feat: Production readiness improvements for WHOOSH council formation
Major security, observability, and configuration improvements:
## Security Hardening
- Implemented configurable CORS (no more wildcards)
- Added comprehensive auth middleware for admin endpoints
- Enhanced webhook HMAC validation
- Added input validation and rate limiting
- Security headers and CSP policies
## Configuration Management
- Made N8N webhook URL configurable (WHOOSH_N8N_BASE_URL)
- Replaced all hardcoded endpoints with environment variables
- Added feature flags for LLM vs heuristic composition
- Gitea fetch hardening with EAGER_FILTER and FULL_RESCAN options
## API Completeness
- Implemented GetCouncilComposition function
- Added GET /api/v1/councils/{id} endpoint
- Council artifacts API (POST/GET /api/v1/councils/{id}/artifacts)
- /admin/health/details endpoint with component status
- Database lookup for repository URLs (no hardcoded fallbacks)
## Observability & Performance
- Added OpenTelemetry distributed tracing with goal/pulse correlation
- Performance optimization database indexes
- Comprehensive health monitoring
- Enhanced logging and error handling
## Infrastructure
- Production-ready P2P discovery (replaces mock implementation)
- Removed unused Redis configuration
- Enhanced Docker Swarm integration
- Added migration files for performance indexes
## Code Quality
- Comprehensive input validation
- Graceful error handling and failsafe fallbacks
- Backwards compatibility maintained
- Following security best practices
🤖 Generated with [Claude Code](https://claude.ai/code)
Co-Authored-By: Claude <noreply@anthropic.com>
			
			
This commit is contained in:
		
							
								
								
									
										214
									
								
								vendor/github.com/klauspost/compress/flate/level2.go
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										214
									
								
								vendor/github.com/klauspost/compress/flate/level2.go
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							| @@ -0,0 +1,214 @@ | ||||
| package flate | ||||
|  | ||||
| import "fmt" | ||||
|  | ||||
| // fastGen maintains the table for matches, | ||||
| // and the previous byte block for level 2. | ||||
| // This is the generic implementation. | ||||
| type fastEncL2 struct { | ||||
| 	fastGen | ||||
| 	table [bTableSize]tableEntry | ||||
| } | ||||
|  | ||||
| // EncodeL2 uses a similar algorithm to level 1, but is capable | ||||
| // of matching across blocks giving better compression at a small slowdown. | ||||
| func (e *fastEncL2) Encode(dst *tokens, src []byte) { | ||||
| 	const ( | ||||
| 		inputMargin            = 12 - 1 | ||||
| 		minNonLiteralBlockSize = 1 + 1 + inputMargin | ||||
| 		hashBytes              = 5 | ||||
| 	) | ||||
|  | ||||
| 	if debugDeflate && e.cur < 0 { | ||||
| 		panic(fmt.Sprint("e.cur < 0: ", e.cur)) | ||||
| 	} | ||||
|  | ||||
| 	// Protect against e.cur wraparound. | ||||
| 	for e.cur >= bufferReset { | ||||
| 		if len(e.hist) == 0 { | ||||
| 			for i := range e.table[:] { | ||||
| 				e.table[i] = tableEntry{} | ||||
| 			} | ||||
| 			e.cur = maxMatchOffset | ||||
| 			break | ||||
| 		} | ||||
| 		// Shift down everything in the table that isn't already too far away. | ||||
| 		minOff := e.cur + int32(len(e.hist)) - maxMatchOffset | ||||
| 		for i := range e.table[:] { | ||||
| 			v := e.table[i].offset | ||||
| 			if v <= minOff { | ||||
| 				v = 0 | ||||
| 			} else { | ||||
| 				v = v - e.cur + maxMatchOffset | ||||
| 			} | ||||
| 			e.table[i].offset = v | ||||
| 		} | ||||
| 		e.cur = maxMatchOffset | ||||
| 	} | ||||
|  | ||||
| 	s := e.addBlock(src) | ||||
|  | ||||
| 	// This check isn't in the Snappy implementation, but there, the caller | ||||
| 	// instead of the callee handles this case. | ||||
| 	if len(src) < minNonLiteralBlockSize { | ||||
| 		// We do not fill the token table. | ||||
| 		// This will be picked up by caller. | ||||
| 		dst.n = uint16(len(src)) | ||||
| 		return | ||||
| 	} | ||||
|  | ||||
| 	// Override src | ||||
| 	src = e.hist | ||||
| 	nextEmit := s | ||||
|  | ||||
| 	// sLimit is when to stop looking for offset/length copies. The inputMargin | ||||
| 	// lets us use a fast path for emitLiteral in the main loop, while we are | ||||
| 	// looking for copies. | ||||
| 	sLimit := int32(len(src) - inputMargin) | ||||
|  | ||||
| 	// nextEmit is where in src the next emitLiteral should start from. | ||||
| 	cv := load6432(src, s) | ||||
| 	for { | ||||
| 		// When should we start skipping if we haven't found matches in a long while. | ||||
| 		const skipLog = 5 | ||||
| 		const doEvery = 2 | ||||
|  | ||||
| 		nextS := s | ||||
| 		var candidate tableEntry | ||||
| 		for { | ||||
| 			nextHash := hashLen(cv, bTableBits, hashBytes) | ||||
| 			s = nextS | ||||
| 			nextS = s + doEvery + (s-nextEmit)>>skipLog | ||||
| 			if nextS > sLimit { | ||||
| 				goto emitRemainder | ||||
| 			} | ||||
| 			candidate = e.table[nextHash] | ||||
| 			now := load6432(src, nextS) | ||||
| 			e.table[nextHash] = tableEntry{offset: s + e.cur} | ||||
| 			nextHash = hashLen(now, bTableBits, hashBytes) | ||||
|  | ||||
| 			offset := s - (candidate.offset - e.cur) | ||||
| 			if offset < maxMatchOffset && uint32(cv) == load3232(src, candidate.offset-e.cur) { | ||||
| 				e.table[nextHash] = tableEntry{offset: nextS + e.cur} | ||||
| 				break | ||||
| 			} | ||||
|  | ||||
| 			// Do one right away... | ||||
| 			cv = now | ||||
| 			s = nextS | ||||
| 			nextS++ | ||||
| 			candidate = e.table[nextHash] | ||||
| 			now >>= 8 | ||||
| 			e.table[nextHash] = tableEntry{offset: s + e.cur} | ||||
|  | ||||
| 			offset = s - (candidate.offset - e.cur) | ||||
| 			if offset < maxMatchOffset && uint32(cv) == load3232(src, candidate.offset-e.cur) { | ||||
| 				break | ||||
| 			} | ||||
| 			cv = now | ||||
| 		} | ||||
|  | ||||
| 		// A 4-byte match has been found. We'll later see if more than 4 bytes | ||||
| 		// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit | ||||
| 		// them as literal bytes. | ||||
|  | ||||
| 		// Call emitCopy, and then see if another emitCopy could be our next | ||||
| 		// move. Repeat until we find no match for the input immediately after | ||||
| 		// what was consumed by the last emitCopy call. | ||||
| 		// | ||||
| 		// If we exit this loop normally then we need to call emitLiteral next, | ||||
| 		// though we don't yet know how big the literal will be. We handle that | ||||
| 		// by proceeding to the next iteration of the main loop. We also can | ||||
| 		// exit this loop via goto if we get close to exhausting the input. | ||||
| 		for { | ||||
| 			// Invariant: we have a 4-byte match at s, and no need to emit any | ||||
| 			// literal bytes prior to s. | ||||
|  | ||||
| 			// Extend the 4-byte match as long as possible. | ||||
| 			t := candidate.offset - e.cur | ||||
| 			l := e.matchlenLong(s+4, t+4, src) + 4 | ||||
|  | ||||
| 			// Extend backwards | ||||
| 			for t > 0 && s > nextEmit && src[t-1] == src[s-1] { | ||||
| 				s-- | ||||
| 				t-- | ||||
| 				l++ | ||||
| 			} | ||||
| 			if nextEmit < s { | ||||
| 				if false { | ||||
| 					emitLiteral(dst, src[nextEmit:s]) | ||||
| 				} else { | ||||
| 					for _, v := range src[nextEmit:s] { | ||||
| 						dst.tokens[dst.n] = token(v) | ||||
| 						dst.litHist[v]++ | ||||
| 						dst.n++ | ||||
| 					} | ||||
| 				} | ||||
| 			} | ||||
|  | ||||
| 			dst.AddMatchLong(l, uint32(s-t-baseMatchOffset)) | ||||
| 			s += l | ||||
| 			nextEmit = s | ||||
| 			if nextS >= s { | ||||
| 				s = nextS + 1 | ||||
| 			} | ||||
|  | ||||
| 			if s >= sLimit { | ||||
| 				// Index first pair after match end. | ||||
| 				if int(s+l+8) < len(src) { | ||||
| 					cv := load6432(src, s) | ||||
| 					e.table[hashLen(cv, bTableBits, hashBytes)] = tableEntry{offset: s + e.cur} | ||||
| 				} | ||||
| 				goto emitRemainder | ||||
| 			} | ||||
|  | ||||
| 			// Store every second hash in-between, but offset by 1. | ||||
| 			for i := s - l + 2; i < s-5; i += 7 { | ||||
| 				x := load6432(src, i) | ||||
| 				nextHash := hashLen(x, bTableBits, hashBytes) | ||||
| 				e.table[nextHash] = tableEntry{offset: e.cur + i} | ||||
| 				// Skip one | ||||
| 				x >>= 16 | ||||
| 				nextHash = hashLen(x, bTableBits, hashBytes) | ||||
| 				e.table[nextHash] = tableEntry{offset: e.cur + i + 2} | ||||
| 				// Skip one | ||||
| 				x >>= 16 | ||||
| 				nextHash = hashLen(x, bTableBits, hashBytes) | ||||
| 				e.table[nextHash] = tableEntry{offset: e.cur + i + 4} | ||||
| 			} | ||||
|  | ||||
| 			// We could immediately start working at s now, but to improve | ||||
| 			// compression we first update the hash table at s-2 to s. If | ||||
| 			// another emitCopy is not our next move, also calculate nextHash | ||||
| 			// at s+1. At least on GOARCH=amd64, these three hash calculations | ||||
| 			// are faster as one load64 call (with some shifts) instead of | ||||
| 			// three load32 calls. | ||||
| 			x := load6432(src, s-2) | ||||
| 			o := e.cur + s - 2 | ||||
| 			prevHash := hashLen(x, bTableBits, hashBytes) | ||||
| 			prevHash2 := hashLen(x>>8, bTableBits, hashBytes) | ||||
| 			e.table[prevHash] = tableEntry{offset: o} | ||||
| 			e.table[prevHash2] = tableEntry{offset: o + 1} | ||||
| 			currHash := hashLen(x>>16, bTableBits, hashBytes) | ||||
| 			candidate = e.table[currHash] | ||||
| 			e.table[currHash] = tableEntry{offset: o + 2} | ||||
|  | ||||
| 			offset := s - (candidate.offset - e.cur) | ||||
| 			if offset > maxMatchOffset || uint32(x>>16) != load3232(src, candidate.offset-e.cur) { | ||||
| 				cv = x >> 24 | ||||
| 				s++ | ||||
| 				break | ||||
| 			} | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| emitRemainder: | ||||
| 	if int(nextEmit) < len(src) { | ||||
| 		// If nothing was added, don't encode literals. | ||||
| 		if dst.n == 0 { | ||||
| 			return | ||||
| 		} | ||||
|  | ||||
| 		emitLiteral(dst, src[nextEmit:]) | ||||
| 	} | ||||
| } | ||||
		Reference in New Issue
	
	Block a user
	 Claude Code
					Claude Code