Major integrations and fixes: - Added BACKBEAT SDK integration for P2P operation timing - Implemented beat-aware status tracking for distributed operations - Added Docker secrets support for secure license management - Resolved KACHING license validation via HTTPS/TLS - Updated docker-compose configuration for clean stack deployment - Disabled rollback policies to prevent deployment failures - Added license credential storage (CHORUS-DEV-MULTI-001) Technical improvements: - BACKBEAT P2P operation tracking with phase management - Enhanced configuration system with file-based secrets - Improved error handling for license validation - Clean separation of KACHING and CHORUS deployment stacks 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
		
			
				
	
	
		
			373 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			373 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2009 The Go Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| // Package rand implements pseudo-random number generators.
 | |
| //
 | |
| // Random numbers are generated by a Source. Top-level functions, such as
 | |
| // Float64 and Int, use a default shared Source that produces a deterministic
 | |
| // sequence of values each time a program is run. Use the Seed function to
 | |
| // initialize the default Source if different behavior is required for each run.
 | |
| // The default Source, a LockedSource, is safe for concurrent use by multiple
 | |
| // goroutines, but Sources created by NewSource are not. However, Sources are small
 | |
| // and it is reasonable to have a separate Source for each goroutine, seeded
 | |
| // differently, to avoid locking.
 | |
| //
 | |
| // For random numbers suitable for security-sensitive work, see the crypto/rand
 | |
| // package.
 | |
| package rand
 | |
| 
 | |
| import "sync"
 | |
| 
 | |
| // A Source represents a source of uniformly-distributed
 | |
| // pseudo-random int64 values in the range [0, 1<<64).
 | |
| type Source interface {
 | |
| 	Uint64() uint64
 | |
| 	Seed(seed uint64)
 | |
| }
 | |
| 
 | |
| // NewSource returns a new pseudo-random Source seeded with the given value.
 | |
| func NewSource(seed uint64) Source {
 | |
| 	var rng PCGSource
 | |
| 	rng.Seed(seed)
 | |
| 	return &rng
 | |
| }
 | |
| 
 | |
| // A Rand is a source of random numbers.
 | |
| type Rand struct {
 | |
| 	src Source
 | |
| 
 | |
| 	// readVal contains remainder of 64-bit integer used for bytes
 | |
| 	// generation during most recent Read call.
 | |
| 	// It is saved so next Read call can start where the previous
 | |
| 	// one finished.
 | |
| 	readVal uint64
 | |
| 	// readPos indicates the number of low-order bytes of readVal
 | |
| 	// that are still valid.
 | |
| 	readPos int8
 | |
| }
 | |
| 
 | |
| // New returns a new Rand that uses random values from src
 | |
| // to generate other random values.
 | |
| func New(src Source) *Rand {
 | |
| 	return &Rand{src: src}
 | |
| }
 | |
| 
 | |
| // Seed uses the provided seed value to initialize the generator to a deterministic state.
 | |
| // Seed should not be called concurrently with any other Rand method.
 | |
| func (r *Rand) Seed(seed uint64) {
 | |
| 	if lk, ok := r.src.(*LockedSource); ok {
 | |
| 		lk.seedPos(seed, &r.readPos)
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	r.src.Seed(seed)
 | |
| 	r.readPos = 0
 | |
| }
 | |
| 
 | |
| // Uint64 returns a pseudo-random 64-bit integer as a uint64.
 | |
| func (r *Rand) Uint64() uint64 { return r.src.Uint64() }
 | |
| 
 | |
| // Int63 returns a non-negative pseudo-random 63-bit integer as an int64.
 | |
| func (r *Rand) Int63() int64 { return int64(r.src.Uint64() &^ (1 << 63)) }
 | |
| 
 | |
| // Uint32 returns a pseudo-random 32-bit value as a uint32.
 | |
| func (r *Rand) Uint32() uint32 { return uint32(r.Uint64() >> 32) }
 | |
| 
 | |
| // Int31 returns a non-negative pseudo-random 31-bit integer as an int32.
 | |
| func (r *Rand) Int31() int32 { return int32(r.Uint64() >> 33) }
 | |
| 
 | |
| // Int returns a non-negative pseudo-random int.
 | |
| func (r *Rand) Int() int {
 | |
| 	u := uint(r.Uint64())
 | |
| 	return int(u << 1 >> 1) // clear sign bit.
 | |
| }
 | |
| 
 | |
| const maxUint64 = (1 << 64) - 1
 | |
| 
 | |
| // Uint64n returns, as a uint64, a pseudo-random number in [0,n).
 | |
| // It is guaranteed more uniform than taking a Source value mod n
 | |
| // for any n that is not a power of 2.
 | |
| func (r *Rand) Uint64n(n uint64) uint64 {
 | |
| 	if n&(n-1) == 0 { // n is power of two, can mask
 | |
| 		if n == 0 {
 | |
| 			panic("invalid argument to Uint64n")
 | |
| 		}
 | |
| 		return r.Uint64() & (n - 1)
 | |
| 	}
 | |
| 	// If n does not divide v, to avoid bias we must not use
 | |
| 	// a v that is within maxUint64%n of the top of the range.
 | |
| 	v := r.Uint64()
 | |
| 	if v > maxUint64-n { // Fast check.
 | |
| 		ceiling := maxUint64 - maxUint64%n
 | |
| 		for v >= ceiling {
 | |
| 			v = r.Uint64()
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return v % n
 | |
| }
 | |
| 
 | |
| // Int63n returns, as an int64, a non-negative pseudo-random number in [0,n).
 | |
| // It panics if n <= 0.
 | |
| func (r *Rand) Int63n(n int64) int64 {
 | |
| 	if n <= 0 {
 | |
| 		panic("invalid argument to Int63n")
 | |
| 	}
 | |
| 	return int64(r.Uint64n(uint64(n)))
 | |
| }
 | |
| 
 | |
| // Int31n returns, as an int32, a non-negative pseudo-random number in [0,n).
 | |
| // It panics if n <= 0.
 | |
| func (r *Rand) Int31n(n int32) int32 {
 | |
| 	if n <= 0 {
 | |
| 		panic("invalid argument to Int31n")
 | |
| 	}
 | |
| 	// TODO: Avoid some 64-bit ops to make it more efficient on 32-bit machines.
 | |
| 	return int32(r.Uint64n(uint64(n)))
 | |
| }
 | |
| 
 | |
| // Intn returns, as an int, a non-negative pseudo-random number in [0,n).
 | |
| // It panics if n <= 0.
 | |
| func (r *Rand) Intn(n int) int {
 | |
| 	if n <= 0 {
 | |
| 		panic("invalid argument to Intn")
 | |
| 	}
 | |
| 	// TODO: Avoid some 64-bit ops to make it more efficient on 32-bit machines.
 | |
| 	return int(r.Uint64n(uint64(n)))
 | |
| }
 | |
| 
 | |
| // Float64 returns, as a float64, a pseudo-random number in [0.0,1.0).
 | |
| func (r *Rand) Float64() float64 {
 | |
| 	// There is one bug in the value stream: r.Int63() may be so close
 | |
| 	// to 1<<63 that the division rounds up to 1.0, and we've guaranteed
 | |
| 	// that the result is always less than 1.0.
 | |
| 	//
 | |
| 	// We tried to fix this by mapping 1.0 back to 0.0, but since float64
 | |
| 	// values near 0 are much denser than near 1, mapping 1 to 0 caused
 | |
| 	// a theoretically significant overshoot in the probability of returning 0.
 | |
| 	// Instead of that, if we round up to 1, just try again.
 | |
| 	// Getting 1 only happens 1/2⁵³ of the time, so most clients
 | |
| 	// will not observe it anyway.
 | |
| again:
 | |
| 	f := float64(r.Uint64n(1<<53)) / (1 << 53)
 | |
| 	if f == 1.0 {
 | |
| 		goto again // resample; this branch is taken O(never)
 | |
| 	}
 | |
| 	return f
 | |
| }
 | |
| 
 | |
| // Float32 returns, as a float32, a pseudo-random number in [0.0,1.0).
 | |
| func (r *Rand) Float32() float32 {
 | |
| 	// We do not want to return 1.0.
 | |
| 	// This only happens 1/2²⁴ of the time (plus the 1/2⁵³ of the time in Float64).
 | |
| again:
 | |
| 	f := float32(r.Float64())
 | |
| 	if f == 1 {
 | |
| 		goto again // resample; this branch is taken O(very rarely)
 | |
| 	}
 | |
| 	return f
 | |
| }
 | |
| 
 | |
| // Perm returns, as a slice of n ints, a pseudo-random permutation of the integers [0,n).
 | |
| func (r *Rand) Perm(n int) []int {
 | |
| 	m := make([]int, n)
 | |
| 	// In the following loop, the iteration when i=0 always swaps m[0] with m[0].
 | |
| 	// A change to remove this useless iteration is to assign 1 to i in the init
 | |
| 	// statement. But Perm also effects r. Making this change will affect
 | |
| 	// the final state of r. So this change can't be made for compatibility
 | |
| 	// reasons for Go 1.
 | |
| 	for i := 0; i < n; i++ {
 | |
| 		j := r.Intn(i + 1)
 | |
| 		m[i] = m[j]
 | |
| 		m[j] = i
 | |
| 	}
 | |
| 	return m
 | |
| }
 | |
| 
 | |
| // Shuffle pseudo-randomizes the order of elements.
 | |
| // n is the number of elements. Shuffle panics if n < 0.
 | |
| // swap swaps the elements with indexes i and j.
 | |
| func (r *Rand) Shuffle(n int, swap func(i, j int)) {
 | |
| 	if n < 0 {
 | |
| 		panic("invalid argument to Shuffle")
 | |
| 	}
 | |
| 
 | |
| 	// Fisher-Yates shuffle: https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle
 | |
| 	// Shuffle really ought not be called with n that doesn't fit in 32 bits.
 | |
| 	// Not only will it take a very long time, but with 2³¹! possible permutations,
 | |
| 	// there's no way that any PRNG can have a big enough internal state to
 | |
| 	// generate even a minuscule percentage of the possible permutations.
 | |
| 	// Nevertheless, the right API signature accepts an int n, so handle it as best we can.
 | |
| 	i := n - 1
 | |
| 	for ; i > 1<<31-1-1; i-- {
 | |
| 		j := int(r.Int63n(int64(i + 1)))
 | |
| 		swap(i, j)
 | |
| 	}
 | |
| 	for ; i > 0; i-- {
 | |
| 		j := int(r.Int31n(int32(i + 1)))
 | |
| 		swap(i, j)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Read generates len(p) random bytes and writes them into p. It
 | |
| // always returns len(p) and a nil error.
 | |
| // Read should not be called concurrently with any other Rand method unless
 | |
| // the underlying source is a LockedSource.
 | |
| func (r *Rand) Read(p []byte) (n int, err error) {
 | |
| 	if lk, ok := r.src.(*LockedSource); ok {
 | |
| 		return lk.Read(p, &r.readVal, &r.readPos)
 | |
| 	}
 | |
| 	return read(p, r.src, &r.readVal, &r.readPos)
 | |
| }
 | |
| 
 | |
| func read(p []byte, src Source, readVal *uint64, readPos *int8) (n int, err error) {
 | |
| 	pos := *readPos
 | |
| 	val := *readVal
 | |
| 	rng, _ := src.(*PCGSource)
 | |
| 	for n = 0; n < len(p); n++ {
 | |
| 		if pos == 0 {
 | |
| 			if rng != nil {
 | |
| 				val = rng.Uint64()
 | |
| 			} else {
 | |
| 				val = src.Uint64()
 | |
| 			}
 | |
| 			pos = 8
 | |
| 		}
 | |
| 		p[n] = byte(val)
 | |
| 		val >>= 8
 | |
| 		pos--
 | |
| 	}
 | |
| 	*readPos = pos
 | |
| 	*readVal = val
 | |
| 	return
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Top-level convenience functions
 | |
|  */
 | |
| 
 | |
| var globalRand = New(&LockedSource{src: *NewSource(1).(*PCGSource)})
 | |
| 
 | |
| // Type assert that globalRand's source is a LockedSource whose src is a PCGSource.
 | |
| var _ PCGSource = globalRand.src.(*LockedSource).src
 | |
| 
 | |
| // Seed uses the provided seed value to initialize the default Source to a
 | |
| // deterministic state. If Seed is not called, the generator behaves as
 | |
| // if seeded by Seed(1).
 | |
| // Seed, unlike the Rand.Seed method, is safe for concurrent use.
 | |
| func Seed(seed uint64) { globalRand.Seed(seed) }
 | |
| 
 | |
| // Int63 returns a non-negative pseudo-random 63-bit integer as an int64
 | |
| // from the default Source.
 | |
| func Int63() int64 { return globalRand.Int63() }
 | |
| 
 | |
| // Uint32 returns a pseudo-random 32-bit value as a uint32
 | |
| // from the default Source.
 | |
| func Uint32() uint32 { return globalRand.Uint32() }
 | |
| 
 | |
| // Uint64 returns a pseudo-random 64-bit value as a uint64
 | |
| // from the default Source.
 | |
| func Uint64() uint64 { return globalRand.Uint64() }
 | |
| 
 | |
| // Int31 returns a non-negative pseudo-random 31-bit integer as an int32
 | |
| // from the default Source.
 | |
| func Int31() int32 { return globalRand.Int31() }
 | |
| 
 | |
| // Int returns a non-negative pseudo-random int from the default Source.
 | |
| func Int() int { return globalRand.Int() }
 | |
| 
 | |
| // Int63n returns, as an int64, a non-negative pseudo-random number in [0,n)
 | |
| // from the default Source.
 | |
| // It panics if n <= 0.
 | |
| func Int63n(n int64) int64 { return globalRand.Int63n(n) }
 | |
| 
 | |
| // Int31n returns, as an int32, a non-negative pseudo-random number in [0,n)
 | |
| // from the default Source.
 | |
| // It panics if n <= 0.
 | |
| func Int31n(n int32) int32 { return globalRand.Int31n(n) }
 | |
| 
 | |
| // Intn returns, as an int, a non-negative pseudo-random number in [0,n)
 | |
| // from the default Source.
 | |
| // It panics if n <= 0.
 | |
| func Intn(n int) int { return globalRand.Intn(n) }
 | |
| 
 | |
| // Float64 returns, as a float64, a pseudo-random number in [0.0,1.0)
 | |
| // from the default Source.
 | |
| func Float64() float64 { return globalRand.Float64() }
 | |
| 
 | |
| // Float32 returns, as a float32, a pseudo-random number in [0.0,1.0)
 | |
| // from the default Source.
 | |
| func Float32() float32 { return globalRand.Float32() }
 | |
| 
 | |
| // Perm returns, as a slice of n ints, a pseudo-random permutation of the integers [0,n)
 | |
| // from the default Source.
 | |
| func Perm(n int) []int { return globalRand.Perm(n) }
 | |
| 
 | |
| // Shuffle pseudo-randomizes the order of elements using the default Source.
 | |
| // n is the number of elements. Shuffle panics if n < 0.
 | |
| // swap swaps the elements with indexes i and j.
 | |
| func Shuffle(n int, swap func(i, j int)) { globalRand.Shuffle(n, swap) }
 | |
| 
 | |
| // Read generates len(p) random bytes from the default Source and
 | |
| // writes them into p. It always returns len(p) and a nil error.
 | |
| // Read, unlike the Rand.Read method, is safe for concurrent use.
 | |
| func Read(p []byte) (n int, err error) { return globalRand.Read(p) }
 | |
| 
 | |
| // NormFloat64 returns a normally distributed float64 in the range
 | |
| // [-math.MaxFloat64, +math.MaxFloat64] with
 | |
| // standard normal distribution (mean = 0, stddev = 1)
 | |
| // from the default Source.
 | |
| // To produce a different normal distribution, callers can
 | |
| // adjust the output using:
 | |
| //
 | |
| //	sample = NormFloat64() * desiredStdDev + desiredMean
 | |
| func NormFloat64() float64 { return globalRand.NormFloat64() }
 | |
| 
 | |
| // ExpFloat64 returns an exponentially distributed float64 in the range
 | |
| // (0, +math.MaxFloat64] with an exponential distribution whose rate parameter
 | |
| // (lambda) is 1 and whose mean is 1/lambda (1) from the default Source.
 | |
| // To produce a distribution with a different rate parameter,
 | |
| // callers can adjust the output using:
 | |
| //
 | |
| //	sample = ExpFloat64() / desiredRateParameter
 | |
| func ExpFloat64() float64 { return globalRand.ExpFloat64() }
 | |
| 
 | |
| // LockedSource is an implementation of Source that is concurrency-safe.
 | |
| // A Rand using a LockedSource is safe for concurrent use.
 | |
| //
 | |
| // The zero value of LockedSource is valid, but should be seeded before use.
 | |
| type LockedSource struct {
 | |
| 	lk  sync.Mutex
 | |
| 	src PCGSource
 | |
| }
 | |
| 
 | |
| func (s *LockedSource) Uint64() (n uint64) {
 | |
| 	s.lk.Lock()
 | |
| 	n = s.src.Uint64()
 | |
| 	s.lk.Unlock()
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func (s *LockedSource) Seed(seed uint64) {
 | |
| 	s.lk.Lock()
 | |
| 	s.src.Seed(seed)
 | |
| 	s.lk.Unlock()
 | |
| }
 | |
| 
 | |
| // seedPos implements Seed for a LockedSource without a race condiiton.
 | |
| func (s *LockedSource) seedPos(seed uint64, readPos *int8) {
 | |
| 	s.lk.Lock()
 | |
| 	s.src.Seed(seed)
 | |
| 	*readPos = 0
 | |
| 	s.lk.Unlock()
 | |
| }
 | |
| 
 | |
| // Read implements Read for a LockedSource.
 | |
| func (s *LockedSource) Read(p []byte, readVal *uint64, readPos *int8) (n int, err error) {
 | |
| 	s.lk.Lock()
 | |
| 	n, err = read(p, &s.src, readVal, readPos)
 | |
| 	s.lk.Unlock()
 | |
| 	return
 | |
| }
 |