//
|
||
// But, if we use boundary 3 as N, then:
|
||
//
|
||
// CircleEdgeIntersectionOrdering(A, B, C, D, M, N) == -1
|
||
//
|
||
// Indicating that AB is closer to boundary 3 than CD is.
|
||
//
|
||
// These results are consistent but one needs to bear in mind what boundary is
|
||
// being used as the reference.
|
||
//
|
||
// The edges AB and CD should be specified such that A and C are on the positive
|
||
// side of M and B and D are on the negative side, as illustrated above. This
|
||
// will make the sign of their cross products with M consistent.
|
||
//
|
||
// Because we use a dot product to check the distance from N, this predicate can
|
||
// only unambiguously order along edges within [0,90] degrees of N (both
|
||
// vertices must be in quadrant one of the unit circle).
|
||
//
|
||
// REQUIRES:
|
||
// - A and B are not equal or antipodal.
|
||
// - C and D are not equal or antipodal.
|
||
// - M and N are not equal or antipodal.
|
||
// - AB crosses M (vertices have opposite dot product signs with M)
|
||
// - CD crosses M (vertices have opposite dot product signs with M)
|
||
// - A and C are on the positive side of M
|
||
// - B and D are on the negative side of M
|
||
// - Intersection of AB and N is on the positive side of N
|
||
// - Intersection of CD and N is on the positive side of N
|
||
//
|
||
// Returns:
|
||
//
|
||
// -1 if crossing AB is closer to N than crossing CD
|
||
// 0 if the two edges cross at exactly the same position
|
||
// +1 if crossing AB is further from N than crossing CD
|
||
func CircleEdgeIntersectionOrdering(a, b, c, d, m, n Point) int {
|
||
ans := triageIntersectionOrdering(a, b, c, d, m, n)
|
||
if ans != 0 {
|
||
return ans
|
||
}
|
||
|
||
// We got zero, check for duplicate/reverse duplicate edges before falling
|
||
// back to more precision.
|
||
if (a == c && b == d) || (a == d && b == c) {
|
||
return 0
|
||
}
|
||
|
||
return exactIntersectionOrdering(
|
||
r3.PreciseVectorFromVector(a.Vector), r3.PreciseVectorFromVector(b.Vector),
|
||
r3.PreciseVectorFromVector(c.Vector), r3.PreciseVectorFromVector(d.Vector),
|
||
r3.PreciseVectorFromVector(m.Vector), r3.PreciseVectorFromVector(n.Vector))
|
||
}
|
||
|
||
// triageIntersectionOrdering reports the order of intersections along a great circle
|
||
// relative to some reference point using the float64 implementation.
|
||
func triageIntersectionOrdering(a, b, c, d, m, n Point) int {
|
||
// Given an edge AB, and the normal of a great circle M, the intersection of
|
||
// the edge with the great circle is given by the triple product (A×B)×M.
|
||
//
|
||
// Its distance relative to the reference circle N is then proportional to the
|
||
// dot product with N: d0 = ((A×B)×M)•N
|
||
//
|
||
// Edge CD is similar, we want to compute d1 = ((C×D)×M)•N and compare d0 to
|
||
// d1. If they're further than some error from each other, we can rely on the
|
||
// comparison, otherwise we fall back to more exact arithmetic.
|
||
//
|
||
// ((A×B)×M)•N is a quadruple product. We can expand this out using
|
||
// Lagrange's formula for a vector triple product and then distribute the dot
|
||
// product, which eliminates all the cross products:
|
||
//
|
||
// d0 = ((A×B)×M)•N
|
||
// d0 = ((M•A)B - (M•B)A)•N
|
||
// d0 = (M•A)(N•B) - (M•B)(N•A)
|
||
//
|
||
// Similarly:
|
||
//
|
||
// d1 = (M•C)(N•D) - (M•D)(N•C)
|
||
//
|
||
// We can compute this difference with a maximum absolute error of 32ε (see
|
||
// the gappa proof at end of the file).
|
||
//
|
||
// NOTE: If we want to push this error bound down as far as possible, we could
|
||
// use the dot product algorithm created by Ogita et al:
|
||
//
|
||
// Accurate Sum and Dot Product, Ogita, Rump, Oishi 2005.
|
||
//
|
||
// Along with the 2x2 determinant algorithm by Kahan (which is useful for any
|
||
// bilinear form):
|
||
//
|
||
// Further Analysis of Kahan's Algorithm for the Accurate Computation of
|
||
// 2x2 Determinants, Jeannerod, Louvet, and Muller, 2013.
|
||
//
|
||
// Both algorithms allow us to have bounded relative error, and since we're
|
||
// only interested in the sign of this operation, as long as the relative
|
||
// error is < 1 we can never get a sign flip, which would make this exact for
|
||
// our purposes.
|
||
const maxError = 32 * dblEpsilon
|
||
|
||
mdota := m.Dot(a.Vector)
|
||
mdotb := m.Dot(b.Vector)
|
||
mdotc := m.Dot(c.Vector)
|
||
mdotd := m.Dot(d.Vector)
|
||
|
||
ndota := n.Dot(a.Vector)
|
||
ndotb := n.Dot(b.Vector)
|
||
ndotc := n.Dot(c.Vector)
|
||
ndotd := n.Dot(d.Vector)
|
||
|
||
prodab := mdota*ndotb - mdotb*ndota
|
||
prodcd := mdotc*ndotd - mdotd*ndotc
|
||
|
||
if math.Abs(prodab-prodcd) > maxError {
|
||
if prodab < prodcd {
|
||
return -1
|
||
} else {
|
||
return +1
|
||
}
|
||
}
|
||
return 0
|
||
}
|
||
|
||
// exactIntersectionOrdering reports the order of intersections along a great circle
|
||
// relative to some reference point using the precise implementation.
|
||
func exactIntersectionOrdering(a, b, c, d, m, n r3.PreciseVector) int {
|
||
mdota := m.Dot(a)
|
||
mdotb := m.Dot(b)
|
||
mdotc := m.Dot(c)
|
||
mdotd := m.Dot(d)
|
||
|
||
ndota := n.Dot(a)
|
||
ndotb := n.Dot(b)
|
||
ndotc := n.Dot(c)
|
||
ndotd := n.Dot(d)
|
||
|
||
prodab := precSub(precMul(mdota, ndotb), precMul(mdotb, ndota))
|
||
prodcd := precSub(precMul(mdotc, ndotd), precMul(mdotd, ndotc))
|
||
|
||
return prodab.Cmp(prodcd)
|
||
}
|
||
|
||
// Gappa proof for TriageIntersectionOrdering
|
||
//
|
||
// # Use IEEE754 double precision, round-to-nearest by default.
|
||
// @rnd = float<ieee_64, ne>;
|
||
//
|
||
// # Five vectors, two forming edges AB, CD and two normals N,M for great
|
||
// # circles.
|
||
// a0 = rnd(a0_ex);
|
||
// a1 = rnd(a1_ex);
|
||
// a2 = rnd(a2_ex);
|
||
// b0 = rnd(b0_ex);
|
||
// b1 = rnd(b1_ex);
|
||
// b2 = rnd(b2_ex);
|
||
// c0 = rnd(c0_ex);
|
||
// c1 = rnd(c1_ex);
|
||
// c2 = rnd(c2_ex);
|
||
// d0 = rnd(d0_ex);
|
||
// d1 = rnd(d1_ex);
|
||
// d2 = rnd(d2_ex);
|
||
// n0 = rnd(n0_ex);
|
||
// n1 = rnd(n1_ex);
|
||
// n2 = rnd(n2_ex);
|
||
// m0 = rnd(m0_ex);
|
||
// m1 = rnd(m1_ex);
|
||
// m2 = rnd(m2_ex);
|
||
//
|
||
// # (AxB)xN = (N*A)B - (N*B)*A -- Lagrange's formula
|
||
// # ((AxB)xN)*M = ((N*A)B - (N*B)*A)*M
|
||
// # = (N*A)(M*B) - (X*B)(M*A)
|
||
//
|
||
// ndota_ rnd = n0*a0 + n1*a1 + n2*a2;
|
||
// ndotb_ rnd = n0*b0 + n1*b1 + n2*b2;
|
||
// mdota_ rnd = m0*a0 + m1*a1 + m2*a2;
|
||
// mdotb_ rnd = m0*b0 + m1*b1 + m2*b2;
|
||
// prod0_ rnd = ndota_*mdotb_ - ndotb_*mdota_;
|
||
//
|
||
// ndotc_ rnd = n0*c0 + n1*c1 + n2*c2;
|
||
// ndotd_ rnd = n0*d0 + n1*d1 + n2*d2;
|
||
// mdotc_ rnd = m0*c0 + m1*c1 + m2*c2;
|
||
// mdotd_ rnd = m0*d0 + m1*d1 + m2*d2;
|
||
// prod1_ rnd = ndotc_*mdotd_ - ndotd_*mdotc_;
|
||
//
|
||
// diff_ rnd = prod1_ - prod0_;
|
||
//
|
||
// # Compute it all again in exact arithmetic.
|
||
// ndota = n0*a0 + n1*a1 + n2*a2;
|
||
// ndotb = n0*b0 + n1*b1 + n2*b2;
|
||
// mdota = m0*a0 + m1*a1 + m2*a2;
|
||
// mdotb = m0*b0 + m1*b1 + m2*b2;
|
||
// prod0 = ndota*mdotb - ndotb*mdota;
|
||
//
|
||
// ndotc = n0*c0 + n1*c1 + n2*c2;
|
||
// ndotd = n0*d0 + n1*d1 + n2*d2;
|
||
// mdotc = m0*c0 + m1*c1 + m2*c2;
|
||
// mdotd = m0*d0 + m1*d1 + m2*d2;
|
||
// prod1 = ndotc*mdotd - ndotd*mdotc;
|
||
//
|
||
// diff = prod1 - prod0;
|
||
//
|
||
// {
|
||
// # A,B,C, and D are meant to be normalized S2Point values, so their
|
||
// # magnitude will be at most 1. M and N are allowed to be unnormalized cell
|
||
// # edge normals, so their magnitude can be up to sqrt(2). In each case the
|
||
// # components will be at most one.
|
||
// a0 in [-1, 1]
|
||
// /\ a1 in [-1, 1]
|
||
// /\ a2 in [-1, 1]
|
||
// /\ b0 in [-1, 1]
|
||
// /\ b1 in [-1, 1]
|
||
// /\ b2 in [-1, 1]
|
||
// /\ c0 in [-1, 1]
|
||
// /\ c1 in [-1, 1]
|
||
// /\ c2 in [-1, 1]
|
||
// /\ d0 in [-1, 1]
|
||
// /\ d1 in [-1, 1]
|
||
// /\ d2 in [-1, 1]
|
||
//
|
||
// /\ n0 in [-1, 1]
|
||
// /\ n1 in [-1, 1]
|
||
// /\ n2 in [-1, 1]
|
||
// /\ m0 in [-1, 1]
|
||
// /\ m1 in [-1, 1]
|
||
// /\ m2 in [-1, 1]
|
||
//
|
||
// # We always dot an unnormalized normal against a normalized point so the
|
||
// # magnitude of the dot product in each case is bounded by sqrt(2).
|
||
// /\ |ndota_| in [0, 1.4142135623730954]
|
||
// /\ |ndotb_| in [0, 1.4142135623730954]
|
||
// /\ |ndotc_| in [0, 1.4142135623730954]
|
||
// /\ |ndotd_| in [0, 1.4142135623730954]
|
||
//
|
||
// /\ |mdota_| in [0, 1.4142135623730954]
|
||
// /\ |mdotb_| in [0, 1.4142135623730954]
|
||
// /\ |mdotc_| in [0, 1.4142135623730954]
|
||
// /\ |mdotd_| in [0, 1.4142135623730954]
|
||
//
|
||
// ->
|
||
// |diff_ - diff| in ?
|
||
// }
|
||
//
|
||
// > gappa proof.gappa
|
||
// Results:
|
||
// | diff_ - diff| in [0, 1145679351550454559b-107 {7.06079e-15, 2^(-47.0091)}]
|
||
//
|
||
// >>> 1145679351550454559*2**-107/2**-52
|
||
// 31.79898987322334
|
||
|
||
// Gappa proof for TriageCircleEdgeIntersectionSign
|
||
//
|
||
// # Use IEEE754 double precision, round-to-nearest by default.
|
||
// @rnd = float<ieee_64, ne>;
|
||
//
|
||
// # Four vectors, two forming an edge AB and two normals (X,Y) for great
|
||
// circles. a0 = rnd(a0_ex); a1 = rnd(a1_ex); a2 = rnd(a2_ex); b0 =
|
||
// rnd(b0_ex); b1 = rnd(b1_ex); b2 = rnd(b2_ex); n0 = rnd(n0_ex); n1 =
|
||
// rnd(n1_ex); n2 = rnd(n2_ex); x0 = rnd(x0_ex); x1 = rnd(x1_ex); x2 =
|
||
// rnd(x2_ex);
|
||
//
|
||
// # (AxB)xX = (X*A)B - (X*B)*A -- Lagrange's formula
|
||
// # ((AxB)xX)*Y = ((X*A)B - (X*B)*A)*Y
|
||
// # = (X*A)(Y*B) - (X*B)(Y*A)
|
||
//
|
||
// ndota_ rnd = n0*a0 + n1*a1 + n2*a2;
|
||
// ndotb_ rnd = n0*b0 + n1*b1 + n2*b2;
|
||
// xdota_ rnd = x0*a0 + x1*a1 + x2*a2;
|
||
// xdotb_ rnd = x0*b0 + x1*b1 + x2*b2;
|
||
// diff_ rnd = ndota_*xdotb_ - ndotb_*xdota_;
|
||
//
|
||
// # Compute it all again in exact arithmetic.
|
||
// ndota = n0*a0 + n1*a1 + n2*a2;
|
||
// ndotb = n0*b0 + n1*b1 + n2*b2;
|
||
// xdota = x0*a0 + x1*a1 + x2*a2;
|
||
// xdotb = x0*b0 + x1*b1 + x2*b2;
|
||
// diff = ndota*xdotb - ndotb*xdota;
|
||
//
|
||
// {
|
||
// # A and B are meant to be normalized S2Point values, so their magnitude
|
||
// will # be at most 1. X and Y are allowed to be unnormalized cell edge
|
||
// normals, so # their magnitude can be up to sqrt(2). In each case the
|
||
// components will be # at most one.
|
||
// a0 in [-1, 1]
|
||
// /\ a1 in [-1, 1]
|
||
// /\ a2 in [-1, 1]
|
||
// /\ b0 in [-1, 1]
|
||
// /\ b1 in [-1, 1]
|
||
// /\ b2 in [-1, 1]
|
||
// /\ n0 in [-1, 1]
|
||
// /\ n1 in [-1, 1]
|
||
// /\ n2 in [-1, 1]
|
||
// /\ x0 in [-1, 1]
|
||
// /\ x1 in [-1, 1]
|
||
// /\ x2 in [-1, 1]
|
||
//
|
||
// # We always dot an unnormalized normal against a normalized point so the
|
||
// # magnitude of the dot product in each case is bounded by sqrt(2).
|
||
// /\ |ndota_| in [0, 1.4142135623730954]
|
||
// /\ |ndotb_| in [0, 1.4142135623730954]
|
||
// /\ |xdota_| in [0, 1.4142135623730954]
|
||
// /\ |xdotb_| in [0, 1.4142135623730954]
|
||
//
|
||
// ->
|
||
// |diff_ - diff| in ?
|
||
// } 6ms
|
||
//
|
||
// > gappa proof.gappa
|
||
// Results:
|
||
// |diff_ - diff| in [0, 1001564163474598623b-108 {3.08631e-15,
|
||
// 2^(-48.2031)}]
|
||
//
|
||
// >>> 1001564163474598623*2**-108/2**-52
|
||
// 13.89949493661167
|
||
|
||
// TODO(roberts): Differences from C++
|
||
// CompareEdgeDistance
|
||
// CompareEdgeDirections
|
||
// EdgeCircumcenterSign
|
||
// GetVoronoiSiteExclusion
|
||
//
|
||
// getClosestVertex
|
||
// triageCompareLineSin2Distance
|
||
// triageCompareLineCos2Distance
|
||
// triageCompareLineDistance
|
||
// triageCompareEdgeDistance
|
||
// exactCompareLineDistance
|
||
// exactCompareEdgeDistance
|
||
// triageCompareEdgeDirections
|
||
// exactCompareEdgeDirections
|
||
// arePointsAntipodal
|
||
// arePointsLinearlyDependent
|
||
// getCircumcenter
|
||
// triageEdgeCircumcenterSign
|
||
// exactEdgeCircumcenterSign
|
||
// unperturbedSign
|
||
// symbolicEdgeCircumcenterSign
|
||
// exactVoronoiSiteExclusion
|