 131868bdca
			
		
	
	131868bdca
	
	
	
		
			
			Major security, observability, and configuration improvements:
## Security Hardening
- Implemented configurable CORS (no more wildcards)
- Added comprehensive auth middleware for admin endpoints
- Enhanced webhook HMAC validation
- Added input validation and rate limiting
- Security headers and CSP policies
## Configuration Management
- Made N8N webhook URL configurable (WHOOSH_N8N_BASE_URL)
- Replaced all hardcoded endpoints with environment variables
- Added feature flags for LLM vs heuristic composition
- Gitea fetch hardening with EAGER_FILTER and FULL_RESCAN options
## API Completeness
- Implemented GetCouncilComposition function
- Added GET /api/v1/councils/{id} endpoint
- Council artifacts API (POST/GET /api/v1/councils/{id}/artifacts)
- /admin/health/details endpoint with component status
- Database lookup for repository URLs (no hardcoded fallbacks)
## Observability & Performance
- Added OpenTelemetry distributed tracing with goal/pulse correlation
- Performance optimization database indexes
- Comprehensive health monitoring
- Enhanced logging and error handling
## Infrastructure
- Production-ready P2P discovery (replaces mock implementation)
- Removed unused Redis configuration
- Enhanced Docker Swarm integration
- Added migration files for performance indexes
## Code Quality
- Comprehensive input validation
- Graceful error handling and failsafe fallbacks
- Backwards compatibility maintained
- Following security best practices
🤖 Generated with [Claude Code](https://claude.ai/code)
Co-Authored-By: Claude <noreply@anthropic.com>
		
	
		
			
				
	
	
		
			1183 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			1183 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2009 The Go Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package flate
 | |
| 
 | |
| import (
 | |
| 	"encoding/binary"
 | |
| 	"fmt"
 | |
| 	"io"
 | |
| 	"math"
 | |
| )
 | |
| 
 | |
| const (
 | |
| 	// The largest offset code.
 | |
| 	offsetCodeCount = 30
 | |
| 
 | |
| 	// The special code used to mark the end of a block.
 | |
| 	endBlockMarker = 256
 | |
| 
 | |
| 	// The first length code.
 | |
| 	lengthCodesStart = 257
 | |
| 
 | |
| 	// The number of codegen codes.
 | |
| 	codegenCodeCount = 19
 | |
| 	badCode          = 255
 | |
| 
 | |
| 	// maxPredefinedTokens is the maximum number of tokens
 | |
| 	// where we check if fixed size is smaller.
 | |
| 	maxPredefinedTokens = 250
 | |
| 
 | |
| 	// bufferFlushSize indicates the buffer size
 | |
| 	// after which bytes are flushed to the writer.
 | |
| 	// Should preferably be a multiple of 6, since
 | |
| 	// we accumulate 6 bytes between writes to the buffer.
 | |
| 	bufferFlushSize = 246
 | |
| )
 | |
| 
 | |
| // Minimum length code that emits bits.
 | |
| const lengthExtraBitsMinCode = 8
 | |
| 
 | |
| // The number of extra bits needed by length code X - LENGTH_CODES_START.
 | |
| var lengthExtraBits = [32]uint8{
 | |
| 	/* 257 */ 0, 0, 0,
 | |
| 	/* 260 */ 0, 0, 0, 0, 0, 1, 1, 1, 1, 2,
 | |
| 	/* 270 */ 2, 2, 2, 3, 3, 3, 3, 4, 4, 4,
 | |
| 	/* 280 */ 4, 5, 5, 5, 5, 0,
 | |
| }
 | |
| 
 | |
| // The length indicated by length code X - LENGTH_CODES_START.
 | |
| var lengthBase = [32]uint8{
 | |
| 	0, 1, 2, 3, 4, 5, 6, 7, 8, 10,
 | |
| 	12, 14, 16, 20, 24, 28, 32, 40, 48, 56,
 | |
| 	64, 80, 96, 112, 128, 160, 192, 224, 255,
 | |
| }
 | |
| 
 | |
| // Minimum offset code that emits bits.
 | |
| const offsetExtraBitsMinCode = 4
 | |
| 
 | |
| // offset code word extra bits.
 | |
| var offsetExtraBits = [32]int8{
 | |
| 	0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
 | |
| 	4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
 | |
| 	9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
 | |
| 	/* extended window */
 | |
| 	14, 14,
 | |
| }
 | |
| 
 | |
| var offsetCombined = [32]uint32{}
 | |
| 
 | |
| func init() {
 | |
| 	var offsetBase = [32]uint32{
 | |
| 		/* normal deflate */
 | |
| 		0x000000, 0x000001, 0x000002, 0x000003, 0x000004,
 | |
| 		0x000006, 0x000008, 0x00000c, 0x000010, 0x000018,
 | |
| 		0x000020, 0x000030, 0x000040, 0x000060, 0x000080,
 | |
| 		0x0000c0, 0x000100, 0x000180, 0x000200, 0x000300,
 | |
| 		0x000400, 0x000600, 0x000800, 0x000c00, 0x001000,
 | |
| 		0x001800, 0x002000, 0x003000, 0x004000, 0x006000,
 | |
| 
 | |
| 		/* extended window */
 | |
| 		0x008000, 0x00c000,
 | |
| 	}
 | |
| 
 | |
| 	for i := range offsetCombined[:] {
 | |
| 		// Don't use extended window values...
 | |
| 		if offsetExtraBits[i] == 0 || offsetBase[i] > 0x006000 {
 | |
| 			continue
 | |
| 		}
 | |
| 		offsetCombined[i] = uint32(offsetExtraBits[i]) | (offsetBase[i] << 8)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // The odd order in which the codegen code sizes are written.
 | |
| var codegenOrder = []uint32{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}
 | |
| 
 | |
| type huffmanBitWriter struct {
 | |
| 	// writer is the underlying writer.
 | |
| 	// Do not use it directly; use the write method, which ensures
 | |
| 	// that Write errors are sticky.
 | |
| 	writer io.Writer
 | |
| 
 | |
| 	// Data waiting to be written is bytes[0:nbytes]
 | |
| 	// and then the low nbits of bits.
 | |
| 	bits            uint64
 | |
| 	nbits           uint8
 | |
| 	nbytes          uint8
 | |
| 	lastHuffMan     bool
 | |
| 	literalEncoding *huffmanEncoder
 | |
| 	tmpLitEncoding  *huffmanEncoder
 | |
| 	offsetEncoding  *huffmanEncoder
 | |
| 	codegenEncoding *huffmanEncoder
 | |
| 	err             error
 | |
| 	lastHeader      int
 | |
| 	// Set between 0 (reused block can be up to 2x the size)
 | |
| 	logNewTablePenalty uint
 | |
| 	bytes              [256 + 8]byte
 | |
| 	literalFreq        [lengthCodesStart + 32]uint16
 | |
| 	offsetFreq         [32]uint16
 | |
| 	codegenFreq        [codegenCodeCount]uint16
 | |
| 
 | |
| 	// codegen must have an extra space for the final symbol.
 | |
| 	codegen [literalCount + offsetCodeCount + 1]uint8
 | |
| }
 | |
| 
 | |
| // Huffman reuse.
 | |
| //
 | |
| // The huffmanBitWriter supports reusing huffman tables and thereby combining block sections.
 | |
| //
 | |
| // This is controlled by several variables:
 | |
| //
 | |
| // If lastHeader is non-zero the Huffman table can be reused.
 | |
| // This also indicates that a Huffman table has been generated that can output all
 | |
| // possible symbols.
 | |
| // It also indicates that an EOB has not yet been emitted, so if a new tabel is generated
 | |
| // an EOB with the previous table must be written.
 | |
| //
 | |
| // If lastHuffMan is set, a table for outputting literals has been generated and offsets are invalid.
 | |
| //
 | |
| // An incoming block estimates the output size of a new table using a 'fresh' by calculating the
 | |
| // optimal size and adding a penalty in 'logNewTablePenalty'.
 | |
| // A Huffman table is not optimal, which is why we add a penalty, and generating a new table
 | |
| // is slower both for compression and decompression.
 | |
| 
 | |
| func newHuffmanBitWriter(w io.Writer) *huffmanBitWriter {
 | |
| 	return &huffmanBitWriter{
 | |
| 		writer:          w,
 | |
| 		literalEncoding: newHuffmanEncoder(literalCount),
 | |
| 		tmpLitEncoding:  newHuffmanEncoder(literalCount),
 | |
| 		codegenEncoding: newHuffmanEncoder(codegenCodeCount),
 | |
| 		offsetEncoding:  newHuffmanEncoder(offsetCodeCount),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (w *huffmanBitWriter) reset(writer io.Writer) {
 | |
| 	w.writer = writer
 | |
| 	w.bits, w.nbits, w.nbytes, w.err = 0, 0, 0, nil
 | |
| 	w.lastHeader = 0
 | |
| 	w.lastHuffMan = false
 | |
| }
 | |
| 
 | |
| func (w *huffmanBitWriter) canReuse(t *tokens) (ok bool) {
 | |
| 	a := t.offHist[:offsetCodeCount]
 | |
| 	b := w.offsetEncoding.codes
 | |
| 	b = b[:len(a)]
 | |
| 	for i, v := range a {
 | |
| 		if v != 0 && b[i].zero() {
 | |
| 			return false
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	a = t.extraHist[:literalCount-256]
 | |
| 	b = w.literalEncoding.codes[256:literalCount]
 | |
| 	b = b[:len(a)]
 | |
| 	for i, v := range a {
 | |
| 		if v != 0 && b[i].zero() {
 | |
| 			return false
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	a = t.litHist[:256]
 | |
| 	b = w.literalEncoding.codes[:len(a)]
 | |
| 	for i, v := range a {
 | |
| 		if v != 0 && b[i].zero() {
 | |
| 			return false
 | |
| 		}
 | |
| 	}
 | |
| 	return true
 | |
| }
 | |
| 
 | |
| func (w *huffmanBitWriter) flush() {
 | |
| 	if w.err != nil {
 | |
| 		w.nbits = 0
 | |
| 		return
 | |
| 	}
 | |
| 	if w.lastHeader > 0 {
 | |
| 		// We owe an EOB
 | |
| 		w.writeCode(w.literalEncoding.codes[endBlockMarker])
 | |
| 		w.lastHeader = 0
 | |
| 	}
 | |
| 	n := w.nbytes
 | |
| 	for w.nbits != 0 {
 | |
| 		w.bytes[n] = byte(w.bits)
 | |
| 		w.bits >>= 8
 | |
| 		if w.nbits > 8 { // Avoid underflow
 | |
| 			w.nbits -= 8
 | |
| 		} else {
 | |
| 			w.nbits = 0
 | |
| 		}
 | |
| 		n++
 | |
| 	}
 | |
| 	w.bits = 0
 | |
| 	w.write(w.bytes[:n])
 | |
| 	w.nbytes = 0
 | |
| }
 | |
| 
 | |
| func (w *huffmanBitWriter) write(b []byte) {
 | |
| 	if w.err != nil {
 | |
| 		return
 | |
| 	}
 | |
| 	_, w.err = w.writer.Write(b)
 | |
| }
 | |
| 
 | |
| func (w *huffmanBitWriter) writeBits(b int32, nb uint8) {
 | |
| 	w.bits |= uint64(b) << (w.nbits & 63)
 | |
| 	w.nbits += nb
 | |
| 	if w.nbits >= 48 {
 | |
| 		w.writeOutBits()
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (w *huffmanBitWriter) writeBytes(bytes []byte) {
 | |
| 	if w.err != nil {
 | |
| 		return
 | |
| 	}
 | |
| 	n := w.nbytes
 | |
| 	if w.nbits&7 != 0 {
 | |
| 		w.err = InternalError("writeBytes with unfinished bits")
 | |
| 		return
 | |
| 	}
 | |
| 	for w.nbits != 0 {
 | |
| 		w.bytes[n] = byte(w.bits)
 | |
| 		w.bits >>= 8
 | |
| 		w.nbits -= 8
 | |
| 		n++
 | |
| 	}
 | |
| 	if n != 0 {
 | |
| 		w.write(w.bytes[:n])
 | |
| 	}
 | |
| 	w.nbytes = 0
 | |
| 	w.write(bytes)
 | |
| }
 | |
| 
 | |
| // RFC 1951 3.2.7 specifies a special run-length encoding for specifying
 | |
| // the literal and offset lengths arrays (which are concatenated into a single
 | |
| // array).  This method generates that run-length encoding.
 | |
| //
 | |
| // The result is written into the codegen array, and the frequencies
 | |
| // of each code is written into the codegenFreq array.
 | |
| // Codes 0-15 are single byte codes. Codes 16-18 are followed by additional
 | |
| // information. Code badCode is an end marker
 | |
| //
 | |
| //	numLiterals      The number of literals in literalEncoding
 | |
| //	numOffsets       The number of offsets in offsetEncoding
 | |
| //	litenc, offenc   The literal and offset encoder to use
 | |
| func (w *huffmanBitWriter) generateCodegen(numLiterals int, numOffsets int, litEnc, offEnc *huffmanEncoder) {
 | |
| 	for i := range w.codegenFreq {
 | |
| 		w.codegenFreq[i] = 0
 | |
| 	}
 | |
| 	// Note that we are using codegen both as a temporary variable for holding
 | |
| 	// a copy of the frequencies, and as the place where we put the result.
 | |
| 	// This is fine because the output is always shorter than the input used
 | |
| 	// so far.
 | |
| 	codegen := w.codegen[:] // cache
 | |
| 	// Copy the concatenated code sizes to codegen. Put a marker at the end.
 | |
| 	cgnl := codegen[:numLiterals]
 | |
| 	for i := range cgnl {
 | |
| 		cgnl[i] = litEnc.codes[i].len()
 | |
| 	}
 | |
| 
 | |
| 	cgnl = codegen[numLiterals : numLiterals+numOffsets]
 | |
| 	for i := range cgnl {
 | |
| 		cgnl[i] = offEnc.codes[i].len()
 | |
| 	}
 | |
| 	codegen[numLiterals+numOffsets] = badCode
 | |
| 
 | |
| 	size := codegen[0]
 | |
| 	count := 1
 | |
| 	outIndex := 0
 | |
| 	for inIndex := 1; size != badCode; inIndex++ {
 | |
| 		// INVARIANT: We have seen "count" copies of size that have not yet
 | |
| 		// had output generated for them.
 | |
| 		nextSize := codegen[inIndex]
 | |
| 		if nextSize == size {
 | |
| 			count++
 | |
| 			continue
 | |
| 		}
 | |
| 		// We need to generate codegen indicating "count" of size.
 | |
| 		if size != 0 {
 | |
| 			codegen[outIndex] = size
 | |
| 			outIndex++
 | |
| 			w.codegenFreq[size]++
 | |
| 			count--
 | |
| 			for count >= 3 {
 | |
| 				n := 6
 | |
| 				if n > count {
 | |
| 					n = count
 | |
| 				}
 | |
| 				codegen[outIndex] = 16
 | |
| 				outIndex++
 | |
| 				codegen[outIndex] = uint8(n - 3)
 | |
| 				outIndex++
 | |
| 				w.codegenFreq[16]++
 | |
| 				count -= n
 | |
| 			}
 | |
| 		} else {
 | |
| 			for count >= 11 {
 | |
| 				n := 138
 | |
| 				if n > count {
 | |
| 					n = count
 | |
| 				}
 | |
| 				codegen[outIndex] = 18
 | |
| 				outIndex++
 | |
| 				codegen[outIndex] = uint8(n - 11)
 | |
| 				outIndex++
 | |
| 				w.codegenFreq[18]++
 | |
| 				count -= n
 | |
| 			}
 | |
| 			if count >= 3 {
 | |
| 				// count >= 3 && count <= 10
 | |
| 				codegen[outIndex] = 17
 | |
| 				outIndex++
 | |
| 				codegen[outIndex] = uint8(count - 3)
 | |
| 				outIndex++
 | |
| 				w.codegenFreq[17]++
 | |
| 				count = 0
 | |
| 			}
 | |
| 		}
 | |
| 		count--
 | |
| 		for ; count >= 0; count-- {
 | |
| 			codegen[outIndex] = size
 | |
| 			outIndex++
 | |
| 			w.codegenFreq[size]++
 | |
| 		}
 | |
| 		// Set up invariant for next time through the loop.
 | |
| 		size = nextSize
 | |
| 		count = 1
 | |
| 	}
 | |
| 	// Marker indicating the end of the codegen.
 | |
| 	codegen[outIndex] = badCode
 | |
| }
 | |
| 
 | |
| func (w *huffmanBitWriter) codegens() int {
 | |
| 	numCodegens := len(w.codegenFreq)
 | |
| 	for numCodegens > 4 && w.codegenFreq[codegenOrder[numCodegens-1]] == 0 {
 | |
| 		numCodegens--
 | |
| 	}
 | |
| 	return numCodegens
 | |
| }
 | |
| 
 | |
| func (w *huffmanBitWriter) headerSize() (size, numCodegens int) {
 | |
| 	numCodegens = len(w.codegenFreq)
 | |
| 	for numCodegens > 4 && w.codegenFreq[codegenOrder[numCodegens-1]] == 0 {
 | |
| 		numCodegens--
 | |
| 	}
 | |
| 	return 3 + 5 + 5 + 4 + (3 * numCodegens) +
 | |
| 		w.codegenEncoding.bitLength(w.codegenFreq[:]) +
 | |
| 		int(w.codegenFreq[16])*2 +
 | |
| 		int(w.codegenFreq[17])*3 +
 | |
| 		int(w.codegenFreq[18])*7, numCodegens
 | |
| }
 | |
| 
 | |
| // dynamicSize returns the size of dynamically encoded data in bits.
 | |
| func (w *huffmanBitWriter) dynamicReuseSize(litEnc, offEnc *huffmanEncoder) (size int) {
 | |
| 	size = litEnc.bitLength(w.literalFreq[:]) +
 | |
| 		offEnc.bitLength(w.offsetFreq[:])
 | |
| 	return size
 | |
| }
 | |
| 
 | |
| // dynamicSize returns the size of dynamically encoded data in bits.
 | |
| func (w *huffmanBitWriter) dynamicSize(litEnc, offEnc *huffmanEncoder, extraBits int) (size, numCodegens int) {
 | |
| 	header, numCodegens := w.headerSize()
 | |
| 	size = header +
 | |
| 		litEnc.bitLength(w.literalFreq[:]) +
 | |
| 		offEnc.bitLength(w.offsetFreq[:]) +
 | |
| 		extraBits
 | |
| 	return size, numCodegens
 | |
| }
 | |
| 
 | |
| // extraBitSize will return the number of bits that will be written
 | |
| // as "extra" bits on matches.
 | |
| func (w *huffmanBitWriter) extraBitSize() int {
 | |
| 	total := 0
 | |
| 	for i, n := range w.literalFreq[257:literalCount] {
 | |
| 		total += int(n) * int(lengthExtraBits[i&31])
 | |
| 	}
 | |
| 	for i, n := range w.offsetFreq[:offsetCodeCount] {
 | |
| 		total += int(n) * int(offsetExtraBits[i&31])
 | |
| 	}
 | |
| 	return total
 | |
| }
 | |
| 
 | |
| // fixedSize returns the size of dynamically encoded data in bits.
 | |
| func (w *huffmanBitWriter) fixedSize(extraBits int) int {
 | |
| 	return 3 +
 | |
| 		fixedLiteralEncoding.bitLength(w.literalFreq[:]) +
 | |
| 		fixedOffsetEncoding.bitLength(w.offsetFreq[:]) +
 | |
| 		extraBits
 | |
| }
 | |
| 
 | |
| // storedSize calculates the stored size, including header.
 | |
| // The function returns the size in bits and whether the block
 | |
| // fits inside a single block.
 | |
| func (w *huffmanBitWriter) storedSize(in []byte) (int, bool) {
 | |
| 	if in == nil {
 | |
| 		return 0, false
 | |
| 	}
 | |
| 	if len(in) <= maxStoreBlockSize {
 | |
| 		return (len(in) + 5) * 8, true
 | |
| 	}
 | |
| 	return 0, false
 | |
| }
 | |
| 
 | |
| func (w *huffmanBitWriter) writeCode(c hcode) {
 | |
| 	// The function does not get inlined if we "& 63" the shift.
 | |
| 	w.bits |= c.code64() << (w.nbits & 63)
 | |
| 	w.nbits += c.len()
 | |
| 	if w.nbits >= 48 {
 | |
| 		w.writeOutBits()
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // writeOutBits will write bits to the buffer.
 | |
| func (w *huffmanBitWriter) writeOutBits() {
 | |
| 	bits := w.bits
 | |
| 	w.bits >>= 48
 | |
| 	w.nbits -= 48
 | |
| 	n := w.nbytes
 | |
| 
 | |
| 	// We over-write, but faster...
 | |
| 	binary.LittleEndian.PutUint64(w.bytes[n:], bits)
 | |
| 	n += 6
 | |
| 
 | |
| 	if n >= bufferFlushSize {
 | |
| 		if w.err != nil {
 | |
| 			n = 0
 | |
| 			return
 | |
| 		}
 | |
| 		w.write(w.bytes[:n])
 | |
| 		n = 0
 | |
| 	}
 | |
| 
 | |
| 	w.nbytes = n
 | |
| }
 | |
| 
 | |
| // Write the header of a dynamic Huffman block to the output stream.
 | |
| //
 | |
| //	numLiterals  The number of literals specified in codegen
 | |
| //	numOffsets   The number of offsets specified in codegen
 | |
| //	numCodegens  The number of codegens used in codegen
 | |
| func (w *huffmanBitWriter) writeDynamicHeader(numLiterals int, numOffsets int, numCodegens int, isEof bool) {
 | |
| 	if w.err != nil {
 | |
| 		return
 | |
| 	}
 | |
| 	var firstBits int32 = 4
 | |
| 	if isEof {
 | |
| 		firstBits = 5
 | |
| 	}
 | |
| 	w.writeBits(firstBits, 3)
 | |
| 	w.writeBits(int32(numLiterals-257), 5)
 | |
| 	w.writeBits(int32(numOffsets-1), 5)
 | |
| 	w.writeBits(int32(numCodegens-4), 4)
 | |
| 
 | |
| 	for i := 0; i < numCodegens; i++ {
 | |
| 		value := uint(w.codegenEncoding.codes[codegenOrder[i]].len())
 | |
| 		w.writeBits(int32(value), 3)
 | |
| 	}
 | |
| 
 | |
| 	i := 0
 | |
| 	for {
 | |
| 		var codeWord = uint32(w.codegen[i])
 | |
| 		i++
 | |
| 		if codeWord == badCode {
 | |
| 			break
 | |
| 		}
 | |
| 		w.writeCode(w.codegenEncoding.codes[codeWord])
 | |
| 
 | |
| 		switch codeWord {
 | |
| 		case 16:
 | |
| 			w.writeBits(int32(w.codegen[i]), 2)
 | |
| 			i++
 | |
| 		case 17:
 | |
| 			w.writeBits(int32(w.codegen[i]), 3)
 | |
| 			i++
 | |
| 		case 18:
 | |
| 			w.writeBits(int32(w.codegen[i]), 7)
 | |
| 			i++
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // writeStoredHeader will write a stored header.
 | |
| // If the stored block is only used for EOF,
 | |
| // it is replaced with a fixed huffman block.
 | |
| func (w *huffmanBitWriter) writeStoredHeader(length int, isEof bool) {
 | |
| 	if w.err != nil {
 | |
| 		return
 | |
| 	}
 | |
| 	if w.lastHeader > 0 {
 | |
| 		// We owe an EOB
 | |
| 		w.writeCode(w.literalEncoding.codes[endBlockMarker])
 | |
| 		w.lastHeader = 0
 | |
| 	}
 | |
| 
 | |
| 	// To write EOF, use a fixed encoding block. 10 bits instead of 5 bytes.
 | |
| 	if length == 0 && isEof {
 | |
| 		w.writeFixedHeader(isEof)
 | |
| 		// EOB: 7 bits, value: 0
 | |
| 		w.writeBits(0, 7)
 | |
| 		w.flush()
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	var flag int32
 | |
| 	if isEof {
 | |
| 		flag = 1
 | |
| 	}
 | |
| 	w.writeBits(flag, 3)
 | |
| 	w.flush()
 | |
| 	w.writeBits(int32(length), 16)
 | |
| 	w.writeBits(int32(^uint16(length)), 16)
 | |
| }
 | |
| 
 | |
| func (w *huffmanBitWriter) writeFixedHeader(isEof bool) {
 | |
| 	if w.err != nil {
 | |
| 		return
 | |
| 	}
 | |
| 	if w.lastHeader > 0 {
 | |
| 		// We owe an EOB
 | |
| 		w.writeCode(w.literalEncoding.codes[endBlockMarker])
 | |
| 		w.lastHeader = 0
 | |
| 	}
 | |
| 
 | |
| 	// Indicate that we are a fixed Huffman block
 | |
| 	var value int32 = 2
 | |
| 	if isEof {
 | |
| 		value = 3
 | |
| 	}
 | |
| 	w.writeBits(value, 3)
 | |
| }
 | |
| 
 | |
| // writeBlock will write a block of tokens with the smallest encoding.
 | |
| // The original input can be supplied, and if the huffman encoded data
 | |
| // is larger than the original bytes, the data will be written as a
 | |
| // stored block.
 | |
| // If the input is nil, the tokens will always be Huffman encoded.
 | |
| func (w *huffmanBitWriter) writeBlock(tokens *tokens, eof bool, input []byte) {
 | |
| 	if w.err != nil {
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	tokens.AddEOB()
 | |
| 	if w.lastHeader > 0 {
 | |
| 		// We owe an EOB
 | |
| 		w.writeCode(w.literalEncoding.codes[endBlockMarker])
 | |
| 		w.lastHeader = 0
 | |
| 	}
 | |
| 	numLiterals, numOffsets := w.indexTokens(tokens, false)
 | |
| 	w.generate()
 | |
| 	var extraBits int
 | |
| 	storedSize, storable := w.storedSize(input)
 | |
| 	if storable {
 | |
| 		extraBits = w.extraBitSize()
 | |
| 	}
 | |
| 
 | |
| 	// Figure out smallest code.
 | |
| 	// Fixed Huffman baseline.
 | |
| 	var literalEncoding = fixedLiteralEncoding
 | |
| 	var offsetEncoding = fixedOffsetEncoding
 | |
| 	var size = math.MaxInt32
 | |
| 	if tokens.n < maxPredefinedTokens {
 | |
| 		size = w.fixedSize(extraBits)
 | |
| 	}
 | |
| 
 | |
| 	// Dynamic Huffman?
 | |
| 	var numCodegens int
 | |
| 
 | |
| 	// Generate codegen and codegenFrequencies, which indicates how to encode
 | |
| 	// the literalEncoding and the offsetEncoding.
 | |
| 	w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, w.offsetEncoding)
 | |
| 	w.codegenEncoding.generate(w.codegenFreq[:], 7)
 | |
| 	dynamicSize, numCodegens := w.dynamicSize(w.literalEncoding, w.offsetEncoding, extraBits)
 | |
| 
 | |
| 	if dynamicSize < size {
 | |
| 		size = dynamicSize
 | |
| 		literalEncoding = w.literalEncoding
 | |
| 		offsetEncoding = w.offsetEncoding
 | |
| 	}
 | |
| 
 | |
| 	// Stored bytes?
 | |
| 	if storable && storedSize <= size {
 | |
| 		w.writeStoredHeader(len(input), eof)
 | |
| 		w.writeBytes(input)
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	// Huffman.
 | |
| 	if literalEncoding == fixedLiteralEncoding {
 | |
| 		w.writeFixedHeader(eof)
 | |
| 	} else {
 | |
| 		w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof)
 | |
| 	}
 | |
| 
 | |
| 	// Write the tokens.
 | |
| 	w.writeTokens(tokens.Slice(), literalEncoding.codes, offsetEncoding.codes)
 | |
| }
 | |
| 
 | |
| // writeBlockDynamic encodes a block using a dynamic Huffman table.
 | |
| // This should be used if the symbols used have a disproportionate
 | |
| // histogram distribution.
 | |
| // If input is supplied and the compression savings are below 1/16th of the
 | |
| // input size the block is stored.
 | |
| func (w *huffmanBitWriter) writeBlockDynamic(tokens *tokens, eof bool, input []byte, sync bool) {
 | |
| 	if w.err != nil {
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	sync = sync || eof
 | |
| 	if sync {
 | |
| 		tokens.AddEOB()
 | |
| 	}
 | |
| 
 | |
| 	// We cannot reuse pure huffman table, and must mark as EOF.
 | |
| 	if (w.lastHuffMan || eof) && w.lastHeader > 0 {
 | |
| 		// We will not try to reuse.
 | |
| 		w.writeCode(w.literalEncoding.codes[endBlockMarker])
 | |
| 		w.lastHeader = 0
 | |
| 		w.lastHuffMan = false
 | |
| 	}
 | |
| 
 | |
| 	// fillReuse enables filling of empty values.
 | |
| 	// This will make encodings always reusable without testing.
 | |
| 	// However, this does not appear to benefit on most cases.
 | |
| 	const fillReuse = false
 | |
| 
 | |
| 	// Check if we can reuse...
 | |
| 	if !fillReuse && w.lastHeader > 0 && !w.canReuse(tokens) {
 | |
| 		w.writeCode(w.literalEncoding.codes[endBlockMarker])
 | |
| 		w.lastHeader = 0
 | |
| 	}
 | |
| 
 | |
| 	numLiterals, numOffsets := w.indexTokens(tokens, !sync)
 | |
| 	extraBits := 0
 | |
| 	ssize, storable := w.storedSize(input)
 | |
| 
 | |
| 	const usePrefs = true
 | |
| 	if storable || w.lastHeader > 0 {
 | |
| 		extraBits = w.extraBitSize()
 | |
| 	}
 | |
| 
 | |
| 	var size int
 | |
| 
 | |
| 	// Check if we should reuse.
 | |
| 	if w.lastHeader > 0 {
 | |
| 		// Estimate size for using a new table.
 | |
| 		// Use the previous header size as the best estimate.
 | |
| 		newSize := w.lastHeader + tokens.EstimatedBits()
 | |
| 		newSize += int(w.literalEncoding.codes[endBlockMarker].len()) + newSize>>w.logNewTablePenalty
 | |
| 
 | |
| 		// The estimated size is calculated as an optimal table.
 | |
| 		// We add a penalty to make it more realistic and re-use a bit more.
 | |
| 		reuseSize := w.dynamicReuseSize(w.literalEncoding, w.offsetEncoding) + extraBits
 | |
| 
 | |
| 		// Check if a new table is better.
 | |
| 		if newSize < reuseSize {
 | |
| 			// Write the EOB we owe.
 | |
| 			w.writeCode(w.literalEncoding.codes[endBlockMarker])
 | |
| 			size = newSize
 | |
| 			w.lastHeader = 0
 | |
| 		} else {
 | |
| 			size = reuseSize
 | |
| 		}
 | |
| 
 | |
| 		if tokens.n < maxPredefinedTokens {
 | |
| 			if preSize := w.fixedSize(extraBits) + 7; usePrefs && preSize < size {
 | |
| 				// Check if we get a reasonable size decrease.
 | |
| 				if storable && ssize <= size {
 | |
| 					w.writeStoredHeader(len(input), eof)
 | |
| 					w.writeBytes(input)
 | |
| 					return
 | |
| 				}
 | |
| 				w.writeFixedHeader(eof)
 | |
| 				if !sync {
 | |
| 					tokens.AddEOB()
 | |
| 				}
 | |
| 				w.writeTokens(tokens.Slice(), fixedLiteralEncoding.codes, fixedOffsetEncoding.codes)
 | |
| 				return
 | |
| 			}
 | |
| 		}
 | |
| 		// Check if we get a reasonable size decrease.
 | |
| 		if storable && ssize <= size {
 | |
| 			w.writeStoredHeader(len(input), eof)
 | |
| 			w.writeBytes(input)
 | |
| 			return
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// We want a new block/table
 | |
| 	if w.lastHeader == 0 {
 | |
| 		if fillReuse && !sync {
 | |
| 			w.fillTokens()
 | |
| 			numLiterals, numOffsets = maxNumLit, maxNumDist
 | |
| 		} else {
 | |
| 			w.literalFreq[endBlockMarker] = 1
 | |
| 		}
 | |
| 
 | |
| 		w.generate()
 | |
| 		// Generate codegen and codegenFrequencies, which indicates how to encode
 | |
| 		// the literalEncoding and the offsetEncoding.
 | |
| 		w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, w.offsetEncoding)
 | |
| 		w.codegenEncoding.generate(w.codegenFreq[:], 7)
 | |
| 
 | |
| 		var numCodegens int
 | |
| 		if fillReuse && !sync {
 | |
| 			// Reindex for accurate size...
 | |
| 			w.indexTokens(tokens, true)
 | |
| 		}
 | |
| 		size, numCodegens = w.dynamicSize(w.literalEncoding, w.offsetEncoding, extraBits)
 | |
| 
 | |
| 		// Store predefined, if we don't get a reasonable improvement.
 | |
| 		if tokens.n < maxPredefinedTokens {
 | |
| 			if preSize := w.fixedSize(extraBits); usePrefs && preSize <= size {
 | |
| 				// Store bytes, if we don't get an improvement.
 | |
| 				if storable && ssize <= preSize {
 | |
| 					w.writeStoredHeader(len(input), eof)
 | |
| 					w.writeBytes(input)
 | |
| 					return
 | |
| 				}
 | |
| 				w.writeFixedHeader(eof)
 | |
| 				if !sync {
 | |
| 					tokens.AddEOB()
 | |
| 				}
 | |
| 				w.writeTokens(tokens.Slice(), fixedLiteralEncoding.codes, fixedOffsetEncoding.codes)
 | |
| 				return
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if storable && ssize <= size {
 | |
| 			// Store bytes, if we don't get an improvement.
 | |
| 			w.writeStoredHeader(len(input), eof)
 | |
| 			w.writeBytes(input)
 | |
| 			return
 | |
| 		}
 | |
| 
 | |
| 		// Write Huffman table.
 | |
| 		w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof)
 | |
| 		if !sync {
 | |
| 			w.lastHeader, _ = w.headerSize()
 | |
| 		}
 | |
| 		w.lastHuffMan = false
 | |
| 	}
 | |
| 
 | |
| 	if sync {
 | |
| 		w.lastHeader = 0
 | |
| 	}
 | |
| 	// Write the tokens.
 | |
| 	w.writeTokens(tokens.Slice(), w.literalEncoding.codes, w.offsetEncoding.codes)
 | |
| }
 | |
| 
 | |
| func (w *huffmanBitWriter) fillTokens() {
 | |
| 	for i, v := range w.literalFreq[:literalCount] {
 | |
| 		if v == 0 {
 | |
| 			w.literalFreq[i] = 1
 | |
| 		}
 | |
| 	}
 | |
| 	for i, v := range w.offsetFreq[:offsetCodeCount] {
 | |
| 		if v == 0 {
 | |
| 			w.offsetFreq[i] = 1
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // indexTokens indexes a slice of tokens, and updates
 | |
| // literalFreq and offsetFreq, and generates literalEncoding
 | |
| // and offsetEncoding.
 | |
| // The number of literal and offset tokens is returned.
 | |
| func (w *huffmanBitWriter) indexTokens(t *tokens, filled bool) (numLiterals, numOffsets int) {
 | |
| 	//copy(w.literalFreq[:], t.litHist[:])
 | |
| 	*(*[256]uint16)(w.literalFreq[:]) = t.litHist
 | |
| 	//copy(w.literalFreq[256:], t.extraHist[:])
 | |
| 	*(*[32]uint16)(w.literalFreq[256:]) = t.extraHist
 | |
| 	w.offsetFreq = t.offHist
 | |
| 
 | |
| 	if t.n == 0 {
 | |
| 		return
 | |
| 	}
 | |
| 	if filled {
 | |
| 		return maxNumLit, maxNumDist
 | |
| 	}
 | |
| 	// get the number of literals
 | |
| 	numLiterals = len(w.literalFreq)
 | |
| 	for w.literalFreq[numLiterals-1] == 0 {
 | |
| 		numLiterals--
 | |
| 	}
 | |
| 	// get the number of offsets
 | |
| 	numOffsets = len(w.offsetFreq)
 | |
| 	for numOffsets > 0 && w.offsetFreq[numOffsets-1] == 0 {
 | |
| 		numOffsets--
 | |
| 	}
 | |
| 	if numOffsets == 0 {
 | |
| 		// We haven't found a single match. If we want to go with the dynamic encoding,
 | |
| 		// we should count at least one offset to be sure that the offset huffman tree could be encoded.
 | |
| 		w.offsetFreq[0] = 1
 | |
| 		numOffsets = 1
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func (w *huffmanBitWriter) generate() {
 | |
| 	w.literalEncoding.generate(w.literalFreq[:literalCount], 15)
 | |
| 	w.offsetEncoding.generate(w.offsetFreq[:offsetCodeCount], 15)
 | |
| }
 | |
| 
 | |
| // writeTokens writes a slice of tokens to the output.
 | |
| // codes for literal and offset encoding must be supplied.
 | |
| func (w *huffmanBitWriter) writeTokens(tokens []token, leCodes, oeCodes []hcode) {
 | |
| 	if w.err != nil {
 | |
| 		return
 | |
| 	}
 | |
| 	if len(tokens) == 0 {
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	// Only last token should be endBlockMarker.
 | |
| 	var deferEOB bool
 | |
| 	if tokens[len(tokens)-1] == endBlockMarker {
 | |
| 		tokens = tokens[:len(tokens)-1]
 | |
| 		deferEOB = true
 | |
| 	}
 | |
| 
 | |
| 	// Create slices up to the next power of two to avoid bounds checks.
 | |
| 	lits := leCodes[:256]
 | |
| 	offs := oeCodes[:32]
 | |
| 	lengths := leCodes[lengthCodesStart:]
 | |
| 	lengths = lengths[:32]
 | |
| 
 | |
| 	// Go 1.16 LOVES having these on stack.
 | |
| 	bits, nbits, nbytes := w.bits, w.nbits, w.nbytes
 | |
| 
 | |
| 	for _, t := range tokens {
 | |
| 		if t < 256 {
 | |
| 			//w.writeCode(lits[t.literal()])
 | |
| 			c := lits[t]
 | |
| 			bits |= c.code64() << (nbits & 63)
 | |
| 			nbits += c.len()
 | |
| 			if nbits >= 48 {
 | |
| 				binary.LittleEndian.PutUint64(w.bytes[nbytes:], bits)
 | |
| 				//*(*uint64)(unsafe.Pointer(&w.bytes[nbytes])) = bits
 | |
| 				bits >>= 48
 | |
| 				nbits -= 48
 | |
| 				nbytes += 6
 | |
| 				if nbytes >= bufferFlushSize {
 | |
| 					if w.err != nil {
 | |
| 						nbytes = 0
 | |
| 						return
 | |
| 					}
 | |
| 					_, w.err = w.writer.Write(w.bytes[:nbytes])
 | |
| 					nbytes = 0
 | |
| 				}
 | |
| 			}
 | |
| 			continue
 | |
| 		}
 | |
| 
 | |
| 		// Write the length
 | |
| 		length := t.length()
 | |
| 		lengthCode := lengthCode(length) & 31
 | |
| 		if false {
 | |
| 			w.writeCode(lengths[lengthCode])
 | |
| 		} else {
 | |
| 			// inlined
 | |
| 			c := lengths[lengthCode]
 | |
| 			bits |= c.code64() << (nbits & 63)
 | |
| 			nbits += c.len()
 | |
| 			if nbits >= 48 {
 | |
| 				binary.LittleEndian.PutUint64(w.bytes[nbytes:], bits)
 | |
| 				//*(*uint64)(unsafe.Pointer(&w.bytes[nbytes])) = bits
 | |
| 				bits >>= 48
 | |
| 				nbits -= 48
 | |
| 				nbytes += 6
 | |
| 				if nbytes >= bufferFlushSize {
 | |
| 					if w.err != nil {
 | |
| 						nbytes = 0
 | |
| 						return
 | |
| 					}
 | |
| 					_, w.err = w.writer.Write(w.bytes[:nbytes])
 | |
| 					nbytes = 0
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if lengthCode >= lengthExtraBitsMinCode {
 | |
| 			extraLengthBits := lengthExtraBits[lengthCode]
 | |
| 			//w.writeBits(extraLength, extraLengthBits)
 | |
| 			extraLength := int32(length - lengthBase[lengthCode])
 | |
| 			bits |= uint64(extraLength) << (nbits & 63)
 | |
| 			nbits += extraLengthBits
 | |
| 			if nbits >= 48 {
 | |
| 				binary.LittleEndian.PutUint64(w.bytes[nbytes:], bits)
 | |
| 				//*(*uint64)(unsafe.Pointer(&w.bytes[nbytes])) = bits
 | |
| 				bits >>= 48
 | |
| 				nbits -= 48
 | |
| 				nbytes += 6
 | |
| 				if nbytes >= bufferFlushSize {
 | |
| 					if w.err != nil {
 | |
| 						nbytes = 0
 | |
| 						return
 | |
| 					}
 | |
| 					_, w.err = w.writer.Write(w.bytes[:nbytes])
 | |
| 					nbytes = 0
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		// Write the offset
 | |
| 		offset := t.offset()
 | |
| 		offsetCode := (offset >> 16) & 31
 | |
| 		if false {
 | |
| 			w.writeCode(offs[offsetCode])
 | |
| 		} else {
 | |
| 			// inlined
 | |
| 			c := offs[offsetCode]
 | |
| 			bits |= c.code64() << (nbits & 63)
 | |
| 			nbits += c.len()
 | |
| 			if nbits >= 48 {
 | |
| 				binary.LittleEndian.PutUint64(w.bytes[nbytes:], bits)
 | |
| 				//*(*uint64)(unsafe.Pointer(&w.bytes[nbytes])) = bits
 | |
| 				bits >>= 48
 | |
| 				nbits -= 48
 | |
| 				nbytes += 6
 | |
| 				if nbytes >= bufferFlushSize {
 | |
| 					if w.err != nil {
 | |
| 						nbytes = 0
 | |
| 						return
 | |
| 					}
 | |
| 					_, w.err = w.writer.Write(w.bytes[:nbytes])
 | |
| 					nbytes = 0
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if offsetCode >= offsetExtraBitsMinCode {
 | |
| 			offsetComb := offsetCombined[offsetCode]
 | |
| 			//w.writeBits(extraOffset, extraOffsetBits)
 | |
| 			bits |= uint64((offset-(offsetComb>>8))&matchOffsetOnlyMask) << (nbits & 63)
 | |
| 			nbits += uint8(offsetComb)
 | |
| 			if nbits >= 48 {
 | |
| 				binary.LittleEndian.PutUint64(w.bytes[nbytes:], bits)
 | |
| 				//*(*uint64)(unsafe.Pointer(&w.bytes[nbytes])) = bits
 | |
| 				bits >>= 48
 | |
| 				nbits -= 48
 | |
| 				nbytes += 6
 | |
| 				if nbytes >= bufferFlushSize {
 | |
| 					if w.err != nil {
 | |
| 						nbytes = 0
 | |
| 						return
 | |
| 					}
 | |
| 					_, w.err = w.writer.Write(w.bytes[:nbytes])
 | |
| 					nbytes = 0
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	// Restore...
 | |
| 	w.bits, w.nbits, w.nbytes = bits, nbits, nbytes
 | |
| 
 | |
| 	if deferEOB {
 | |
| 		w.writeCode(leCodes[endBlockMarker])
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // huffOffset is a static offset encoder used for huffman only encoding.
 | |
| // It can be reused since we will not be encoding offset values.
 | |
| var huffOffset *huffmanEncoder
 | |
| 
 | |
| func init() {
 | |
| 	w := newHuffmanBitWriter(nil)
 | |
| 	w.offsetFreq[0] = 1
 | |
| 	huffOffset = newHuffmanEncoder(offsetCodeCount)
 | |
| 	huffOffset.generate(w.offsetFreq[:offsetCodeCount], 15)
 | |
| }
 | |
| 
 | |
| // writeBlockHuff encodes a block of bytes as either
 | |
| // Huffman encoded literals or uncompressed bytes if the
 | |
| // results only gains very little from compression.
 | |
| func (w *huffmanBitWriter) writeBlockHuff(eof bool, input []byte, sync bool) {
 | |
| 	if w.err != nil {
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	// Clear histogram
 | |
| 	for i := range w.literalFreq[:] {
 | |
| 		w.literalFreq[i] = 0
 | |
| 	}
 | |
| 	if !w.lastHuffMan {
 | |
| 		for i := range w.offsetFreq[:] {
 | |
| 			w.offsetFreq[i] = 0
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	const numLiterals = endBlockMarker + 1
 | |
| 	const numOffsets = 1
 | |
| 
 | |
| 	// Add everything as literals
 | |
| 	// We have to estimate the header size.
 | |
| 	// Assume header is around 70 bytes:
 | |
| 	// https://stackoverflow.com/a/25454430
 | |
| 	const guessHeaderSizeBits = 70 * 8
 | |
| 	histogram(input, w.literalFreq[:numLiterals])
 | |
| 	ssize, storable := w.storedSize(input)
 | |
| 	if storable && len(input) > 1024 {
 | |
| 		// Quick check for incompressible content.
 | |
| 		abs := float64(0)
 | |
| 		avg := float64(len(input)) / 256
 | |
| 		max := float64(len(input) * 2)
 | |
| 		for _, v := range w.literalFreq[:256] {
 | |
| 			diff := float64(v) - avg
 | |
| 			abs += diff * diff
 | |
| 			if abs > max {
 | |
| 				break
 | |
| 			}
 | |
| 		}
 | |
| 		if abs < max {
 | |
| 			if debugDeflate {
 | |
| 				fmt.Println("stored", abs, "<", max)
 | |
| 			}
 | |
| 			// No chance we can compress this...
 | |
| 			w.writeStoredHeader(len(input), eof)
 | |
| 			w.writeBytes(input)
 | |
| 			return
 | |
| 		}
 | |
| 	}
 | |
| 	w.literalFreq[endBlockMarker] = 1
 | |
| 	w.tmpLitEncoding.generate(w.literalFreq[:numLiterals], 15)
 | |
| 	estBits := w.tmpLitEncoding.canReuseBits(w.literalFreq[:numLiterals])
 | |
| 	if estBits < math.MaxInt32 {
 | |
| 		estBits += w.lastHeader
 | |
| 		if w.lastHeader == 0 {
 | |
| 			estBits += guessHeaderSizeBits
 | |
| 		}
 | |
| 		estBits += estBits >> w.logNewTablePenalty
 | |
| 	}
 | |
| 
 | |
| 	// Store bytes, if we don't get a reasonable improvement.
 | |
| 	if storable && ssize <= estBits {
 | |
| 		if debugDeflate {
 | |
| 			fmt.Println("stored,", ssize, "<=", estBits)
 | |
| 		}
 | |
| 		w.writeStoredHeader(len(input), eof)
 | |
| 		w.writeBytes(input)
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	if w.lastHeader > 0 {
 | |
| 		reuseSize := w.literalEncoding.canReuseBits(w.literalFreq[:256])
 | |
| 
 | |
| 		if estBits < reuseSize {
 | |
| 			if debugDeflate {
 | |
| 				fmt.Println("NOT reusing, reuse:", reuseSize/8, "> new:", estBits/8, "header est:", w.lastHeader/8, "bytes")
 | |
| 			}
 | |
| 			// We owe an EOB
 | |
| 			w.writeCode(w.literalEncoding.codes[endBlockMarker])
 | |
| 			w.lastHeader = 0
 | |
| 		} else if debugDeflate {
 | |
| 			fmt.Println("reusing, reuse:", reuseSize/8, "> new:", estBits/8, "- header est:", w.lastHeader/8)
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	count := 0
 | |
| 	if w.lastHeader == 0 {
 | |
| 		// Use the temp encoding, so swap.
 | |
| 		w.literalEncoding, w.tmpLitEncoding = w.tmpLitEncoding, w.literalEncoding
 | |
| 		// Generate codegen and codegenFrequencies, which indicates how to encode
 | |
| 		// the literalEncoding and the offsetEncoding.
 | |
| 		w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, huffOffset)
 | |
| 		w.codegenEncoding.generate(w.codegenFreq[:], 7)
 | |
| 		numCodegens := w.codegens()
 | |
| 
 | |
| 		// Huffman.
 | |
| 		w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof)
 | |
| 		w.lastHuffMan = true
 | |
| 		w.lastHeader, _ = w.headerSize()
 | |
| 		if debugDeflate {
 | |
| 			count += w.lastHeader
 | |
| 			fmt.Println("header:", count/8)
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	encoding := w.literalEncoding.codes[:256]
 | |
| 	// Go 1.16 LOVES having these on stack. At least 1.5x the speed.
 | |
| 	bits, nbits, nbytes := w.bits, w.nbits, w.nbytes
 | |
| 
 | |
| 	if debugDeflate {
 | |
| 		count -= int(nbytes)*8 + int(nbits)
 | |
| 	}
 | |
| 	// Unroll, write 3 codes/loop.
 | |
| 	// Fastest number of unrolls.
 | |
| 	for len(input) > 3 {
 | |
| 		// We must have at least 48 bits free.
 | |
| 		if nbits >= 8 {
 | |
| 			n := nbits >> 3
 | |
| 			binary.LittleEndian.PutUint64(w.bytes[nbytes:], bits)
 | |
| 			bits >>= (n * 8) & 63
 | |
| 			nbits -= n * 8
 | |
| 			nbytes += n
 | |
| 		}
 | |
| 		if nbytes >= bufferFlushSize {
 | |
| 			if w.err != nil {
 | |
| 				nbytes = 0
 | |
| 				return
 | |
| 			}
 | |
| 			if debugDeflate {
 | |
| 				count += int(nbytes) * 8
 | |
| 			}
 | |
| 			_, w.err = w.writer.Write(w.bytes[:nbytes])
 | |
| 			nbytes = 0
 | |
| 		}
 | |
| 		a, b := encoding[input[0]], encoding[input[1]]
 | |
| 		bits |= a.code64() << (nbits & 63)
 | |
| 		bits |= b.code64() << ((nbits + a.len()) & 63)
 | |
| 		c := encoding[input[2]]
 | |
| 		nbits += b.len() + a.len()
 | |
| 		bits |= c.code64() << (nbits & 63)
 | |
| 		nbits += c.len()
 | |
| 		input = input[3:]
 | |
| 	}
 | |
| 
 | |
| 	// Remaining...
 | |
| 	for _, t := range input {
 | |
| 		if nbits >= 48 {
 | |
| 			binary.LittleEndian.PutUint64(w.bytes[nbytes:], bits)
 | |
| 			//*(*uint64)(unsafe.Pointer(&w.bytes[nbytes])) = bits
 | |
| 			bits >>= 48
 | |
| 			nbits -= 48
 | |
| 			nbytes += 6
 | |
| 			if nbytes >= bufferFlushSize {
 | |
| 				if w.err != nil {
 | |
| 					nbytes = 0
 | |
| 					return
 | |
| 				}
 | |
| 				if debugDeflate {
 | |
| 					count += int(nbytes) * 8
 | |
| 				}
 | |
| 				_, w.err = w.writer.Write(w.bytes[:nbytes])
 | |
| 				nbytes = 0
 | |
| 			}
 | |
| 		}
 | |
| 		// Bitwriting inlined, ~30% speedup
 | |
| 		c := encoding[t]
 | |
| 		bits |= c.code64() << (nbits & 63)
 | |
| 
 | |
| 		nbits += c.len()
 | |
| 		if debugDeflate {
 | |
| 			count += int(c.len())
 | |
| 		}
 | |
| 	}
 | |
| 	// Restore...
 | |
| 	w.bits, w.nbits, w.nbytes = bits, nbits, nbytes
 | |
| 
 | |
| 	if debugDeflate {
 | |
| 		nb := count + int(nbytes)*8 + int(nbits)
 | |
| 		fmt.Println("wrote", nb, "bits,", nb/8, "bytes.")
 | |
| 	}
 | |
| 	// Flush if needed to have space.
 | |
| 	if w.nbits >= 48 {
 | |
| 		w.writeOutBits()
 | |
| 	}
 | |
| 
 | |
| 	if eof || sync {
 | |
| 		w.writeCode(w.literalEncoding.codes[endBlockMarker])
 | |
| 		w.lastHeader = 0
 | |
| 		w.lastHuffMan = false
 | |
| 	}
 | |
| }
 |