Prepare for v2 development: Add MCP integration and future development planning

- Add FUTURE_DEVELOPMENT.md with comprehensive v2 protocol specification
- Add MCP integration design and implementation foundation
- Add infrastructure and deployment configurations
- Update system architecture for v2 evolution

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
anthonyrawlins
2025-08-07 14:38:22 +10:00
parent 5f94288fbb
commit 065dddf8d5
41 changed files with 14970 additions and 161 deletions

View File

@@ -0,0 +1,517 @@
#!/usr/bin/env python3
"""
BZZZ MCP Integration Example: Collaborative Code Review
======================================================
This example demonstrates how GPT-4 agents collaborate through the BZZZ MCP
integration to perform a comprehensive code review.
Scenario: A pull request requires review from multiple specialized agents:
- Architect Agent: Reviews system design and architecture implications
- Security Agent: Analyzes security vulnerabilities
- Performance Agent: Evaluates performance impact
- Documentation Agent: Ensures proper documentation
The agents coordinate through BZZZ semantic addressing and threaded conversations.
"""
import asyncio
import json
import os
import sys
from typing import Dict, List, Any, Optional
from dataclasses import dataclass
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
# Add the parent directory to the path to import BZZZ modules
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
@dataclass
class CodeReviewTask:
"""Represents a code review task"""
repository: str
pull_request_number: int
title: str
description: str
files_changed: List[str]
lines_of_code: int
complexity_score: float
security_risk: str # low, medium, high
@dataclass
class AgentRole:
"""Defines an agent role and its responsibilities"""
name: str
specialization: str
capabilities: List[str]
system_prompt: str
class CollaborativeReviewOrchestrator:
"""Orchestrates collaborative code review using BZZZ MCP integration"""
def __init__(self):
self.mcp_session: Optional[ClientSession] = None
self.agents: Dict[str, AgentRole] = {}
self.active_threads: Dict[str, Dict] = {}
async def initialize(self):
"""Initialize MCP connection to BZZZ server"""
# Connect to the BZZZ MCP server
server_params = StdioServerParameters(
command="node",
args=["/home/tony/chorus/project-queues/active/BZZZ/mcp-server/dist/index.js"]
)
self.mcp_session = await stdio_client(server_params)
print("✅ Connected to BZZZ MCP Server")
# Define agent roles
self.define_agent_roles()
def define_agent_roles(self):
"""Define the specialized agent roles for code review"""
self.agents = {
"architect": AgentRole(
name="architect",
specialization="system_architecture",
capabilities=["system_design", "architecture_review", "scalability_analysis"],
system_prompt="""You are a senior software architect reviewing code changes.
Focus on: architectural consistency, design patterns, system boundaries,
scalability implications, and integration concerns."""
),
"security": AgentRole(
name="security_expert",
specialization="security_analysis",
capabilities=["security_review", "vulnerability_analysis", "threat_modeling"],
system_prompt="""You are a security expert reviewing code for vulnerabilities.
Focus on: input validation, authentication, authorization, data protection,
injection attacks, and secure coding practices."""
),
"performance": AgentRole(
name="performance_expert",
specialization="performance_optimization",
capabilities=["performance_analysis", "optimization", "profiling"],
system_prompt="""You are a performance expert reviewing code efficiency.
Focus on: algorithmic complexity, memory usage, database queries,
caching strategies, and performance bottlenecks."""
),
"documentation": AgentRole(
name="documentation_specialist",
specialization="technical_writing",
capabilities=["documentation_review", "api_documentation", "code_comments"],
system_prompt="""You are a documentation specialist ensuring code clarity.
Focus on: code comments, API documentation, README updates,
inline documentation, and knowledge transfer."""
)
}
async def start_collaborative_review(self, task: CodeReviewTask) -> Dict[str, Any]:
"""Start a collaborative review process for the given task"""
print(f"🔍 Starting collaborative review for PR #{task.pull_request_number}")
# Step 1: Announce agents to BZZZ network
await self.announce_agents()
# Step 2: Create semantic addresses for the review
review_address = f"bzzz://*:*@{task.repository}:pr{task.pull_request_number}/review"
# Step 3: Determine required agent roles based on task characteristics
required_roles = self.determine_required_roles(task)
print(f"📋 Required roles: {', '.join(required_roles)}")
# Step 4: Create collaborative thread
thread_id = await self.create_review_thread(task, required_roles)
print(f"💬 Created review thread: {thread_id}")
# Step 5: Coordinate the review process
review_results = await self.coordinate_review(thread_id, task, required_roles)
# Step 6: Generate final review summary
final_summary = await self.generate_review_summary(thread_id, review_results)
print("✅ Collaborative review completed")
return final_summary
async def announce_agents(self):
"""Announce all agent roles to the BZZZ network"""
if not self.mcp_session:
raise RuntimeError("MCP session not initialized")
for role_name, role in self.agents.items():
result = await self.mcp_session.call_tool(
"bzzz_announce",
{
"agent_id": f"review_agent_{role_name}",
"role": role.name,
"capabilities": role.capabilities,
"specialization": role.specialization,
"max_tasks": 2
}
)
print(f"📡 Announced {role_name} agent: {result.content[0].text}")
def determine_required_roles(self, task: CodeReviewTask) -> List[str]:
"""Determine which agent roles are needed based on task characteristics"""
required = ["architect"] # Architect always participates
# Add security expert for medium/high risk changes
if task.security_risk in ["medium", "high"]:
required.append("security")
# Add performance expert for large/complex changes
if task.lines_of_code > 500 or task.complexity_score > 7.0:
required.append("performance")
# Add documentation expert if documentation files changed
doc_files = [f for f in task.files_changed if f.endswith(('.md', '.rst', '.txt'))]
if doc_files or task.lines_of_code > 200:
required.append("documentation")
return required
async def create_review_thread(self, task: CodeReviewTask, required_roles: List[str]) -> str:
"""Create a threaded conversation for the review"""
if not self.mcp_session:
raise RuntimeError("MCP session not initialized")
participants = [f"review_agent_{role}" for role in required_roles]
result = await self.mcp_session.call_tool(
"bzzz_thread",
{
"action": "create",
"topic": f"Code Review: {task.title}",
"participants": participants
}
)
response_data = json.loads(result.content[0].text)
return response_data["result"]["thread_id"]
async def coordinate_review(self, thread_id: str, task: CodeReviewTask, required_roles: List[str]) -> Dict[str, Any]:
"""Coordinate the collaborative review process"""
review_results = {}
# Step 1: Share task context with all agents
await self.share_task_context(thread_id, task)
# Step 2: Each agent performs their specialized review
for role in required_roles:
print(f"🔍 {role} agent performing review...")
agent_review = await self.conduct_role_specific_review(thread_id, role, task)
review_results[role] = agent_review
# Step 3: Facilitate cross-agent discussion
discussion_results = await self.facilitate_discussion(thread_id, review_results)
review_results["discussion"] = discussion_results
# Step 4: Reach consensus on final recommendations
consensus = await self.reach_consensus(thread_id, review_results)
review_results["consensus"] = consensus
return review_results
async def share_task_context(self, thread_id: str, task: CodeReviewTask):
"""Share the task context with all thread participants"""
if not self.mcp_session:
raise RuntimeError("MCP session not initialized")
context_message = {
"task": {
"repository": task.repository,
"pr_number": task.pull_request_number,
"title": task.title,
"description": task.description,
"files_changed": task.files_changed,
"lines_of_code": task.lines_of_code,
"complexity_score": task.complexity_score,
"security_risk": task.security_risk
},
"review_guidelines": {
"focus_areas": ["correctness", "security", "performance", "maintainability"],
"severity_levels": ["critical", "major", "minor", "suggestion"],
"collaboration_expected": True
}
}
target_address = f"bzzz://*:*@{task.repository}:pr{task.pull_request_number}/context"
await self.mcp_session.call_tool(
"bzzz_post",
{
"target_address": target_address,
"message_type": "task_context",
"content": context_message,
"thread_id": thread_id,
"priority": "high"
}
)
async def conduct_role_specific_review(self, thread_id: str, role: str, task: CodeReviewTask) -> Dict[str, Any]:
"""Simulate a role-specific review (in real implementation, this would call GPT-4)"""
print(f" Analyzing {len(task.files_changed)} files for {role} concerns...")
# Simulate different review outcomes based on role
review_data = {
"architect": {
"findings": [
"Code follows established patterns",
"Consider extracting common functionality into utility class",
"Database schema changes require migration script"
],
"severity": "minor",
"recommendations": ["Refactor common code", "Add migration script"],
"approval_status": "approved_with_suggestions"
},
"security": {
"findings": [
"Input validation implemented correctly",
"SQL injection protection in place",
"Consider adding rate limiting for API endpoints"
],
"severity": "minor",
"recommendations": ["Add rate limiting", "Update security documentation"],
"approval_status": "approved_with_suggestions"
},
"performance": {
"findings": [
"Database queries are optimized",
"Memory usage looks reasonable",
"Consider caching for frequently accessed data"
],
"severity": "suggestion",
"recommendations": ["Implement caching strategy", "Add performance monitoring"],
"approval_status": "approved"
},
"documentation": {
"findings": [
"API documentation updated",
"Some complex functions lack comments",
"README needs update for new features"
],
"severity": "minor",
"recommendations": ["Add function comments", "Update README"],
"approval_status": "approved_with_suggestions"
}
}.get(role, {})
# Post review findings to the thread
await self.post_review_findings(thread_id, role, review_data, task)
return review_data
async def post_review_findings(self, thread_id: str, role: str, review_data: Dict, task: CodeReviewTask):
"""Post review findings to the collaborative thread"""
if not self.mcp_session:
raise RuntimeError("MCP session not initialized")
message_content = {
"reviewer": role,
"review_type": "initial_review",
"findings": review_data.get("findings", []),
"severity": review_data.get("severity", "info"),
"recommendations": review_data.get("recommendations", []),
"approval_status": review_data.get("approval_status", "pending"),
"timestamp": "2025-01-07T12:00:00Z"
}
target_address = f"bzzz://*:{role}@{task.repository}:pr{task.pull_request_number}/findings"
await self.mcp_session.call_tool(
"bzzz_post",
{
"target_address": target_address,
"message_type": "review_findings",
"content": message_content,
"thread_id": thread_id,
"priority": "medium"
}
)
async def facilitate_discussion(self, thread_id: str, review_results: Dict[str, Any]) -> Dict[str, Any]:
"""Facilitate cross-agent discussion about conflicting or overlapping concerns"""
print("💭 Facilitating inter-agent discussion...")
# Identify areas where multiple agents have concerns
common_concerns = self.identify_common_concerns(review_results)
discussion_points = []
for concern in common_concerns:
discussion_point = {
"topic": concern["area"],
"agents_involved": concern["agents"],
"severity_levels": concern["severities"],
"proposed_resolution": concern["suggested_approach"]
}
discussion_points.append(discussion_point)
# Simulate discussion outcomes
discussion_results = {
"discussion_points": discussion_points,
"resolved_conflicts": len(discussion_points),
"consensus_reached": True,
"escalation_needed": False
}
return discussion_results
def identify_common_concerns(self, review_results: Dict[str, Any]) -> List[Dict]:
"""Identify areas where multiple agents have overlapping concerns"""
# This would analyze the review findings to find common themes
# For demo purposes, return a sample concern
return [
{
"area": "error_handling",
"agents": ["architect", "security"],
"severities": ["minor", "minor"],
"suggested_approach": "Implement consistent error handling pattern"
}
]
async def reach_consensus(self, thread_id: str, review_results: Dict[str, Any]) -> Dict[str, Any]:
"""Facilitate consensus-building among reviewing agents"""
print("🤝 Building consensus on final recommendations...")
# Aggregate all findings and recommendations
all_findings = []
all_recommendations = []
approval_statuses = []
for role, results in review_results.items():
if role == "discussion":
continue
all_findings.extend(results.get("findings", []))
all_recommendations.extend(results.get("recommendations", []))
approval_statuses.append(results.get("approval_status", "pending"))
# Determine overall approval status
if all(status == "approved" for status in approval_statuses):
overall_status = "approved"
elif any(status == "rejected" for status in approval_statuses):
overall_status = "rejected"
else:
overall_status = "approved_with_changes"
consensus = {
"overall_approval": overall_status,
"critical_issues": 0,
"major_issues": 1,
"minor_issues": 4,
"suggestions": 3,
"consolidated_recommendations": list(set(all_recommendations)),
"requires_changes": overall_status != "approved",
"consensus_confidence": 0.95
}
return consensus
async def generate_review_summary(self, thread_id: str, review_results: Dict[str, Any]) -> Dict[str, Any]:
"""Generate a comprehensive review summary"""
if not self.mcp_session:
raise RuntimeError("MCP session not initialized")
# Use thread summarization tool
summary_result = await self.mcp_session.call_tool(
"bzzz_thread",
{
"action": "summarize",
"thread_id": thread_id
}
)
thread_summary = json.loads(summary_result.content[0].text)
final_summary = {
"review_id": f"review_{thread_id}",
"overall_status": review_results.get("consensus", {}).get("overall_approval", "pending"),
"participating_agents": list(self.agents.keys()),
"thread_summary": thread_summary,
"key_findings": self.extract_key_findings(review_results),
"action_items": self.generate_action_items(review_results),
"approval_required": review_results.get("consensus", {}).get("requires_changes", True),
"estimated_fix_time": "2-4 hours",
"review_completed_at": "2025-01-07T12:30:00Z"
}
return final_summary
def extract_key_findings(self, review_results: Dict[str, Any]) -> List[str]:
"""Extract the most important findings from all agent reviews"""
key_findings = []
for role, results in review_results.items():
if role in ["discussion", "consensus"]:
continue
findings = results.get("findings", [])
# Take first 2 findings from each agent as key findings
key_findings.extend(findings[:2])
return key_findings
def generate_action_items(self, review_results: Dict[str, Any]) -> List[Dict]:
"""Generate actionable items based on review findings"""
action_items = []
consensus = review_results.get("consensus", {})
for rec in consensus.get("consolidated_recommendations", []):
action_items.append({
"action": rec,
"priority": "medium",
"estimated_effort": "1-2 hours",
"assignee": "developer"
})
return action_items
async def cleanup(self):
"""Clean up resources and close connections"""
if self.mcp_session:
await self.mcp_session.close()
print("🧹 Cleaned up MCP session")
async def main():
"""Main example demonstrating collaborative code review"""
# Sample code review task
task = CodeReviewTask(
repository="bzzz-system",
pull_request_number=123,
title="Add user authentication service",
description="Implements JWT-based authentication with role-based access control",
files_changed=[
"src/auth/service.py",
"src/auth/middleware.py",
"src/models/user.py",
"tests/test_auth.py",
"docs/api/auth.md"
],
lines_of_code=450,
complexity_score=6.5,
security_risk="medium"
)
# Initialize the orchestrator
orchestrator = CollaborativeReviewOrchestrator()
try:
print("🚀 Initializing BZZZ MCP Collaborative Review Example")
await orchestrator.initialize()
# Start the collaborative review process
results = await orchestrator.start_collaborative_review(task)
# Display results
print("\n" + "="*60)
print("📊 COLLABORATIVE REVIEW RESULTS")
print("="*60)
print(json.dumps(results, indent=2))
except Exception as e:
print(f"❌ Error during collaborative review: {e}")
finally:
await orchestrator.cleanup()
if __name__ == "__main__":
# Run the example
asyncio.run(main())