WIP: Save agent roles integration work before CHORUS rebrand
- Agent roles and coordination features - Chat API integration testing - New configuration and workspace management 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
		
							
								
								
									
										701
									
								
								vendor/github.com/klauspost/compress/zstd/fse_encoder.go
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										701
									
								
								vendor/github.com/klauspost/compress/zstd/fse_encoder.go
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							| @@ -0,0 +1,701 @@ | ||||
| // Copyright 2019+ Klaus Post. All rights reserved. | ||||
| // License information can be found in the LICENSE file. | ||||
| // Based on work by Yann Collet, released under BSD License. | ||||
|  | ||||
| package zstd | ||||
|  | ||||
| import ( | ||||
| 	"errors" | ||||
| 	"fmt" | ||||
| 	"math" | ||||
| ) | ||||
|  | ||||
| const ( | ||||
| 	// For encoding we only support up to | ||||
| 	maxEncTableLog    = 8 | ||||
| 	maxEncTablesize   = 1 << maxTableLog | ||||
| 	maxEncTableMask   = (1 << maxTableLog) - 1 | ||||
| 	minEncTablelog    = 5 | ||||
| 	maxEncSymbolValue = maxMatchLengthSymbol | ||||
| ) | ||||
|  | ||||
| // Scratch provides temporary storage for compression and decompression. | ||||
| type fseEncoder struct { | ||||
| 	symbolLen      uint16 // Length of active part of the symbol table. | ||||
| 	actualTableLog uint8  // Selected tablelog. | ||||
| 	ct             cTable // Compression tables. | ||||
| 	maxCount       int    // count of the most probable symbol | ||||
| 	zeroBits       bool   // no bits has prob > 50%. | ||||
| 	clearCount     bool   // clear count | ||||
| 	useRLE         bool   // This encoder is for RLE | ||||
| 	preDefined     bool   // This encoder is predefined. | ||||
| 	reUsed         bool   // Set to know when the encoder has been reused. | ||||
| 	rleVal         uint8  // RLE Symbol | ||||
| 	maxBits        uint8  // Maximum output bits after transform. | ||||
|  | ||||
| 	// TODO: Technically zstd should be fine with 64 bytes. | ||||
| 	count [256]uint32 | ||||
| 	norm  [256]int16 | ||||
| } | ||||
|  | ||||
| // cTable contains tables used for compression. | ||||
| type cTable struct { | ||||
| 	tableSymbol []byte | ||||
| 	stateTable  []uint16 | ||||
| 	symbolTT    []symbolTransform | ||||
| } | ||||
|  | ||||
| // symbolTransform contains the state transform for a symbol. | ||||
| type symbolTransform struct { | ||||
| 	deltaNbBits    uint32 | ||||
| 	deltaFindState int16 | ||||
| 	outBits        uint8 | ||||
| } | ||||
|  | ||||
| // String prints values as a human readable string. | ||||
| func (s symbolTransform) String() string { | ||||
| 	return fmt.Sprintf("{deltabits: %08x, findstate:%d outbits:%d}", s.deltaNbBits, s.deltaFindState, s.outBits) | ||||
| } | ||||
|  | ||||
| // Histogram allows to populate the histogram and skip that step in the compression, | ||||
| // It otherwise allows to inspect the histogram when compression is done. | ||||
| // To indicate that you have populated the histogram call HistogramFinished | ||||
| // with the value of the highest populated symbol, as well as the number of entries | ||||
| // in the most populated entry. These are accepted at face value. | ||||
| func (s *fseEncoder) Histogram() *[256]uint32 { | ||||
| 	return &s.count | ||||
| } | ||||
|  | ||||
| // HistogramFinished can be called to indicate that the histogram has been populated. | ||||
| // maxSymbol is the index of the highest set symbol of the next data segment. | ||||
| // maxCount is the number of entries in the most populated entry. | ||||
| // These are accepted at face value. | ||||
| func (s *fseEncoder) HistogramFinished(maxSymbol uint8, maxCount int) { | ||||
| 	s.maxCount = maxCount | ||||
| 	s.symbolLen = uint16(maxSymbol) + 1 | ||||
| 	s.clearCount = maxCount != 0 | ||||
| } | ||||
|  | ||||
| // allocCtable will allocate tables needed for compression. | ||||
| // If existing tables a re big enough, they are simply re-used. | ||||
| func (s *fseEncoder) allocCtable() { | ||||
| 	tableSize := 1 << s.actualTableLog | ||||
| 	// get tableSymbol that is big enough. | ||||
| 	if cap(s.ct.tableSymbol) < tableSize { | ||||
| 		s.ct.tableSymbol = make([]byte, tableSize) | ||||
| 	} | ||||
| 	s.ct.tableSymbol = s.ct.tableSymbol[:tableSize] | ||||
|  | ||||
| 	ctSize := tableSize | ||||
| 	if cap(s.ct.stateTable) < ctSize { | ||||
| 		s.ct.stateTable = make([]uint16, ctSize) | ||||
| 	} | ||||
| 	s.ct.stateTable = s.ct.stateTable[:ctSize] | ||||
|  | ||||
| 	if cap(s.ct.symbolTT) < 256 { | ||||
| 		s.ct.symbolTT = make([]symbolTransform, 256) | ||||
| 	} | ||||
| 	s.ct.symbolTT = s.ct.symbolTT[:256] | ||||
| } | ||||
|  | ||||
| // buildCTable will populate the compression table so it is ready to be used. | ||||
| func (s *fseEncoder) buildCTable() error { | ||||
| 	tableSize := uint32(1 << s.actualTableLog) | ||||
| 	highThreshold := tableSize - 1 | ||||
| 	var cumul [256]int16 | ||||
|  | ||||
| 	s.allocCtable() | ||||
| 	tableSymbol := s.ct.tableSymbol[:tableSize] | ||||
| 	// symbol start positions | ||||
| 	{ | ||||
| 		cumul[0] = 0 | ||||
| 		for ui, v := range s.norm[:s.symbolLen-1] { | ||||
| 			u := byte(ui) // one less than reference | ||||
| 			if v == -1 { | ||||
| 				// Low proba symbol | ||||
| 				cumul[u+1] = cumul[u] + 1 | ||||
| 				tableSymbol[highThreshold] = u | ||||
| 				highThreshold-- | ||||
| 			} else { | ||||
| 				cumul[u+1] = cumul[u] + v | ||||
| 			} | ||||
| 		} | ||||
| 		// Encode last symbol separately to avoid overflowing u | ||||
| 		u := int(s.symbolLen - 1) | ||||
| 		v := s.norm[s.symbolLen-1] | ||||
| 		if v == -1 { | ||||
| 			// Low proba symbol | ||||
| 			cumul[u+1] = cumul[u] + 1 | ||||
| 			tableSymbol[highThreshold] = byte(u) | ||||
| 			highThreshold-- | ||||
| 		} else { | ||||
| 			cumul[u+1] = cumul[u] + v | ||||
| 		} | ||||
| 		if uint32(cumul[s.symbolLen]) != tableSize { | ||||
| 			return fmt.Errorf("internal error: expected cumul[s.symbolLen] (%d) == tableSize (%d)", cumul[s.symbolLen], tableSize) | ||||
| 		} | ||||
| 		cumul[s.symbolLen] = int16(tableSize) + 1 | ||||
| 	} | ||||
| 	// Spread symbols | ||||
| 	s.zeroBits = false | ||||
| 	{ | ||||
| 		step := tableStep(tableSize) | ||||
| 		tableMask := tableSize - 1 | ||||
| 		var position uint32 | ||||
| 		// if any symbol > largeLimit, we may have 0 bits output. | ||||
| 		largeLimit := int16(1 << (s.actualTableLog - 1)) | ||||
| 		for ui, v := range s.norm[:s.symbolLen] { | ||||
| 			symbol := byte(ui) | ||||
| 			if v > largeLimit { | ||||
| 				s.zeroBits = true | ||||
| 			} | ||||
| 			for nbOccurrences := int16(0); nbOccurrences < v; nbOccurrences++ { | ||||
| 				tableSymbol[position] = symbol | ||||
| 				position = (position + step) & tableMask | ||||
| 				for position > highThreshold { | ||||
| 					position = (position + step) & tableMask | ||||
| 				} /* Low proba area */ | ||||
| 			} | ||||
| 		} | ||||
|  | ||||
| 		// Check if we have gone through all positions | ||||
| 		if position != 0 { | ||||
| 			return errors.New("position!=0") | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	// Build table | ||||
| 	table := s.ct.stateTable | ||||
| 	{ | ||||
| 		tsi := int(tableSize) | ||||
| 		for u, v := range tableSymbol { | ||||
| 			// TableU16 : sorted by symbol order; gives next state value | ||||
| 			table[cumul[v]] = uint16(tsi + u) | ||||
| 			cumul[v]++ | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	// Build Symbol Transformation Table | ||||
| 	{ | ||||
| 		total := int16(0) | ||||
| 		symbolTT := s.ct.symbolTT[:s.symbolLen] | ||||
| 		tableLog := s.actualTableLog | ||||
| 		tl := (uint32(tableLog) << 16) - (1 << tableLog) | ||||
| 		for i, v := range s.norm[:s.symbolLen] { | ||||
| 			switch v { | ||||
| 			case 0: | ||||
| 			case -1, 1: | ||||
| 				symbolTT[i].deltaNbBits = tl | ||||
| 				symbolTT[i].deltaFindState = total - 1 | ||||
| 				total++ | ||||
| 			default: | ||||
| 				maxBitsOut := uint32(tableLog) - highBit(uint32(v-1)) | ||||
| 				minStatePlus := uint32(v) << maxBitsOut | ||||
| 				symbolTT[i].deltaNbBits = (maxBitsOut << 16) - minStatePlus | ||||
| 				symbolTT[i].deltaFindState = total - v | ||||
| 				total += v | ||||
| 			} | ||||
| 		} | ||||
| 		if total != int16(tableSize) { | ||||
| 			return fmt.Errorf("total mismatch %d (got) != %d (want)", total, tableSize) | ||||
| 		} | ||||
| 	} | ||||
| 	return nil | ||||
| } | ||||
|  | ||||
| var rtbTable = [...]uint32{0, 473195, 504333, 520860, 550000, 700000, 750000, 830000} | ||||
|  | ||||
| func (s *fseEncoder) setRLE(val byte) { | ||||
| 	s.allocCtable() | ||||
| 	s.actualTableLog = 0 | ||||
| 	s.ct.stateTable = s.ct.stateTable[:1] | ||||
| 	s.ct.symbolTT[val] = symbolTransform{ | ||||
| 		deltaFindState: 0, | ||||
| 		deltaNbBits:    0, | ||||
| 	} | ||||
| 	if debugEncoder { | ||||
| 		println("setRLE: val", val, "symbolTT", s.ct.symbolTT[val]) | ||||
| 	} | ||||
| 	s.rleVal = val | ||||
| 	s.useRLE = true | ||||
| } | ||||
|  | ||||
| // setBits will set output bits for the transform. | ||||
| // if nil is provided, the number of bits is equal to the index. | ||||
| func (s *fseEncoder) setBits(transform []byte) { | ||||
| 	if s.reUsed || s.preDefined { | ||||
| 		return | ||||
| 	} | ||||
| 	if s.useRLE { | ||||
| 		if transform == nil { | ||||
| 			s.ct.symbolTT[s.rleVal].outBits = s.rleVal | ||||
| 			s.maxBits = s.rleVal | ||||
| 			return | ||||
| 		} | ||||
| 		s.maxBits = transform[s.rleVal] | ||||
| 		s.ct.symbolTT[s.rleVal].outBits = s.maxBits | ||||
| 		return | ||||
| 	} | ||||
| 	if transform == nil { | ||||
| 		for i := range s.ct.symbolTT[:s.symbolLen] { | ||||
| 			s.ct.symbolTT[i].outBits = uint8(i) | ||||
| 		} | ||||
| 		s.maxBits = uint8(s.symbolLen - 1) | ||||
| 		return | ||||
| 	} | ||||
| 	s.maxBits = 0 | ||||
| 	for i, v := range transform[:s.symbolLen] { | ||||
| 		s.ct.symbolTT[i].outBits = v | ||||
| 		if v > s.maxBits { | ||||
| 			// We could assume bits always going up, but we play safe. | ||||
| 			s.maxBits = v | ||||
| 		} | ||||
| 	} | ||||
| } | ||||
|  | ||||
| // normalizeCount will normalize the count of the symbols so | ||||
| // the total is equal to the table size. | ||||
| // If successful, compression tables will also be made ready. | ||||
| func (s *fseEncoder) normalizeCount(length int) error { | ||||
| 	if s.reUsed { | ||||
| 		return nil | ||||
| 	} | ||||
| 	s.optimalTableLog(length) | ||||
| 	var ( | ||||
| 		tableLog          = s.actualTableLog | ||||
| 		scale             = 62 - uint64(tableLog) | ||||
| 		step              = (1 << 62) / uint64(length) | ||||
| 		vStep             = uint64(1) << (scale - 20) | ||||
| 		stillToDistribute = int16(1 << tableLog) | ||||
| 		largest           int | ||||
| 		largestP          int16 | ||||
| 		lowThreshold      = (uint32)(length >> tableLog) | ||||
| 	) | ||||
| 	if s.maxCount == length { | ||||
| 		s.useRLE = true | ||||
| 		return nil | ||||
| 	} | ||||
| 	s.useRLE = false | ||||
| 	for i, cnt := range s.count[:s.symbolLen] { | ||||
| 		// already handled | ||||
| 		// if (count[s] == s.length) return 0;   /* rle special case */ | ||||
|  | ||||
| 		if cnt == 0 { | ||||
| 			s.norm[i] = 0 | ||||
| 			continue | ||||
| 		} | ||||
| 		if cnt <= lowThreshold { | ||||
| 			s.norm[i] = -1 | ||||
| 			stillToDistribute-- | ||||
| 		} else { | ||||
| 			proba := (int16)((uint64(cnt) * step) >> scale) | ||||
| 			if proba < 8 { | ||||
| 				restToBeat := vStep * uint64(rtbTable[proba]) | ||||
| 				v := uint64(cnt)*step - (uint64(proba) << scale) | ||||
| 				if v > restToBeat { | ||||
| 					proba++ | ||||
| 				} | ||||
| 			} | ||||
| 			if proba > largestP { | ||||
| 				largestP = proba | ||||
| 				largest = i | ||||
| 			} | ||||
| 			s.norm[i] = proba | ||||
| 			stillToDistribute -= proba | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	if -stillToDistribute >= (s.norm[largest] >> 1) { | ||||
| 		// corner case, need another normalization method | ||||
| 		err := s.normalizeCount2(length) | ||||
| 		if err != nil { | ||||
| 			return err | ||||
| 		} | ||||
| 		if debugAsserts { | ||||
| 			err = s.validateNorm() | ||||
| 			if err != nil { | ||||
| 				return err | ||||
| 			} | ||||
| 		} | ||||
| 		return s.buildCTable() | ||||
| 	} | ||||
| 	s.norm[largest] += stillToDistribute | ||||
| 	if debugAsserts { | ||||
| 		err := s.validateNorm() | ||||
| 		if err != nil { | ||||
| 			return err | ||||
| 		} | ||||
| 	} | ||||
| 	return s.buildCTable() | ||||
| } | ||||
|  | ||||
| // Secondary normalization method. | ||||
| // To be used when primary method fails. | ||||
| func (s *fseEncoder) normalizeCount2(length int) error { | ||||
| 	const notYetAssigned = -2 | ||||
| 	var ( | ||||
| 		distributed  uint32 | ||||
| 		total        = uint32(length) | ||||
| 		tableLog     = s.actualTableLog | ||||
| 		lowThreshold = total >> tableLog | ||||
| 		lowOne       = (total * 3) >> (tableLog + 1) | ||||
| 	) | ||||
| 	for i, cnt := range s.count[:s.symbolLen] { | ||||
| 		if cnt == 0 { | ||||
| 			s.norm[i] = 0 | ||||
| 			continue | ||||
| 		} | ||||
| 		if cnt <= lowThreshold { | ||||
| 			s.norm[i] = -1 | ||||
| 			distributed++ | ||||
| 			total -= cnt | ||||
| 			continue | ||||
| 		} | ||||
| 		if cnt <= lowOne { | ||||
| 			s.norm[i] = 1 | ||||
| 			distributed++ | ||||
| 			total -= cnt | ||||
| 			continue | ||||
| 		} | ||||
| 		s.norm[i] = notYetAssigned | ||||
| 	} | ||||
| 	toDistribute := (1 << tableLog) - distributed | ||||
|  | ||||
| 	if (total / toDistribute) > lowOne { | ||||
| 		// risk of rounding to zero | ||||
| 		lowOne = (total * 3) / (toDistribute * 2) | ||||
| 		for i, cnt := range s.count[:s.symbolLen] { | ||||
| 			if (s.norm[i] == notYetAssigned) && (cnt <= lowOne) { | ||||
| 				s.norm[i] = 1 | ||||
| 				distributed++ | ||||
| 				total -= cnt | ||||
| 				continue | ||||
| 			} | ||||
| 		} | ||||
| 		toDistribute = (1 << tableLog) - distributed | ||||
| 	} | ||||
| 	if distributed == uint32(s.symbolLen)+1 { | ||||
| 		// all values are pretty poor; | ||||
| 		//   probably incompressible data (should have already been detected); | ||||
| 		//   find max, then give all remaining points to max | ||||
| 		var maxV int | ||||
| 		var maxC uint32 | ||||
| 		for i, cnt := range s.count[:s.symbolLen] { | ||||
| 			if cnt > maxC { | ||||
| 				maxV = i | ||||
| 				maxC = cnt | ||||
| 			} | ||||
| 		} | ||||
| 		s.norm[maxV] += int16(toDistribute) | ||||
| 		return nil | ||||
| 	} | ||||
|  | ||||
| 	if total == 0 { | ||||
| 		// all of the symbols were low enough for the lowOne or lowThreshold | ||||
| 		for i := uint32(0); toDistribute > 0; i = (i + 1) % (uint32(s.symbolLen)) { | ||||
| 			if s.norm[i] > 0 { | ||||
| 				toDistribute-- | ||||
| 				s.norm[i]++ | ||||
| 			} | ||||
| 		} | ||||
| 		return nil | ||||
| 	} | ||||
|  | ||||
| 	var ( | ||||
| 		vStepLog = 62 - uint64(tableLog) | ||||
| 		mid      = uint64((1 << (vStepLog - 1)) - 1) | ||||
| 		rStep    = (((1 << vStepLog) * uint64(toDistribute)) + mid) / uint64(total) // scale on remaining | ||||
| 		tmpTotal = mid | ||||
| 	) | ||||
| 	for i, cnt := range s.count[:s.symbolLen] { | ||||
| 		if s.norm[i] == notYetAssigned { | ||||
| 			var ( | ||||
| 				end    = tmpTotal + uint64(cnt)*rStep | ||||
| 				sStart = uint32(tmpTotal >> vStepLog) | ||||
| 				sEnd   = uint32(end >> vStepLog) | ||||
| 				weight = sEnd - sStart | ||||
| 			) | ||||
| 			if weight < 1 { | ||||
| 				return errors.New("weight < 1") | ||||
| 			} | ||||
| 			s.norm[i] = int16(weight) | ||||
| 			tmpTotal = end | ||||
| 		} | ||||
| 	} | ||||
| 	return nil | ||||
| } | ||||
|  | ||||
| // optimalTableLog calculates and sets the optimal tableLog in s.actualTableLog | ||||
| func (s *fseEncoder) optimalTableLog(length int) { | ||||
| 	tableLog := uint8(maxEncTableLog) | ||||
| 	minBitsSrc := highBit(uint32(length)) + 1 | ||||
| 	minBitsSymbols := highBit(uint32(s.symbolLen-1)) + 2 | ||||
| 	minBits := uint8(minBitsSymbols) | ||||
| 	if minBitsSrc < minBitsSymbols { | ||||
| 		minBits = uint8(minBitsSrc) | ||||
| 	} | ||||
|  | ||||
| 	maxBitsSrc := uint8(highBit(uint32(length-1))) - 2 | ||||
| 	if maxBitsSrc < tableLog { | ||||
| 		// Accuracy can be reduced | ||||
| 		tableLog = maxBitsSrc | ||||
| 	} | ||||
| 	if minBits > tableLog { | ||||
| 		tableLog = minBits | ||||
| 	} | ||||
| 	// Need a minimum to safely represent all symbol values | ||||
| 	if tableLog < minEncTablelog { | ||||
| 		tableLog = minEncTablelog | ||||
| 	} | ||||
| 	if tableLog > maxEncTableLog { | ||||
| 		tableLog = maxEncTableLog | ||||
| 	} | ||||
| 	s.actualTableLog = tableLog | ||||
| } | ||||
|  | ||||
| // validateNorm validates the normalized histogram table. | ||||
| func (s *fseEncoder) validateNorm() (err error) { | ||||
| 	var total int | ||||
| 	for _, v := range s.norm[:s.symbolLen] { | ||||
| 		if v >= 0 { | ||||
| 			total += int(v) | ||||
| 		} else { | ||||
| 			total -= int(v) | ||||
| 		} | ||||
| 	} | ||||
| 	defer func() { | ||||
| 		if err == nil { | ||||
| 			return | ||||
| 		} | ||||
| 		fmt.Printf("selected TableLog: %d, Symbol length: %d\n", s.actualTableLog, s.symbolLen) | ||||
| 		for i, v := range s.norm[:s.symbolLen] { | ||||
| 			fmt.Printf("%3d: %5d -> %4d \n", i, s.count[i], v) | ||||
| 		} | ||||
| 	}() | ||||
| 	if total != (1 << s.actualTableLog) { | ||||
| 		return fmt.Errorf("warning: Total == %d != %d", total, 1<<s.actualTableLog) | ||||
| 	} | ||||
| 	for i, v := range s.count[s.symbolLen:] { | ||||
| 		if v != 0 { | ||||
| 			return fmt.Errorf("warning: Found symbol out of range, %d after cut", i) | ||||
| 		} | ||||
| 	} | ||||
| 	return nil | ||||
| } | ||||
|  | ||||
| // writeCount will write the normalized histogram count to header. | ||||
| // This is read back by readNCount. | ||||
| func (s *fseEncoder) writeCount(out []byte) ([]byte, error) { | ||||
| 	if s.useRLE { | ||||
| 		return append(out, s.rleVal), nil | ||||
| 	} | ||||
| 	if s.preDefined || s.reUsed { | ||||
| 		// Never write predefined. | ||||
| 		return out, nil | ||||
| 	} | ||||
|  | ||||
| 	var ( | ||||
| 		tableLog  = s.actualTableLog | ||||
| 		tableSize = 1 << tableLog | ||||
| 		previous0 bool | ||||
| 		charnum   uint16 | ||||
|  | ||||
| 		// maximum header size plus 2 extra bytes for final output if bitCount == 0. | ||||
| 		maxHeaderSize = ((int(s.symbolLen) * int(tableLog)) >> 3) + 3 + 2 | ||||
|  | ||||
| 		// Write Table Size | ||||
| 		bitStream = uint32(tableLog - minEncTablelog) | ||||
| 		bitCount  = uint(4) | ||||
| 		remaining = int16(tableSize + 1) /* +1 for extra accuracy */ | ||||
| 		threshold = int16(tableSize) | ||||
| 		nbBits    = uint(tableLog + 1) | ||||
| 		outP      = len(out) | ||||
| 	) | ||||
| 	if cap(out) < outP+maxHeaderSize { | ||||
| 		out = append(out, make([]byte, maxHeaderSize*3)...) | ||||
| 		out = out[:len(out)-maxHeaderSize*3] | ||||
| 	} | ||||
| 	out = out[:outP+maxHeaderSize] | ||||
|  | ||||
| 	// stops at 1 | ||||
| 	for remaining > 1 { | ||||
| 		if previous0 { | ||||
| 			start := charnum | ||||
| 			for s.norm[charnum] == 0 { | ||||
| 				charnum++ | ||||
| 			} | ||||
| 			for charnum >= start+24 { | ||||
| 				start += 24 | ||||
| 				bitStream += uint32(0xFFFF) << bitCount | ||||
| 				out[outP] = byte(bitStream) | ||||
| 				out[outP+1] = byte(bitStream >> 8) | ||||
| 				outP += 2 | ||||
| 				bitStream >>= 16 | ||||
| 			} | ||||
| 			for charnum >= start+3 { | ||||
| 				start += 3 | ||||
| 				bitStream += 3 << bitCount | ||||
| 				bitCount += 2 | ||||
| 			} | ||||
| 			bitStream += uint32(charnum-start) << bitCount | ||||
| 			bitCount += 2 | ||||
| 			if bitCount > 16 { | ||||
| 				out[outP] = byte(bitStream) | ||||
| 				out[outP+1] = byte(bitStream >> 8) | ||||
| 				outP += 2 | ||||
| 				bitStream >>= 16 | ||||
| 				bitCount -= 16 | ||||
| 			} | ||||
| 		} | ||||
|  | ||||
| 		count := s.norm[charnum] | ||||
| 		charnum++ | ||||
| 		max := (2*threshold - 1) - remaining | ||||
| 		if count < 0 { | ||||
| 			remaining += count | ||||
| 		} else { | ||||
| 			remaining -= count | ||||
| 		} | ||||
| 		count++ // +1 for extra accuracy | ||||
| 		if count >= threshold { | ||||
| 			count += max // [0..max[ [max..threshold[ (...) [threshold+max 2*threshold[ | ||||
| 		} | ||||
| 		bitStream += uint32(count) << bitCount | ||||
| 		bitCount += nbBits | ||||
| 		if count < max { | ||||
| 			bitCount-- | ||||
| 		} | ||||
|  | ||||
| 		previous0 = count == 1 | ||||
| 		if remaining < 1 { | ||||
| 			return nil, errors.New("internal error: remaining < 1") | ||||
| 		} | ||||
| 		for remaining < threshold { | ||||
| 			nbBits-- | ||||
| 			threshold >>= 1 | ||||
| 		} | ||||
|  | ||||
| 		if bitCount > 16 { | ||||
| 			out[outP] = byte(bitStream) | ||||
| 			out[outP+1] = byte(bitStream >> 8) | ||||
| 			outP += 2 | ||||
| 			bitStream >>= 16 | ||||
| 			bitCount -= 16 | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	if outP+2 > len(out) { | ||||
| 		return nil, fmt.Errorf("internal error: %d > %d, maxheader: %d, sl: %d, tl: %d, normcount: %v", outP+2, len(out), maxHeaderSize, s.symbolLen, int(tableLog), s.norm[:s.symbolLen]) | ||||
| 	} | ||||
| 	out[outP] = byte(bitStream) | ||||
| 	out[outP+1] = byte(bitStream >> 8) | ||||
| 	outP += int((bitCount + 7) / 8) | ||||
|  | ||||
| 	if charnum > s.symbolLen { | ||||
| 		return nil, errors.New("internal error: charnum > s.symbolLen") | ||||
| 	} | ||||
| 	return out[:outP], nil | ||||
| } | ||||
|  | ||||
| // Approximate symbol cost, as fractional value, using fixed-point format (accuracyLog fractional bits) | ||||
| // note 1 : assume symbolValue is valid (<= maxSymbolValue) | ||||
| // note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits * | ||||
| func (s *fseEncoder) bitCost(symbolValue uint8, accuracyLog uint32) uint32 { | ||||
| 	minNbBits := s.ct.symbolTT[symbolValue].deltaNbBits >> 16 | ||||
| 	threshold := (minNbBits + 1) << 16 | ||||
| 	if debugAsserts { | ||||
| 		if !(s.actualTableLog < 16) { | ||||
| 			panic("!s.actualTableLog < 16") | ||||
| 		} | ||||
| 		// ensure enough room for renormalization double shift | ||||
| 		if !(uint8(accuracyLog) < 31-s.actualTableLog) { | ||||
| 			panic("!uint8(accuracyLog) < 31-s.actualTableLog") | ||||
| 		} | ||||
| 	} | ||||
| 	tableSize := uint32(1) << s.actualTableLog | ||||
| 	deltaFromThreshold := threshold - (s.ct.symbolTT[symbolValue].deltaNbBits + tableSize) | ||||
| 	// linear interpolation (very approximate) | ||||
| 	normalizedDeltaFromThreshold := (deltaFromThreshold << accuracyLog) >> s.actualTableLog | ||||
| 	bitMultiplier := uint32(1) << accuracyLog | ||||
| 	if debugAsserts { | ||||
| 		if s.ct.symbolTT[symbolValue].deltaNbBits+tableSize > threshold { | ||||
| 			panic("s.ct.symbolTT[symbolValue].deltaNbBits+tableSize > threshold") | ||||
| 		} | ||||
| 		if normalizedDeltaFromThreshold > bitMultiplier { | ||||
| 			panic("normalizedDeltaFromThreshold > bitMultiplier") | ||||
| 		} | ||||
| 	} | ||||
| 	return (minNbBits+1)*bitMultiplier - normalizedDeltaFromThreshold | ||||
| } | ||||
|  | ||||
| // Returns the cost in bits of encoding the distribution in count using ctable. | ||||
| // Histogram should only be up to the last non-zero symbol. | ||||
| // Returns an -1 if ctable cannot represent all the symbols in count. | ||||
| func (s *fseEncoder) approxSize(hist []uint32) uint32 { | ||||
| 	if int(s.symbolLen) < len(hist) { | ||||
| 		// More symbols than we have. | ||||
| 		return math.MaxUint32 | ||||
| 	} | ||||
| 	if s.useRLE { | ||||
| 		// We will never reuse RLE encoders. | ||||
| 		return math.MaxUint32 | ||||
| 	} | ||||
| 	const kAccuracyLog = 8 | ||||
| 	badCost := (uint32(s.actualTableLog) + 1) << kAccuracyLog | ||||
| 	var cost uint32 | ||||
| 	for i, v := range hist { | ||||
| 		if v == 0 { | ||||
| 			continue | ||||
| 		} | ||||
| 		if s.norm[i] == 0 { | ||||
| 			return math.MaxUint32 | ||||
| 		} | ||||
| 		bitCost := s.bitCost(uint8(i), kAccuracyLog) | ||||
| 		if bitCost > badCost { | ||||
| 			return math.MaxUint32 | ||||
| 		} | ||||
| 		cost += v * bitCost | ||||
| 	} | ||||
| 	return cost >> kAccuracyLog | ||||
| } | ||||
|  | ||||
| // maxHeaderSize returns the maximum header size in bits. | ||||
| // This is not exact size, but we want a penalty for new tables anyway. | ||||
| func (s *fseEncoder) maxHeaderSize() uint32 { | ||||
| 	if s.preDefined { | ||||
| 		return 0 | ||||
| 	} | ||||
| 	if s.useRLE { | ||||
| 		return 8 | ||||
| 	} | ||||
| 	return (((uint32(s.symbolLen) * uint32(s.actualTableLog)) >> 3) + 3) * 8 | ||||
| } | ||||
|  | ||||
| // cState contains the compression state of a stream. | ||||
| type cState struct { | ||||
| 	bw         *bitWriter | ||||
| 	stateTable []uint16 | ||||
| 	state      uint16 | ||||
| } | ||||
|  | ||||
| // init will initialize the compression state to the first symbol of the stream. | ||||
| func (c *cState) init(bw *bitWriter, ct *cTable, first symbolTransform) { | ||||
| 	c.bw = bw | ||||
| 	c.stateTable = ct.stateTable | ||||
| 	if len(c.stateTable) == 1 { | ||||
| 		// RLE | ||||
| 		c.stateTable[0] = uint16(0) | ||||
| 		c.state = 0 | ||||
| 		return | ||||
| 	} | ||||
| 	nbBitsOut := (first.deltaNbBits + (1 << 15)) >> 16 | ||||
| 	im := int32((nbBitsOut << 16) - first.deltaNbBits) | ||||
| 	lu := (im >> nbBitsOut) + int32(first.deltaFindState) | ||||
| 	c.state = c.stateTable[lu] | ||||
| } | ||||
|  | ||||
| // flush will write the tablelog to the output and flush the remaining full bytes. | ||||
| func (c *cState) flush(tableLog uint8) { | ||||
| 	c.bw.flush32() | ||||
| 	c.bw.addBits16NC(c.state, tableLog) | ||||
| } | ||||
		Reference in New Issue
	
	Block a user
	 anthonyrawlins
					anthonyrawlins