Major integrations and fixes: - Added BACKBEAT SDK integration for P2P operation timing - Implemented beat-aware status tracking for distributed operations - Added Docker secrets support for secure license management - Resolved KACHING license validation via HTTPS/TLS - Updated docker-compose configuration for clean stack deployment - Disabled rollback policies to prevent deployment failures - Added license credential storage (CHORUS-DEV-MULTI-001) Technical improvements: - BACKBEAT P2P operation tracking with phase management - Enhanced configuration system with file-based secrets - Improved error handling for license validation - Clean separation of KACHING and CHORUS deployment stacks 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
171 lines
8.2 KiB
Go
171 lines
8.2 KiB
Go
package ipld
|
|
|
|
import (
|
|
"bytes"
|
|
"io"
|
|
"reflect"
|
|
|
|
"github.com/ipld/go-ipld-prime/node/basicnode"
|
|
"github.com/ipld/go-ipld-prime/node/bindnode"
|
|
"github.com/ipld/go-ipld-prime/schema"
|
|
)
|
|
|
|
// Encode serializes the given Node using the given Encoder function,
|
|
// returning the serialized data or an error.
|
|
//
|
|
// The exact result data will depend the node content and on the encoder function,
|
|
// but for example, using a json codec on a node with kind map will produce
|
|
// a result starting in `{`, etc.
|
|
//
|
|
// Encode will automatically switch to encoding the representation form of the Node,
|
|
// if it discovers the Node matches the schema.TypedNode interface.
|
|
// This is probably what you want, in most cases;
|
|
// if this is not desired, you can use the underlaying functions directly
|
|
// (just look at the source of this function for an example of how!).
|
|
//
|
|
// If you would like this operation, but applied directly to a golang type instead of a Node,
|
|
// look to the Marshal function.
|
|
func Encode(n Node, encFn Encoder) ([]byte, error) {
|
|
var buf bytes.Buffer
|
|
err := EncodeStreaming(&buf, n, encFn)
|
|
return buf.Bytes(), err
|
|
}
|
|
|
|
// EncodeStreaming is like Encode, but emits output to an io.Writer.
|
|
func EncodeStreaming(wr io.Writer, n Node, encFn Encoder) error {
|
|
if tn, ok := n.(schema.TypedNode); ok {
|
|
n = tn.Representation()
|
|
}
|
|
return encFn(n, wr)
|
|
}
|
|
|
|
// Decode parses the given bytes into a Node using the given Decoder function,
|
|
// returning a new Node or an error.
|
|
//
|
|
// The new Node that is returned will be the implementation from the node/basicnode package.
|
|
// This implementation of Node will work for storing any kind of data,
|
|
// but note that because it is general, it is also not necessarily optimized.
|
|
// If you want more control over what kind of Node implementation (and thus memory layout) is used,
|
|
// or want to use features like IPLD Schemas (which can be engaged by using a schema.TypedPrototype),
|
|
// then look to the DecodeUsingPrototype family of functions,
|
|
// which accept more parameters in order to give you that kind of control.
|
|
//
|
|
// If you would like this operation, but applied directly to a golang type instead of a Node,
|
|
// look to the Unmarshal function.
|
|
func Decode(b []byte, decFn Decoder) (Node, error) {
|
|
return DecodeUsingPrototype(b, decFn, basicnode.Prototype.Any)
|
|
}
|
|
|
|
// DecodeStreaming is like Decode, but works on an io.Reader for input.
|
|
func DecodeStreaming(r io.Reader, decFn Decoder) (Node, error) {
|
|
return DecodeStreamingUsingPrototype(r, decFn, basicnode.Prototype.Any)
|
|
}
|
|
|
|
// DecodeUsingPrototype is like Decode, but with a NodePrototype parameter,
|
|
// which gives you control over the Node type you'll receive,
|
|
// and thus control over the memory layout, and ability to use advanced features like schemas.
|
|
// (Decode is simply this function, but hardcoded to use basicnode.Prototype.Any.)
|
|
//
|
|
// DecodeUsingPrototype internally creates a NodeBuilder, and thows it away when done.
|
|
// If building a high performance system, and creating data of the same shape repeatedly,
|
|
// you may wish to use NodeBuilder directly, so that you can control and avoid these allocations.
|
|
//
|
|
// For symmetry with the behavior of Encode, DecodeUsingPrototype will automatically
|
|
// switch to using the representation form of the node for decoding
|
|
// if it discovers the NodePrototype matches the schema.TypedPrototype interface.
|
|
// This is probably what you want, in most cases;
|
|
// if this is not desired, you can use the underlaying functions directly
|
|
// (just look at the source of this function for an example of how!).
|
|
func DecodeUsingPrototype(b []byte, decFn Decoder, np NodePrototype) (Node, error) {
|
|
return DecodeStreamingUsingPrototype(bytes.NewReader(b), decFn, np)
|
|
}
|
|
|
|
// DecodeStreamingUsingPrototype is like DecodeUsingPrototype, but works on an io.Reader for input.
|
|
func DecodeStreamingUsingPrototype(r io.Reader, decFn Decoder, np NodePrototype) (Node, error) {
|
|
if tnp, ok := np.(schema.TypedPrototype); ok {
|
|
np = tnp.Representation()
|
|
}
|
|
nb := np.NewBuilder()
|
|
if err := decFn(nb, r); err != nil {
|
|
return nil, err
|
|
}
|
|
return nb.Build(), nil
|
|
}
|
|
|
|
// Marshal accepts a pointer to a Go value and an IPLD schema type,
|
|
// and encodes the representation form of that data (which may be configured with the schema!)
|
|
// using the given Encoder function.
|
|
//
|
|
// Marshal uses the node/bindnode subsystem.
|
|
// See the documentation in that package for more details about its workings.
|
|
// Please note that this subsystem is relatively experimental at this time.
|
|
//
|
|
// The schema.Type parameter is optional, and can be nil.
|
|
// If given, it controls what kind of schema.Type (and what kind of representation strategy!)
|
|
// to use when processing the data.
|
|
// If absent, a default schema.Type will be inferred based on the golang type
|
|
// (so, a struct in go will be inferred to have a schema with a similar struct, and the default representation strategy (e.g. map), etc).
|
|
// Note that not all features of IPLD Schemas can be inferred from golang types alone.
|
|
// For example, to use union types, the schema parameter will be required.
|
|
// Similarly, to use most kinds of non-default representation strategy, the schema parameter is needed in order to convey that intention.
|
|
func Marshal(encFn Encoder, bind interface{}, typ schema.Type) ([]byte, error) {
|
|
n := bindnode.Wrap(bind, typ)
|
|
return Encode(n.Representation(), encFn)
|
|
}
|
|
|
|
// MarshalStreaming is like Marshal, but emits output to an io.Writer.
|
|
func MarshalStreaming(wr io.Writer, encFn Encoder, bind interface{}, typ schema.Type) error {
|
|
n := bindnode.Wrap(bind, typ)
|
|
return EncodeStreaming(wr, n.Representation(), encFn)
|
|
}
|
|
|
|
// Unmarshal accepts a pointer to a Go value and an IPLD schema type,
|
|
// and fills the value with data by decoding into it with the given Decoder function.
|
|
//
|
|
// Unmarshal uses the node/bindnode subsystem.
|
|
// See the documentation in that package for more details about its workings.
|
|
// Please note that this subsystem is relatively experimental at this time.
|
|
//
|
|
// The schema.Type parameter is optional, and can be nil.
|
|
// If given, it controls what kind of schema.Type (and what kind of representation strategy!)
|
|
// to use when processing the data.
|
|
// If absent, a default schema.Type will be inferred based on the golang type
|
|
// (so, a struct in go will be inferred to have a schema with a similar struct, and the default representation strategy (e.g. map), etc).
|
|
// Note that not all features of IPLD Schemas can be inferred from golang types alone.
|
|
// For example, to use union types, the schema parameter will be required.
|
|
// Similarly, to use most kinds of non-default representation strategy, the schema parameter is needed in order to convey that intention.
|
|
//
|
|
// In contrast to some other unmarshal conventions common in golang,
|
|
// notice that we also return a Node value.
|
|
// This Node points to the same data as the value you handed in as the bind parameter,
|
|
// while making it available to read and iterate and handle as a ipld datamodel.Node.
|
|
// If you don't need that interface, or intend to re-bind it later, you can discard that value.
|
|
//
|
|
// The 'bind' parameter may be nil.
|
|
// In that case, the type of the nil is still used to infer what kind of value to return,
|
|
// and a Node will still be returned based on that type.
|
|
// bindnode.Unwrap can be used on that Node and will still return something
|
|
// of the same golang type as the typed nil that was given as the 'bind' parameter.
|
|
func Unmarshal(b []byte, decFn Decoder, bind interface{}, typ schema.Type) (Node, error) {
|
|
return UnmarshalStreaming(bytes.NewReader(b), decFn, bind, typ)
|
|
}
|
|
|
|
// UnmarshalStreaming is like Unmarshal, but works on an io.Reader for input.
|
|
func UnmarshalStreaming(r io.Reader, decFn Decoder, bind interface{}, typ schema.Type) (Node, error) {
|
|
// Decode is fairly straightforward.
|
|
np := bindnode.Prototype(bind, typ)
|
|
n, err := DecodeStreamingUsingPrototype(r, decFn, np.Representation())
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
// ... but our approach above allocated new memory, and we have to copy it back out.
|
|
// In the future, the bindnode API could be improved to make this easier.
|
|
if !reflect.ValueOf(bind).IsNil() {
|
|
reflect.ValueOf(bind).Elem().Set(reflect.ValueOf(bindnode.Unwrap(n)).Elem())
|
|
}
|
|
// ... and we also have to re-bind a new node to the 'bind' value,
|
|
// because probably the user will be surprised if mutating 'bind' doesn't affect the Node later.
|
|
n = bindnode.Wrap(bind, typ)
|
|
return n, err
|
|
}
|