WIP: Save agent roles integration work before CHORUS rebrand

- Agent roles and coordination features
- Chat API integration testing
- New configuration and workspace management

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
anthonyrawlins
2025-08-01 02:21:11 +10:00
parent 81b473d48f
commit 5978a0b8f5
3713 changed files with 1103925 additions and 59 deletions

View File

@@ -0,0 +1,52 @@
ecdsa
=====
[![Build Status](https://github.com/decred/dcrd/workflows/Build%20and%20Test/badge.svg)](https://github.com/decred/dcrd/actions)
[![ISC License](https://img.shields.io/badge/license-ISC-blue.svg)](http://copyfree.org)
[![GoDoc](https://img.shields.io/badge/godoc-reference-blue.svg)](https://pkg.go.dev/github.com/decred/dcrd/dcrec/secp256k1/v4/ecdsa)
Package ecdsa provides secp256k1-optimized ECDSA signing and verification.
This package provides data structures and functions necessary to produce and
verify deterministic canonical signatures in accordance with RFC6979 and
BIP0062, optimized specifically for the secp256k1 curve using the Elliptic Curve
Digital Signature Algorithm (ECDSA), as defined in FIPS 186-3. See
https://www.secg.org/sec2-v2.pdf for details on the secp256k1 standard.
It also provides functions to parse and serialize the ECDSA signatures with the
more strict Distinguished Encoding Rules (DER) of ISO/IEC 8825-1 and some
additional restrictions specific to secp256k1.
In addition, it supports a custom "compact" signature format which allows
efficient recovery of the public key from a given valid signature and message
hash combination.
A comprehensive suite of tests is provided to ensure proper functionality.
## ECDSA use in Decred
At the time of this writing, ECDSA signatures are heavily used for proving coin
ownership in Decred as the vast majority of transactions consist of what is
effectively transferring ownership of coins to a public key associated with a
private key only known to the recipient of the coins along with an encumbrance
that requires an ECDSA signature that proves the new owner possesses the private
key without actually revealing it.
## Installation and Updating
This package is part of the `github.com/decred/dcrd/dcrec/secp256k1/v4` module.
Use the standard go tooling for working with modules to incorporate it.
## Examples
* [Sign Message](https://pkg.go.dev/github.com/decred/dcrd/dcrec/secp256k1/v4/ecdsa#example-package-SignMessage)
Demonstrates signing a message with a secp256k1 private key that is first
parsed from raw bytes and serializing the generated signature.
* [Verify Signature](https://pkg.go.dev/github.com/decred/dcrd/dcrec/secp256k1/v4/ecdsa#example-Signature.Verify)
Demonstrates verifying a secp256k1 signature against a public key that is
first parsed from raw bytes. The signature is also parsed from raw bytes.
## License
Package ecdsa is licensed under the [copyfree](http://copyfree.org) ISC License.

View File

@@ -0,0 +1,42 @@
// Copyright (c) 2020 The Decred developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
/*
Package ecdsa provides secp256k1-optimized ECDSA signing and verification.
This package provides data structures and functions necessary to produce and
verify deterministic canonical signatures in accordance with RFC6979 and
BIP0062, optimized specifically for the secp256k1 curve using the Elliptic Curve
Digital Signature Algorithm (ECDSA), as defined in FIPS 186-3. See
https://www.secg.org/sec2-v2.pdf for details on the secp256k1 standard.
It also provides functions to parse and serialize the ECDSA signatures with the
more strict Distinguished Encoding Rules (DER) of ISO/IEC 8825-1 and some
additional restrictions specific to secp256k1.
In addition, it supports a custom "compact" signature format which allows
efficient recovery of the public key from a given valid signature and message
hash combination.
A comprehensive suite of tests is provided to ensure proper functionality.
# ECDSA use in Decred
At the time of this writing, ECDSA signatures are heavily used for proving coin
ownership in Decred as the vast majority of transactions consist of what is
effectively transferring ownership of coins to a public key associated with a
private key only known to the recipient of the coins along with an encumbrance
that requires an ECDSA signature that proves the new owner possesses the private
key without actually revealing it.
# Errors
Errors returned by this package are of type ecdsa.Error and fully support the
standard library errors.Is and errors.As functions. This allows the caller to
programmatically determine the specific error by examining the ErrorKind field
of the type asserted ecdsa.Error while still providing rich error messages with
contextual information. See ErrorKind in the package documentation for a full
list.
*/
package ecdsa

View File

@@ -0,0 +1,134 @@
// Copyright (c) 2020-2022 The Decred developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package ecdsa
// ErrorKind identifies a kind of error. It has full support for
// errors.Is and errors.As, so the caller can directly check against
// an error kind when determining the reason for an error.
type ErrorKind string
// These constants are used to identify a specific Error.
const (
// ErrSigTooShort is returned when a signature that should be a DER
// signature is too short.
ErrSigTooShort = ErrorKind("ErrSigTooShort")
// ErrSigTooLong is returned when a signature that should be a DER signature
// is too long.
ErrSigTooLong = ErrorKind("ErrSigTooLong")
// ErrSigInvalidSeqID is returned when a signature that should be a DER
// signature does not have the expected ASN.1 sequence ID.
ErrSigInvalidSeqID = ErrorKind("ErrSigInvalidSeqID")
// ErrSigInvalidDataLen is returned when a signature that should be a DER
// signature does not specify the correct number of remaining bytes for the
// R and S portions.
ErrSigInvalidDataLen = ErrorKind("ErrSigInvalidDataLen")
// ErrSigMissingSTypeID is returned when a signature that should be a DER
// signature does not provide the ASN.1 type ID for S.
ErrSigMissingSTypeID = ErrorKind("ErrSigMissingSTypeID")
// ErrSigMissingSLen is returned when a signature that should be a DER
// signature does not provide the length of S.
ErrSigMissingSLen = ErrorKind("ErrSigMissingSLen")
// ErrSigInvalidSLen is returned when a signature that should be a DER
// signature does not specify the correct number of bytes for the S portion.
ErrSigInvalidSLen = ErrorKind("ErrSigInvalidSLen")
// ErrSigInvalidRIntID is returned when a signature that should be a DER
// signature does not have the expected ASN.1 integer ID for R.
ErrSigInvalidRIntID = ErrorKind("ErrSigInvalidRIntID")
// ErrSigZeroRLen is returned when a signature that should be a DER
// signature has an R length of zero.
ErrSigZeroRLen = ErrorKind("ErrSigZeroRLen")
// ErrSigNegativeR is returned when a signature that should be a DER
// signature has a negative value for R.
ErrSigNegativeR = ErrorKind("ErrSigNegativeR")
// ErrSigTooMuchRPadding is returned when a signature that should be a DER
// signature has too much padding for R.
ErrSigTooMuchRPadding = ErrorKind("ErrSigTooMuchRPadding")
// ErrSigRIsZero is returned when a signature has R set to the value zero.
ErrSigRIsZero = ErrorKind("ErrSigRIsZero")
// ErrSigRTooBig is returned when a signature has R with a value that is
// greater than or equal to the group order.
ErrSigRTooBig = ErrorKind("ErrSigRTooBig")
// ErrSigInvalidSIntID is returned when a signature that should be a DER
// signature does not have the expected ASN.1 integer ID for S.
ErrSigInvalidSIntID = ErrorKind("ErrSigInvalidSIntID")
// ErrSigZeroSLen is returned when a signature that should be a DER
// signature has an S length of zero.
ErrSigZeroSLen = ErrorKind("ErrSigZeroSLen")
// ErrSigNegativeS is returned when a signature that should be a DER
// signature has a negative value for S.
ErrSigNegativeS = ErrorKind("ErrSigNegativeS")
// ErrSigTooMuchSPadding is returned when a signature that should be a DER
// signature has too much padding for S.
ErrSigTooMuchSPadding = ErrorKind("ErrSigTooMuchSPadding")
// ErrSigSIsZero is returned when a signature has S set to the value zero.
ErrSigSIsZero = ErrorKind("ErrSigSIsZero")
// ErrSigSTooBig is returned when a signature has S with a value that is
// greater than or equal to the group order.
ErrSigSTooBig = ErrorKind("ErrSigSTooBig")
// ErrSigInvalidLen is returned when a signature that should be a compact
// signature is not the required length.
ErrSigInvalidLen = ErrorKind("ErrSigInvalidLen")
// ErrSigInvalidRecoveryCode is returned when a signature that should be a
// compact signature has an invalid value for the public key recovery code.
ErrSigInvalidRecoveryCode = ErrorKind("ErrSigInvalidRecoveryCode")
// ErrSigOverflowsPrime is returned when a signature that should be a
// compact signature has the overflow bit set but adding the order to it
// would overflow the underlying field prime.
ErrSigOverflowsPrime = ErrorKind("ErrSigOverflowsPrime")
// ErrPointNotOnCurve is returned when attempting to recover a public key
// from a compact signature results in a point that is not on the elliptic
// curve.
ErrPointNotOnCurve = ErrorKind("ErrPointNotOnCurve")
)
// Error satisfies the error interface and prints human-readable errors.
func (e ErrorKind) Error() string {
return string(e)
}
// Error identifies an error related to an ECDSA signature. It has full
// support for errors.Is and errors.As, so the caller can ascertain the
// specific reason for the error by checking the underlying error.
type Error struct {
Err error
Description string
}
// Error satisfies the error interface and prints human-readable errors.
func (e Error) Error() string {
return e.Description
}
// Unwrap returns the underlying wrapped error.
func (e Error) Unwrap() error {
return e.Err
}
// signatureError creates an Error given a set of arguments.
func signatureError(kind ErrorKind, desc string) Error {
return Error{Err: kind, Description: desc}
}

View File

@@ -0,0 +1,990 @@
// Copyright (c) 2013-2014 The btcsuite developers
// Copyright (c) 2015-2022 The Decred developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package ecdsa
import (
"fmt"
"github.com/decred/dcrd/dcrec/secp256k1/v4"
)
// References:
// [GECC]: Guide to Elliptic Curve Cryptography (Hankerson, Menezes, Vanstone)
//
// [ISO/IEC 8825-1]: Information technology — ASN.1 encoding rules:
// Specification of Basic Encoding Rules (BER), Canonical Encoding Rules
// (CER) and Distinguished Encoding Rules (DER)
//
// [SEC1]: Elliptic Curve Cryptography (May 31, 2009, Version 2.0)
// https://www.secg.org/sec1-v2.pdf
var (
// zero32 is an array of 32 bytes used for the purposes of zeroing and is
// defined here to avoid extra allocations.
zero32 = [32]byte{}
// orderAsFieldVal is the order of the secp256k1 curve group stored as a
// field value. It is provided here to avoid the need to create it multiple
// times.
orderAsFieldVal = func() secp256k1.FieldVal {
var f secp256k1.FieldVal
f.SetByteSlice(secp256k1.Params().N.Bytes())
return f
}()
)
const (
// asn1SequenceID is the ASN.1 identifier for a sequence and is used when
// parsing and serializing signatures encoded with the Distinguished
// Encoding Rules (DER) format per section 10 of [ISO/IEC 8825-1].
asn1SequenceID = 0x30
// asn1IntegerID is the ASN.1 identifier for an integer and is used when
// parsing and serializing signatures encoded with the Distinguished
// Encoding Rules (DER) format per section 10 of [ISO/IEC 8825-1].
asn1IntegerID = 0x02
)
// Signature is a type representing an ECDSA signature.
type Signature struct {
r secp256k1.ModNScalar
s secp256k1.ModNScalar
}
// NewSignature instantiates a new signature given some r and s values.
func NewSignature(r, s *secp256k1.ModNScalar) *Signature {
return &Signature{*r, *s}
}
// Serialize returns the ECDSA signature in the Distinguished Encoding Rules
// (DER) format per section 10 of [ISO/IEC 8825-1] and such that the S component
// of the signature is less than or equal to the half order of the group.
//
// Note that the serialized bytes returned do not include the appended hash type
// used in Decred signature scripts.
func (sig *Signature) Serialize() []byte {
// The format of a DER encoded signature is as follows:
//
// 0x30 <total length> 0x02 <length of R> <R> 0x02 <length of S> <S>
// - 0x30 is the ASN.1 identifier for a sequence.
// - Total length is 1 byte and specifies length of all remaining data.
// - 0x02 is the ASN.1 identifier that specifies an integer follows.
// - Length of R is 1 byte and specifies how many bytes R occupies.
// - R is the arbitrary length big-endian encoded number which
// represents the R value of the signature. DER encoding dictates
// that the value must be encoded using the minimum possible number
// of bytes. This implies the first byte can only be null if the
// highest bit of the next byte is set in order to prevent it from
// being interpreted as a negative number.
// - 0x02 is once again the ASN.1 integer identifier.
// - Length of S is 1 byte and specifies how many bytes S occupies.
// - S is the arbitrary length big-endian encoded number which
// represents the S value of the signature. The encoding rules are
// identical as those for R.
// Ensure the S component of the signature is less than or equal to the half
// order of the group because both S and its negation are valid signatures
// modulo the order, so this forces a consistent choice to reduce signature
// malleability.
sigS := new(secp256k1.ModNScalar).Set(&sig.s)
if sigS.IsOverHalfOrder() {
sigS.Negate()
}
// Serialize the R and S components of the signature into their fixed
// 32-byte big-endian encoding. Note that the extra leading zero byte is
// used to ensure it is canonical per DER and will be stripped if needed
// below.
var rBuf, sBuf [33]byte
sig.r.PutBytesUnchecked(rBuf[1:33])
sigS.PutBytesUnchecked(sBuf[1:33])
// Ensure the encoded bytes for the R and S components are canonical per DER
// by trimming all leading zero bytes so long as the next byte does not have
// the high bit set and it's not the final byte.
canonR, canonS := rBuf[:], sBuf[:]
for len(canonR) > 1 && canonR[0] == 0x00 && canonR[1]&0x80 == 0 {
canonR = canonR[1:]
}
for len(canonS) > 1 && canonS[0] == 0x00 && canonS[1]&0x80 == 0 {
canonS = canonS[1:]
}
// Total length of returned signature is 1 byte for each magic and length
// (6 total), plus lengths of R and S.
totalLen := 6 + len(canonR) + len(canonS)
b := make([]byte, 0, totalLen)
b = append(b, asn1SequenceID)
b = append(b, byte(totalLen-2))
b = append(b, asn1IntegerID)
b = append(b, byte(len(canonR)))
b = append(b, canonR...)
b = append(b, asn1IntegerID)
b = append(b, byte(len(canonS)))
b = append(b, canonS...)
return b
}
// zeroArray32 zeroes the provided 32-byte buffer.
func zeroArray32(b *[32]byte) {
copy(b[:], zero32[:])
}
// fieldToModNScalar converts a field value to scalar modulo the group order and
// returns the scalar along with either 1 if it was reduced (aka it overflowed)
// or 0 otherwise.
//
// Note that a bool is not used here because it is not possible in Go to convert
// from a bool to numeric value in constant time and many constant-time
// operations require a numeric value.
func fieldToModNScalar(v *secp256k1.FieldVal) (secp256k1.ModNScalar, uint32) {
var buf [32]byte
v.PutBytes(&buf)
var s secp256k1.ModNScalar
overflow := s.SetBytes(&buf)
zeroArray32(&buf)
return s, overflow
}
// modNScalarToField converts a scalar modulo the group order to a field value.
func modNScalarToField(v *secp256k1.ModNScalar) secp256k1.FieldVal {
var buf [32]byte
v.PutBytes(&buf)
var fv secp256k1.FieldVal
fv.SetBytes(&buf)
return fv
}
// Verify returns whether or not the signature is valid for the provided hash
// and secp256k1 public key.
func (sig *Signature) Verify(hash []byte, pubKey *secp256k1.PublicKey) bool {
// The algorithm for verifying an ECDSA signature is given as algorithm 4.30
// in [GECC].
//
// The following is a paraphrased version for reference:
//
// G = curve generator
// N = curve order
// Q = public key
// m = message
// R, S = signature
//
// 1. Fail if R and S are not in [1, N-1]
// 2. e = H(m)
// 3. w = S^-1 mod N
// 4. u1 = e * w mod N
// u2 = R * w mod N
// 5. X = u1G + u2Q
// 6. Fail if X is the point at infinity
// 7. x = X.x mod N (X.x is the x coordinate of X)
// 8. Verified if x == R
//
// However, since all group operations are done internally in Jacobian
// projective space, the algorithm is modified slightly here in order to
// avoid an expensive inversion back into affine coordinates at step 7.
// Credits to Greg Maxwell for originally suggesting this optimization.
//
// Ordinarily, step 7 involves converting the x coordinate to affine by
// calculating x = x / z^2 (mod P) and then calculating the remainder as
// x = x (mod N). Then step 8 compares it to R.
//
// Note that since R is the x coordinate mod N from a random point that was
// originally mod P, and the cofactor of the secp256k1 curve is 1, there are
// only two possible x coordinates that the original random point could have
// been to produce R: x, where x < N, and x+N, where x+N < P.
//
// This implies that the signature is valid if either:
// a) R == X.x / X.z^2 (mod P)
// => R * X.z^2 == X.x (mod P)
// --or--
// b) R + N < P && R + N == X.x / X.z^2 (mod P)
// => R + N < P && (R + N) * X.z^2 == X.x (mod P)
//
// Therefore the following modified algorithm is used:
//
// 1. Fail if R and S are not in [1, N-1]
// 2. e = H(m)
// 3. w = S^-1 mod N
// 4. u1 = e * w mod N
// u2 = R * w mod N
// 5. X = u1G + u2Q
// 6. Fail if X is the point at infinity
// 7. z = (X.z)^2 mod P (X.z is the z coordinate of X)
// 8. Verified if R * z == X.x (mod P)
// 9. Fail if R + N >= P
// 10. Verified if (R + N) * z == X.x (mod P)
// Step 1.
//
// Fail if R and S are not in [1, N-1].
if sig.r.IsZero() || sig.s.IsZero() {
return false
}
// Step 2.
//
// e = H(m)
var e secp256k1.ModNScalar
e.SetByteSlice(hash)
// Step 3.
//
// w = S^-1 mod N
w := new(secp256k1.ModNScalar).InverseValNonConst(&sig.s)
// Step 4.
//
// u1 = e * w mod N
// u2 = R * w mod N
u1 := new(secp256k1.ModNScalar).Mul2(&e, w)
u2 := new(secp256k1.ModNScalar).Mul2(&sig.r, w)
// Step 5.
//
// X = u1G + u2Q
var X, Q, u1G, u2Q secp256k1.JacobianPoint
pubKey.AsJacobian(&Q)
secp256k1.ScalarBaseMultNonConst(u1, &u1G)
secp256k1.ScalarMultNonConst(u2, &Q, &u2Q)
secp256k1.AddNonConst(&u1G, &u2Q, &X)
// Step 6.
//
// Fail if X is the point at infinity
if (X.X.IsZero() && X.Y.IsZero()) || X.Z.IsZero() {
return false
}
// Step 7.
//
// z = (X.z)^2 mod P (X.z is the z coordinate of X)
z := new(secp256k1.FieldVal).SquareVal(&X.Z)
// Step 8.
//
// Verified if R * z == X.x (mod P)
sigRModP := modNScalarToField(&sig.r)
result := new(secp256k1.FieldVal).Mul2(&sigRModP, z).Normalize()
if result.Equals(&X.X) {
return true
}
// Step 9.
//
// Fail if R + N >= P
if sigRModP.IsGtOrEqPrimeMinusOrder() {
return false
}
// Step 10.
//
// Verified if (R + N) * z == X.x (mod P)
sigRModP.Add(&orderAsFieldVal)
result.Mul2(&sigRModP, z).Normalize()
return result.Equals(&X.X)
}
// IsEqual compares this Signature instance to the one passed, returning true if
// both Signatures are equivalent. A signature is equivalent to another, if
// they both have the same scalar value for R and S.
func (sig *Signature) IsEqual(otherSig *Signature) bool {
return sig.r.Equals(&otherSig.r) && sig.s.Equals(&otherSig.s)
}
// ParseDERSignature parses a signature in the Distinguished Encoding Rules
// (DER) format per section 10 of [ISO/IEC 8825-1] and enforces the following
// additional restrictions specific to secp256k1:
//
// - The R and S values must be in the valid range for secp256k1 scalars:
// - Negative values are rejected
// - Zero is rejected
// - Values greater than or equal to the secp256k1 group order are rejected
func ParseDERSignature(sig []byte) (*Signature, error) {
// The format of a DER encoded signature for secp256k1 is as follows:
//
// 0x30 <total length> 0x02 <length of R> <R> 0x02 <length of S> <S>
// - 0x30 is the ASN.1 identifier for a sequence
// - Total length is 1 byte and specifies length of all remaining data
// - 0x02 is the ASN.1 identifier that specifies an integer follows
// - Length of R is 1 byte and specifies how many bytes R occupies
// - R is the arbitrary length big-endian encoded number which
// represents the R value of the signature. DER encoding dictates
// that the value must be encoded using the minimum possible number
// of bytes. This implies the first byte can only be null if the
// highest bit of the next byte is set in order to prevent it from
// being interpreted as a negative number.
// - 0x02 is once again the ASN.1 integer identifier
// - Length of S is 1 byte and specifies how many bytes S occupies
// - S is the arbitrary length big-endian encoded number which
// represents the S value of the signature. The encoding rules are
// identical as those for R.
//
// NOTE: The DER specification supports specifying lengths that can occupy
// more than 1 byte, however, since this is specific to secp256k1
// signatures, all lengths will be a single byte.
const (
// minSigLen is the minimum length of a DER encoded signature and is
// when both R and S are 1 byte each.
//
// 0x30 + <1-byte> + 0x02 + 0x01 + <byte> + 0x2 + 0x01 + <byte>
minSigLen = 8
// maxSigLen is the maximum length of a DER encoded signature and is
// when both R and S are 33 bytes each. It is 33 bytes because a
// 256-bit integer requires 32 bytes and an additional leading null byte
// might be required if the high bit is set in the value.
//
// 0x30 + <1-byte> + 0x02 + 0x21 + <33 bytes> + 0x2 + 0x21 + <33 bytes>
maxSigLen = 72
// sequenceOffset is the byte offset within the signature of the
// expected ASN.1 sequence identifier.
sequenceOffset = 0
// dataLenOffset is the byte offset within the signature of the expected
// total length of all remaining data in the signature.
dataLenOffset = 1
// rTypeOffset is the byte offset within the signature of the ASN.1
// identifier for R and is expected to indicate an ASN.1 integer.
rTypeOffset = 2
// rLenOffset is the byte offset within the signature of the length of
// R.
rLenOffset = 3
// rOffset is the byte offset within the signature of R.
rOffset = 4
)
// The signature must adhere to the minimum and maximum allowed length.
sigLen := len(sig)
if sigLen < minSigLen {
str := fmt.Sprintf("malformed signature: too short: %d < %d", sigLen,
minSigLen)
return nil, signatureError(ErrSigTooShort, str)
}
if sigLen > maxSigLen {
str := fmt.Sprintf("malformed signature: too long: %d > %d", sigLen,
maxSigLen)
return nil, signatureError(ErrSigTooLong, str)
}
// The signature must start with the ASN.1 sequence identifier.
if sig[sequenceOffset] != asn1SequenceID {
str := fmt.Sprintf("malformed signature: format has wrong type: %#x",
sig[sequenceOffset])
return nil, signatureError(ErrSigInvalidSeqID, str)
}
// The signature must indicate the correct amount of data for all elements
// related to R and S.
if int(sig[dataLenOffset]) != sigLen-2 {
str := fmt.Sprintf("malformed signature: bad length: %d != %d",
sig[dataLenOffset], sigLen-2)
return nil, signatureError(ErrSigInvalidDataLen, str)
}
// Calculate the offsets of the elements related to S and ensure S is inside
// the signature.
//
// rLen specifies the length of the big-endian encoded number which
// represents the R value of the signature.
//
// sTypeOffset is the offset of the ASN.1 identifier for S and, like its R
// counterpart, is expected to indicate an ASN.1 integer.
//
// sLenOffset and sOffset are the byte offsets within the signature of the
// length of S and S itself, respectively.
rLen := int(sig[rLenOffset])
sTypeOffset := rOffset + rLen
sLenOffset := sTypeOffset + 1
if sTypeOffset >= sigLen {
str := "malformed signature: S type indicator missing"
return nil, signatureError(ErrSigMissingSTypeID, str)
}
if sLenOffset >= sigLen {
str := "malformed signature: S length missing"
return nil, signatureError(ErrSigMissingSLen, str)
}
// The lengths of R and S must match the overall length of the signature.
//
// sLen specifies the length of the big-endian encoded number which
// represents the S value of the signature.
sOffset := sLenOffset + 1
sLen := int(sig[sLenOffset])
if sOffset+sLen != sigLen {
str := "malformed signature: invalid S length"
return nil, signatureError(ErrSigInvalidSLen, str)
}
// R elements must be ASN.1 integers.
if sig[rTypeOffset] != asn1IntegerID {
str := fmt.Sprintf("malformed signature: R integer marker: %#x != %#x",
sig[rTypeOffset], asn1IntegerID)
return nil, signatureError(ErrSigInvalidRIntID, str)
}
// Zero-length integers are not allowed for R.
if rLen == 0 {
str := "malformed signature: R length is zero"
return nil, signatureError(ErrSigZeroRLen, str)
}
// R must not be negative.
if sig[rOffset]&0x80 != 0 {
str := "malformed signature: R is negative"
return nil, signatureError(ErrSigNegativeR, str)
}
// Null bytes at the start of R are not allowed, unless R would otherwise be
// interpreted as a negative number.
if rLen > 1 && sig[rOffset] == 0x00 && sig[rOffset+1]&0x80 == 0 {
str := "malformed signature: R value has too much padding"
return nil, signatureError(ErrSigTooMuchRPadding, str)
}
// S elements must be ASN.1 integers.
if sig[sTypeOffset] != asn1IntegerID {
str := fmt.Sprintf("malformed signature: S integer marker: %#x != %#x",
sig[sTypeOffset], asn1IntegerID)
return nil, signatureError(ErrSigInvalidSIntID, str)
}
// Zero-length integers are not allowed for S.
if sLen == 0 {
str := "malformed signature: S length is zero"
return nil, signatureError(ErrSigZeroSLen, str)
}
// S must not be negative.
if sig[sOffset]&0x80 != 0 {
str := "malformed signature: S is negative"
return nil, signatureError(ErrSigNegativeS, str)
}
// Null bytes at the start of S are not allowed, unless S would otherwise be
// interpreted as a negative number.
if sLen > 1 && sig[sOffset] == 0x00 && sig[sOffset+1]&0x80 == 0 {
str := "malformed signature: S value has too much padding"
return nil, signatureError(ErrSigTooMuchSPadding, str)
}
// The signature is validly encoded per DER at this point, however, enforce
// additional restrictions to ensure R and S are in the range [1, N-1] since
// valid ECDSA signatures are required to be in that range per spec.
//
// Also note that while the overflow checks are required to make use of the
// specialized mod N scalar type, rejecting zero here is not strictly
// required because it is also checked when verifying the signature, but
// there really isn't a good reason not to fail early here on signatures
// that do not conform to the ECDSA spec.
// Strip leading zeroes from R.
rBytes := sig[rOffset : rOffset+rLen]
for len(rBytes) > 0 && rBytes[0] == 0x00 {
rBytes = rBytes[1:]
}
// R must be in the range [1, N-1]. Notice the check for the maximum number
// of bytes is required because SetByteSlice truncates as noted in its
// comment so it could otherwise fail to detect the overflow.
var r secp256k1.ModNScalar
if len(rBytes) > 32 {
str := "invalid signature: R is larger than 256 bits"
return nil, signatureError(ErrSigRTooBig, str)
}
if overflow := r.SetByteSlice(rBytes); overflow {
str := "invalid signature: R >= group order"
return nil, signatureError(ErrSigRTooBig, str)
}
if r.IsZero() {
str := "invalid signature: R is 0"
return nil, signatureError(ErrSigRIsZero, str)
}
// Strip leading zeroes from S.
sBytes := sig[sOffset : sOffset+sLen]
for len(sBytes) > 0 && sBytes[0] == 0x00 {
sBytes = sBytes[1:]
}
// S must be in the range [1, N-1]. Notice the check for the maximum number
// of bytes is required because SetByteSlice truncates as noted in its
// comment so it could otherwise fail to detect the overflow.
var s secp256k1.ModNScalar
if len(sBytes) > 32 {
str := "invalid signature: S is larger than 256 bits"
return nil, signatureError(ErrSigSTooBig, str)
}
if overflow := s.SetByteSlice(sBytes); overflow {
str := "invalid signature: S >= group order"
return nil, signatureError(ErrSigSTooBig, str)
}
if s.IsZero() {
str := "invalid signature: S is 0"
return nil, signatureError(ErrSigSIsZero, str)
}
// Create and return the signature.
return NewSignature(&r, &s), nil
}
// sign generates an ECDSA signature over the secp256k1 curve for the provided
// hash (which should be the result of hashing a larger message) using the given
// nonce and private key and returns it along with an additional public key
// recovery code and success indicator. Upon success, the produced signature is
// deterministic (same message, nonce, and key yield the same signature) and
// canonical in accordance with BIP0062.
//
// Note that signRFC6979 makes use of this function as it is the primary ECDSA
// signing logic. It differs in that it accepts a nonce to use when signing and
// may not successfully produce a valid signature for the given nonce. It is
// primarily separated for testing purposes.
func sign(privKey, nonce *secp256k1.ModNScalar, hash []byte) (*Signature, byte, bool) {
// The algorithm for producing an ECDSA signature is given as algorithm 4.29
// in [GECC].
//
// The following is a paraphrased version for reference:
//
// G = curve generator
// N = curve order
// d = private key
// m = message
// r, s = signature
//
// 1. Select random nonce k in [1, N-1]
// 2. Compute kG
// 3. r = kG.x mod N (kG.x is the x coordinate of the point kG)
// Repeat from step 1 if r = 0
// 4. e = H(m)
// 5. s = k^-1(e + dr) mod N
// Repeat from step 1 if s = 0
// 6. Return (r,s)
//
// This is slightly modified here to conform to RFC6979 and BIP 62 as
// follows:
//
// A. Instead of selecting a random nonce in step 1, use RFC6979 to generate
// a deterministic nonce in [1, N-1] parameterized by the private key,
// message being signed, and an iteration count for the repeat cases
// B. Negate s calculated in step 5 if it is > N/2
// This is done because both s and its negation are valid signatures
// modulo the curve order N, so it forces a consistent choice to reduce
// signature malleability
// NOTE: Step 1 is performed by the caller.
//
// Step 2.
//
// Compute kG
//
// Note that the point must be in affine coordinates.
k := nonce
var kG secp256k1.JacobianPoint
secp256k1.ScalarBaseMultNonConst(k, &kG)
kG.ToAffine()
// Step 3.
//
// r = kG.x mod N
// Repeat from step 1 if r = 0
r, overflow := fieldToModNScalar(&kG.X)
if r.IsZero() {
return nil, 0, false
}
// Since the secp256k1 curve has a cofactor of 1, when recovering a
// public key from an ECDSA signature over it, there are four possible
// candidates corresponding to the following cases:
//
// 1) The X coord of the random point is < N and its Y coord even
// 2) The X coord of the random point is < N and its Y coord is odd
// 3) The X coord of the random point is >= N and its Y coord is even
// 4) The X coord of the random point is >= N and its Y coord is odd
//
// Rather than forcing the recovery procedure to check all possible
// cases, this creates a recovery code that uniquely identifies which of
// the cases apply by making use of 2 bits. Bit 0 identifies the
// oddness case and Bit 1 identifies the overflow case (aka when the X
// coord >= N).
//
// It is also worth noting that making use of Hasse's theorem shows
// there are around log_2((p-n)/p) ~= -127.65 ~= 1 in 2^127 points where
// the X coordinate is >= N. It is not possible to calculate these
// points since that would require breaking the ECDLP, but, in practice
// this strongly implies with extremely high probability that there are
// only a few actual points for which this case is true.
pubKeyRecoveryCode := byte(overflow<<1) | byte(kG.Y.IsOddBit())
// Step 4.
//
// e = H(m)
//
// Note that this actually sets e = H(m) mod N which is correct since
// it is only used in step 5 which itself is mod N.
var e secp256k1.ModNScalar
e.SetByteSlice(hash)
// Step 5 with modification B.
//
// s = k^-1(e + dr) mod N
// Repeat from step 1 if s = 0
// s = -s if s > N/2
kinv := new(secp256k1.ModNScalar).InverseValNonConst(k)
s := new(secp256k1.ModNScalar).Mul2(privKey, &r).Add(&e).Mul(kinv)
if s.IsZero() {
return nil, 0, false
}
if s.IsOverHalfOrder() {
s.Negate()
// Negating s corresponds to the random point that would have been
// generated by -k (mod N), which necessarily has the opposite
// oddness since N is prime, thus flip the pubkey recovery code
// oddness bit accordingly.
pubKeyRecoveryCode ^= 0x01
}
// Step 6.
//
// Return (r,s)
return NewSignature(&r, s), pubKeyRecoveryCode, true
}
// signRFC6979 generates a deterministic ECDSA signature according to RFC 6979
// and BIP0062 and returns it along with an additional public key recovery code
// for efficiently recovering the public key from the signature.
func signRFC6979(privKey *secp256k1.PrivateKey, hash []byte) (*Signature, byte) {
// The algorithm for producing an ECDSA signature is given as algorithm 4.29
// in [GECC].
//
// The following is a paraphrased version for reference:
//
// G = curve generator
// N = curve order
// d = private key
// m = message
// r, s = signature
//
// 1. Select random nonce k in [1, N-1]
// 2. Compute kG
// 3. r = kG.x mod N (kG.x is the x coordinate of the point kG)
// Repeat from step 1 if r = 0
// 4. e = H(m)
// 5. s = k^-1(e + dr) mod N
// Repeat from step 1 if s = 0
// 6. Return (r,s)
//
// This is slightly modified here to conform to RFC6979 and BIP 62 as
// follows:
//
// A. Instead of selecting a random nonce in step 1, use RFC6979 to generate
// a deterministic nonce in [1, N-1] parameterized by the private key,
// message being signed, and an iteration count for the repeat cases
// B. Negate s calculated in step 5 if it is > N/2
// This is done because both s and its negation are valid signatures
// modulo the curve order N, so it forces a consistent choice to reduce
// signature malleability
privKeyScalar := &privKey.Key
var privKeyBytes [32]byte
privKeyScalar.PutBytes(&privKeyBytes)
defer zeroArray32(&privKeyBytes)
for iteration := uint32(0); ; iteration++ {
// Step 1 with modification A.
//
// Generate a deterministic nonce in [1, N-1] parameterized by the
// private key, message being signed, and iteration count.
k := secp256k1.NonceRFC6979(privKeyBytes[:], hash, nil, nil, iteration)
// Steps 2-6.
sig, pubKeyRecoveryCode, success := sign(privKeyScalar, k, hash)
k.Zero()
if !success {
continue
}
return sig, pubKeyRecoveryCode
}
}
// Sign generates an ECDSA signature over the secp256k1 curve for the provided
// hash (which should be the result of hashing a larger message) using the given
// private key. The produced signature is deterministic (same message and same
// key yield the same signature) and canonical in accordance with RFC6979 and
// BIP0062.
func Sign(key *secp256k1.PrivateKey, hash []byte) *Signature {
signature, _ := signRFC6979(key, hash)
return signature
}
const (
// compactSigSize is the size of a compact signature. It consists of a
// compact signature recovery code byte followed by the R and S components
// serialized as 32-byte big-endian values. 1+32*2 = 65.
// for the R and S components. 1+32+32=65.
compactSigSize = 65
// compactSigMagicOffset is a value used when creating the compact signature
// recovery code inherited from Bitcoin and has no meaning, but has been
// retained for compatibility. For historical purposes, it was originally
// picked to avoid a binary representation that would allow compact
// signatures to be mistaken for other components.
compactSigMagicOffset = 27
// compactSigCompPubKey is a value used when creating the compact signature
// recovery code to indicate the original public key was compressed.
compactSigCompPubKey = 4
// pubKeyRecoveryCodeOddnessBit specifies the bit that indicates the oddess
// of the Y coordinate of the random point calculated when creating a
// signature.
pubKeyRecoveryCodeOddnessBit = 1 << 0
// pubKeyRecoveryCodeOverflowBit specifies the bit that indicates the X
// coordinate of the random point calculated when creating a signature was
// >= N, where N is the order of the group.
pubKeyRecoveryCodeOverflowBit = 1 << 1
)
// SignCompact produces a compact ECDSA signature over the secp256k1 curve for
// the provided hash (which should be the result of hashing a larger message)
// using the given private key. The isCompressedKey parameter specifies if the
// produced signature should reference a compressed public key or not.
//
// Compact signature format:
// <1-byte compact sig recovery code><32-byte R><32-byte S>
//
// The compact sig recovery code is the value 27 + public key recovery code + 4
// if the compact signature was created with a compressed public key.
func SignCompact(key *secp256k1.PrivateKey, hash []byte, isCompressedKey bool) []byte {
// Create the signature and associated pubkey recovery code and calculate
// the compact signature recovery code.
sig, pubKeyRecoveryCode := signRFC6979(key, hash)
compactSigRecoveryCode := compactSigMagicOffset + pubKeyRecoveryCode
if isCompressedKey {
compactSigRecoveryCode += compactSigCompPubKey
}
// Output <compactSigRecoveryCode><32-byte R><32-byte S>.
var b [compactSigSize]byte
b[0] = compactSigRecoveryCode
sig.r.PutBytesUnchecked(b[1:33])
sig.s.PutBytesUnchecked(b[33:65])
return b[:]
}
// RecoverCompact attempts to recover the secp256k1 public key from the provided
// compact signature and message hash. It first verifies the signature, and, if
// the signature matches then the recovered public key will be returned as well
// as a boolean indicating whether or not the original key was compressed.
func RecoverCompact(signature, hash []byte) (*secp256k1.PublicKey, bool, error) {
// The following is very loosely based on the information and algorithm that
// describes recovering a public key from and ECDSA signature in section
// 4.1.6 of [SEC1].
//
// Given the following parameters:
//
// G = curve generator
// N = group order
// P = field prime
// Q = public key
// m = message
// e = hash of the message
// r, s = signature
// X = random point used when creating signature whose x coordinate is r
//
// The equation to recover a public key candidate from an ECDSA signature
// is:
// Q = r^-1(sX - eG).
//
// This can be verified by plugging it in for Q in the sig verification
// equation:
// X = s^-1(eG + rQ) (mod N)
// => s^-1(eG + r(r^-1(sX - eG))) (mod N)
// => s^-1(eG + sX - eG) (mod N)
// => s^-1(sX) (mod N)
// => X (mod N)
//
// However, note that since r is the x coordinate mod N from a random point
// that was originally mod P, and the cofactor of the secp256k1 curve is 1,
// there are four possible points that the original random point could have
// been to produce r: (r,y), (r,-y), (r+N,y), and (r+N,-y). At least 2 of
// those points will successfully verify, and all 4 will successfully verify
// when the original x coordinate was in the range [N+1, P-1], but in any
// case, only one of them corresponds to the original private key used.
//
// The method described by section 4.1.6 of [SEC1] to determine which one is
// the correct one involves calculating each possibility as a candidate
// public key and comparing the candidate to the authentic public key. It
// also hints that it is possible to generate the signature in a such a
// way that only one of the candidate public keys is viable.
//
// A more efficient approach that is specific to the secp256k1 curve is used
// here instead which is to produce a "pubkey recovery code" when signing
// that uniquely identifies which of the 4 possibilities is correct for the
// original random point and using that to recover the pubkey directly as
// follows:
//
// 1. Fail if r and s are not in [1, N-1]
// 2. Convert r to integer mod P
// 3. If pubkey recovery code overflow bit is set:
// 3.1 Fail if r + N >= P
// 3.2 r = r + N (mod P)
// 4. y = +sqrt(r^3 + 7) (mod P)
// 4.1 Fail if y does not exist
// 4.2 y = -y if needed to match pubkey recovery code oddness bit
// 5. X = (r, y)
// 6. e = H(m) mod N
// 7. w = r^-1 mod N
// 8. u1 = -(e * w) mod N
// u2 = s * w mod N
// 9. Q = u1G + u2X
// 10. Fail if Q is the point at infinity
// A compact signature consists of a recovery byte followed by the R and
// S components serialized as 32-byte big-endian values.
if len(signature) != compactSigSize {
str := fmt.Sprintf("malformed signature: wrong size: %d != %d",
len(signature), compactSigSize)
return nil, false, signatureError(ErrSigInvalidLen, str)
}
// Parse and validate the compact signature recovery code.
const (
minValidCode = compactSigMagicOffset
maxValidCode = compactSigMagicOffset + compactSigCompPubKey + 3
)
sigRecoveryCode := signature[0]
if sigRecoveryCode < minValidCode || sigRecoveryCode > maxValidCode {
str := fmt.Sprintf("invalid signature: public key recovery code %d is "+
"not in the valid range [%d, %d]", sigRecoveryCode, minValidCode,
maxValidCode)
return nil, false, signatureError(ErrSigInvalidRecoveryCode, str)
}
sigRecoveryCode -= compactSigMagicOffset
wasCompressed := sigRecoveryCode&compactSigCompPubKey != 0
pubKeyRecoveryCode := sigRecoveryCode & 3
// Step 1.
//
// Parse and validate the R and S signature components.
//
// Fail if r and s are not in [1, N-1].
var r, s secp256k1.ModNScalar
if overflow := r.SetByteSlice(signature[1:33]); overflow {
str := "invalid signature: R >= group order"
return nil, false, signatureError(ErrSigRTooBig, str)
}
if r.IsZero() {
str := "invalid signature: R is 0"
return nil, false, signatureError(ErrSigRIsZero, str)
}
if overflow := s.SetByteSlice(signature[33:]); overflow {
str := "invalid signature: S >= group order"
return nil, false, signatureError(ErrSigSTooBig, str)
}
if s.IsZero() {
str := "invalid signature: S is 0"
return nil, false, signatureError(ErrSigSIsZero, str)
}
// Step 2.
//
// Convert r to integer mod P.
fieldR := modNScalarToField(&r)
// Step 3.
//
// If pubkey recovery code overflow bit is set:
if pubKeyRecoveryCode&pubKeyRecoveryCodeOverflowBit != 0 {
// Step 3.1.
//
// Fail if r + N >= P
//
// Either the signature or the recovery code must be invalid if the
// recovery code overflow bit is set and adding N to the R component
// would exceed the field prime since R originally came from the X
// coordinate of a random point on the curve.
if fieldR.IsGtOrEqPrimeMinusOrder() {
str := "invalid signature: signature R + N >= P"
return nil, false, signatureError(ErrSigOverflowsPrime, str)
}
// Step 3.2.
//
// r = r + N (mod P)
fieldR.Add(&orderAsFieldVal)
}
// Step 4.
//
// y = +sqrt(r^3 + 7) (mod P)
// Fail if y does not exist.
// y = -y if needed to match pubkey recovery code oddness bit
//
// The signature must be invalid if the calculation fails because the X
// coord originally came from a random point on the curve which means there
// must be a Y coord that satisfies the equation for a valid signature.
oddY := pubKeyRecoveryCode&pubKeyRecoveryCodeOddnessBit != 0
var y secp256k1.FieldVal
if valid := secp256k1.DecompressY(&fieldR, oddY, &y); !valid {
str := "invalid signature: not for a valid curve point"
return nil, false, signatureError(ErrPointNotOnCurve, str)
}
// Step 5.
//
// X = (r, y)
var X secp256k1.JacobianPoint
X.X.Set(fieldR.Normalize())
X.Y.Set(y.Normalize())
X.Z.SetInt(1)
// Step 6.
//
// e = H(m) mod N
var e secp256k1.ModNScalar
e.SetByteSlice(hash)
// Step 7.
//
// w = r^-1 mod N
w := new(secp256k1.ModNScalar).InverseValNonConst(&r)
// Step 8.
//
// u1 = -(e * w) mod N
// u2 = s * w mod N
u1 := new(secp256k1.ModNScalar).Mul2(&e, w).Negate()
u2 := new(secp256k1.ModNScalar).Mul2(&s, w)
// Step 9.
//
// Q = u1G + u2X
var Q, u1G, u2X secp256k1.JacobianPoint
secp256k1.ScalarBaseMultNonConst(u1, &u1G)
secp256k1.ScalarMultNonConst(u2, &X, &u2X)
secp256k1.AddNonConst(&u1G, &u2X, &Q)
// Step 10.
//
// Fail if Q is the point at infinity.
//
// Either the signature or the pubkey recovery code must be invalid if the
// recovered pubkey is the point at infinity.
if (Q.X.IsZero() && Q.Y.IsZero()) || Q.Z.IsZero() {
str := "invalid signature: recovered pubkey is the point at infinity"
return nil, false, signatureError(ErrPointNotOnCurve, str)
}
// Notice that the public key is in affine coordinates.
Q.ToAffine()
pubKey := secp256k1.NewPublicKey(&Q.X, &Q.Y)
return pubKey, wasCompressed, nil
}