""" HCFS SDK Utility Functions Common utilities for text processing, caching, and data manipulation. """ import hashlib import json import math import re import time from typing import List, Dict, Any, Optional, Tuple, Iterator, Callable, Union from datetime import datetime, timedelta from collections import defaultdict, OrderedDict from threading import Lock import asyncio from functools import lru_cache, wraps from .models import Context, SearchResult, CacheStrategy from .exceptions import HCFSError, HCFSCacheError def context_similarity(context1: Context, context2: Context, method: str = "jaccard") -> float: """ Calculate similarity between two contexts. Args: context1: First context context2: Second context method: Similarity method ("jaccard", "cosine", "levenshtein") Returns: Similarity score between 0.0 and 1.0 """ if method == "jaccard": return _jaccard_similarity(context1.content, context2.content) elif method == "cosine": return _cosine_similarity(context1.content, context2.content) elif method == "levenshtein": return _levenshtein_similarity(context1.content, context2.content) else: raise ValueError(f"Unknown similarity method: {method}") def _jaccard_similarity(text1: str, text2: str) -> float: """Calculate Jaccard similarity between two texts.""" words1 = set(text1.lower().split()) words2 = set(text2.lower().split()) intersection = words1.intersection(words2) union = words1.union(words2) return len(intersection) / len(union) if union else 0.0 def _cosine_similarity(text1: str, text2: str) -> float: """Calculate cosine similarity between two texts.""" words1 = text1.lower().split() words2 = text2.lower().split() # Create word frequency vectors all_words = set(words1 + words2) vector1 = [words1.count(word) for word in all_words] vector2 = [words2.count(word) for word in all_words] # Calculate dot product and magnitudes dot_product = sum(a * b for a, b in zip(vector1, vector2)) magnitude1 = math.sqrt(sum(a * a for a in vector1)) magnitude2 = math.sqrt(sum(a * a for a in vector2)) if magnitude1 == 0 or magnitude2 == 0: return 0.0 return dot_product / (magnitude1 * magnitude2) def _levenshtein_similarity(text1: str, text2: str) -> float: """Calculate normalized Levenshtein similarity.""" def levenshtein_distance(s1: str, s2: str) -> int: if len(s1) < len(s2): return levenshtein_distance(s2, s1) if len(s2) == 0: return len(s1) previous_row = list(range(len(s2) + 1)) for i, c1 in enumerate(s1): current_row = [i + 1] for j, c2 in enumerate(s2): insertions = previous_row[j + 1] + 1 deletions = current_row[j] + 1 substitutions = previous_row[j] + (c1 != c2) current_row.append(min(insertions, deletions, substitutions)) previous_row = current_row return previous_row[-1] max_len = max(len(text1), len(text2)) if max_len == 0: return 1.0 distance = levenshtein_distance(text1.lower(), text2.lower()) return 1.0 - (distance / max_len) def text_chunker(text: str, chunk_size: int = 512, overlap: int = 50, preserve_sentences: bool = True) -> List[str]: """ Split text into overlapping chunks. Args: text: Text to chunk chunk_size: Maximum chunk size in characters overlap: Overlap between chunks preserve_sentences: Try to preserve sentence boundaries Returns: List of text chunks """ if len(text) <= chunk_size: return [text] chunks = [] start = 0 while start < len(text): end = start + chunk_size if end >= len(text): chunks.append(text[start:]) break # Try to find a good break point chunk = text[start:end] if preserve_sentences and '.' in chunk: # Find the last sentence boundary last_period = chunk.rfind('.') if last_period > chunk_size // 2: # Don't make chunks too small end = start + last_period + 1 chunk = text[start:end] chunks.append(chunk.strip()) start = end - overlap return [chunk for chunk in chunks if chunk.strip()] def extract_keywords(text: str, max_keywords: int = 10, min_length: int = 3) -> List[str]: """ Extract keywords from text using simple frequency analysis. Args: text: Input text max_keywords: Maximum number of keywords min_length: Minimum keyword length Returns: List of keywords ordered by frequency """ # Simple stopwords stopwords = { 'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by', 'from', 'as', 'is', 'was', 'are', 'were', 'be', 'been', 'have', 'has', 'had', 'do', 'does', 'did', 'will', 'would', 'could', 'should', 'may', 'might', 'can', 'this', 'that', 'these', 'those', 'i', 'you', 'he', 'she', 'it', 'we', 'they', 'me', 'him', 'her', 'us', 'them', 'my', 'your', 'his', 'its', 'our', 'their' } # Extract words and count frequencies words = re.findall(r'\b[a-zA-Z]+\b', text.lower()) word_freq = defaultdict(int) for word in words: if len(word) >= min_length and word not in stopwords: word_freq[word] += 1 # Sort by frequency and return top keywords return sorted(word_freq.keys(), key=lambda x: word_freq[x], reverse=True)[:max_keywords] def format_content_preview(content: str, max_length: int = 200) -> str: """ Format content for preview display. Args: content: Full content max_length: Maximum preview length Returns: Formatted preview string """ if len(content) <= max_length: return content # Try to cut at word boundary preview = content[:max_length] last_space = preview.rfind(' ') if last_space > max_length * 0.8: # Don't cut too much preview = preview[:last_space] return preview + "..." def validate_path(path: str) -> bool: """ Validate context path format. Args: path: Path to validate Returns: True if valid, False otherwise """ if not path or not isinstance(path, str): return False if not path.startswith('/'): return False # Check for invalid characters invalid_chars = set('<>"|?*') if any(char in path for char in invalid_chars): return False # Check path components components = path.split('/') for component in components[1:]: # Skip empty first component if not component or component in ['.', '..']: return False return True def normalize_path(path: str) -> str: """ Normalize context path. Args: path: Path to normalize Returns: Normalized path """ if not path.startswith('/'): path = '/' + path # Remove duplicate slashes and normalize components = [c for c in path.split('/') if c] return '/' + '/'.join(components) if components else '/' def hash_content(content: str, algorithm: str = "sha256") -> str: """ Generate hash of content for deduplication. Args: content: Content to hash algorithm: Hash algorithm Returns: Hex digest of content hash """ if algorithm == "md5": hasher = hashlib.md5() elif algorithm == "sha1": hasher = hashlib.sha1() elif algorithm == "sha256": hasher = hashlib.sha256() else: raise ValueError(f"Unsupported hash algorithm: {algorithm}") hasher.update(content.encode('utf-8')) return hasher.hexdigest() def merge_contexts(contexts: List[Context], strategy: str = "latest") -> Context: """ Merge multiple contexts into one. Args: contexts: List of contexts to merge strategy: Merge strategy ("latest", "longest", "combined") Returns: Merged context """ if not contexts: raise ValueError("No contexts to merge") if len(contexts) == 1: return contexts[0] if strategy == "latest": return max(contexts, key=lambda c: c.updated_at or c.created_at or datetime.min) elif strategy == "longest": return max(contexts, key=lambda c: len(c.content)) elif strategy == "combined": # Combine content and metadata merged = contexts[0].copy() merged.content = "\n\n".join(c.content for c in contexts) merged.tags = list(set(tag for c in contexts for tag in c.tags)) # Merge metadata merged_metadata = {} for context in contexts: merged_metadata.update(context.metadata) merged.metadata = merged_metadata return merged else: raise ValueError(f"Unknown merge strategy: {strategy}") class MemoryCache: """Thread-safe in-memory cache with configurable eviction strategies.""" def __init__(self, max_size: int = 1000, strategy: CacheStrategy = CacheStrategy.LRU, ttl_seconds: Optional[int] = None): self.max_size = max_size self.strategy = strategy self.ttl_seconds = ttl_seconds self._cache = OrderedDict() self._access_counts = defaultdict(int) self._timestamps = {} self._lock = Lock() def get(self, key: str) -> Optional[Any]: """Get value from cache.""" with self._lock: if key not in self._cache: return None # Check TTL if self.ttl_seconds and key in self._timestamps: if time.time() - self._timestamps[key] > self.ttl_seconds: self._remove(key) return None # Update access patterns if self.strategy == CacheStrategy.LRU: # Move to end (most recently used) self._cache.move_to_end(key) elif self.strategy == CacheStrategy.LFU: self._access_counts[key] += 1 return self._cache[key] def put(self, key: str, value: Any) -> None: """Put value in cache.""" with self._lock: # Remove if already exists if key in self._cache: self._remove(key) # Evict if necessary while len(self._cache) >= self.max_size: self._evict_one() # Add new entry self._cache[key] = value self._timestamps[key] = time.time() if self.strategy == CacheStrategy.LFU: self._access_counts[key] = 1 def remove(self, key: str) -> bool: """Remove key from cache.""" with self._lock: return self._remove(key) def clear(self) -> None: """Clear all cache entries.""" with self._lock: self._cache.clear() self._access_counts.clear() self._timestamps.clear() def size(self) -> int: """Get current cache size.""" return len(self._cache) def stats(self) -> Dict[str, Any]: """Get cache statistics.""" with self._lock: return { "size": len(self._cache), "max_size": self.max_size, "strategy": self.strategy.value, "ttl_seconds": self.ttl_seconds, "keys": list(self._cache.keys()) } def _remove(self, key: str) -> bool: """Remove key without lock (internal use).""" if key in self._cache: del self._cache[key] self._access_counts.pop(key, None) self._timestamps.pop(key, None) return True return False def _evict_one(self) -> None: """Evict one item based on strategy.""" if not self._cache: return if self.strategy == CacheStrategy.LRU: # Remove least recently used (first item) key = next(iter(self._cache)) self._remove(key) elif self.strategy == CacheStrategy.LFU: # Remove least frequently used if self._access_counts: key = min(self._access_counts.keys(), key=lambda k: self._access_counts[k]) self._remove(key) elif self.strategy == CacheStrategy.FIFO: # Remove first in, first out key = next(iter(self._cache)) self._remove(key) elif self.strategy == CacheStrategy.TTL: # Remove expired items first, then oldest current_time = time.time() expired_keys = [ key for key, timestamp in self._timestamps.items() if current_time - timestamp > (self.ttl_seconds or 0) ] if expired_keys: self._remove(expired_keys[0]) else: # Remove oldest key = min(self._timestamps.keys(), key=lambda k: self._timestamps[k]) self._remove(key) class BatchProcessor: """Utility for processing items in batches with error handling.""" def __init__(self, batch_size: int = 10, max_workers: Optional[int] = None): self.batch_size = batch_size self.max_workers = max_workers or min(32, (len(os.sched_getaffinity(0)) or 1) + 4) async def process_async(self, items: List[Any], processor: Callable[[Any], Any], on_success: Optional[Callable[[Any, Any], None]] = None, on_error: Optional[Callable[[Any, Exception], None]] = None) -> Dict[str, Any]: """ Process items asynchronously in batches. Args: items: Items to process processor: Async function to process each item on_success: Callback for successful processing on_error: Callback for processing errors Returns: Processing results summary """ results = { "success_count": 0, "error_count": 0, "total_items": len(items), "successful_items": [], "failed_items": [], "execution_time": 0 } start_time = time.time() # Process in batches for i in range(0, len(items), self.batch_size): batch = items[i:i + self.batch_size] # Create tasks for this batch tasks = [] for item in batch: task = asyncio.create_task(self._process_item_async(item, processor)) tasks.append((item, task)) # Wait for batch completion for item, task in tasks: try: result = await task results["success_count"] += 1 results["successful_items"].append(result) if on_success: on_success(item, result) except Exception as e: results["error_count"] += 1 results["failed_items"].append({"item": item, "error": str(e)}) if on_error: on_error(item, e) results["execution_time"] = time.time() - start_time return results async def _process_item_async(self, item: Any, processor: Callable) -> Any: """Process a single item asynchronously.""" if asyncio.iscoroutinefunction(processor): return await processor(item) else: # Run synchronous processor in thread pool loop = asyncio.get_event_loop() return await loop.run_in_executor(None, processor, item) # Global instances embedding_cache = MemoryCache(max_size=2000, strategy=CacheStrategy.LRU, ttl_seconds=3600) batch_processor = BatchProcessor(batch_size=10) def cache_key(*args, **kwargs) -> str: """Generate cache key from arguments.""" key_parts = [] # Add positional arguments for arg in args: if isinstance(arg, (str, int, float, bool)): key_parts.append(str(arg)) else: key_parts.append(str(hash(str(arg)))) # Add keyword arguments for k, v in sorted(kwargs.items()): if isinstance(v, (str, int, float, bool)): key_parts.append(f"{k}={v}") else: key_parts.append(f"{k}={hash(str(v))}") return ":".join(key_parts) def timing_decorator(func): """Decorator to measure function execution time.""" @wraps(func) async def async_wrapper(*args, **kwargs): start_time = time.time() try: result = await func(*args, **kwargs) return result finally: execution_time = time.time() - start_time # Could log or store timing data here pass @wraps(func) def sync_wrapper(*args, **kwargs): start_time = time.time() try: result = func(*args, **kwargs) return result finally: execution_time = time.time() - start_time # Could log or store timing data here pass if asyncio.iscoroutinefunction(func): return async_wrapper else: return sync_wrapper