# BZZZ v2 MCP Integration Design ## GPT-4 Agent Framework for Distributed P2P Collaboration ### Executive Summary This document outlines the comprehensive Model Context Protocol (MCP) integration for BZZZ v2, enabling GPT-4 agents to operate as first-class citizens within the distributed P2P task coordination system. The integration provides a bridge between OpenAI's GPT-4 models and the existing libp2p-based BZZZ infrastructure, creating a hybrid human-AI collaboration environment. --- ## 1. MCP Server Architecture ### 1.1 Core MCP Server Design ```typescript interface BzzzMcpServer { // Protocol Operations tools: { bzzz_announce: ToolDefinition; bzzz_lookup: ToolDefinition; bzzz_get: ToolDefinition; bzzz_post: ToolDefinition; bzzz_thread: ToolDefinition; bzzz_subscribe: ToolDefinition; }; // Agent Management agentLifecycle: AgentLifecycleManager; conversationManager: ConversationManager; costTracker: OpenAICostTracker; // BZZZ Protocol Integration p2pNode: P2PNodeInterface; pubsubManager: PubSubManager; hypercoreLogger: HypercoreLogger; } ``` ### 1.2 MCP Tool Registry The MCP server exposes BZZZ protocol operations as standardized tools that GPT-4 agents can invoke: #### Core Protocol Tools **1. `bzzz_announce`** - Agent presence announcement ```json { "name": "bzzz_announce", "description": "Announce agent presence and capabilities on the BZZZ network", "inputSchema": { "type": "object", "properties": { "agent_id": {"type": "string", "description": "Unique agent identifier"}, "role": {"type": "string", "description": "Agent role (architect, reviewer, etc.)"}, "capabilities": {"type": "array", "items": {"type": "string"}}, "specialization": {"type": "string"}, "max_tasks": {"type": "number", "default": 3} } } } ``` **2. `bzzz_lookup`** - Semantic address discovery ```json { "name": "bzzz_lookup", "description": "Discover agents and resources using semantic addressing", "inputSchema": { "type": "object", "properties": { "semantic_address": { "type": "string", "description": "Format: bzzz://agent:role@project:task/path" }, "filter_criteria": { "type": "object", "properties": { "expertise": {"type": "array"}, "availability": {"type": "boolean"}, "performance_threshold": {"type": "number"} } } } } } ``` **3. `bzzz_get`** - Content retrieval from addresses ```json { "name": "bzzz_get", "description": "Retrieve content from BZZZ semantic addresses", "inputSchema": { "type": "object", "properties": { "address": {"type": "string"}, "include_metadata": {"type": "boolean", "default": true}, "max_history": {"type": "number", "default": 10} } } } ``` **4. `bzzz_post`** - Event/message posting ```json { "name": "bzzz_post", "description": "Post events or messages to BZZZ addresses", "inputSchema": { "type": "object", "properties": { "target_address": {"type": "string"}, "message_type": {"type": "string"}, "content": {"type": "object"}, "priority": {"type": "string", "enum": ["low", "medium", "high", "urgent"]}, "thread_id": {"type": "string", "optional": true} } } } ``` **5. `bzzz_thread`** - Conversation management ```json { "name": "bzzz_thread", "description": "Manage threaded conversations between agents", "inputSchema": { "type": "object", "properties": { "action": {"type": "string", "enum": ["create", "join", "leave", "list", "summarize"]}, "thread_id": {"type": "string", "optional": true}, "participants": {"type": "array", "items": {"type": "string"}}, "topic": {"type": "string", "optional": true} } } } ``` **6. `bzzz_subscribe`** - Real-time event subscription ```json { "name": "bzzz_subscribe", "description": "Subscribe to real-time events from BZZZ network", "inputSchema": { "type": "object", "properties": { "event_types": {"type": "array", "items": {"type": "string"}}, "filter_address": {"type": "string", "optional": true}, "callback_webhook": {"type": "string", "optional": true} } } } ``` --- ## 2. GPT-4 Agent Framework ### 2.1 Agent Specialization Definitions #### Core Agent Types **1. Architect Agent** (`bzzz://architect@*`) ```json { "role": "architect", "capabilities": [ "system_design", "architecture_review", "technology_selection", "scalability_analysis" ], "reasoning_prompts": { "system": "You are a senior software architect specializing in distributed systems...", "task_analysis": "Analyze this task from an architectural perspective...", "collaboration": "Coordinate with other architects and provide technical guidance..." }, "interaction_patterns": { "peer_architects": "collaborative_review", "developers": "guidance_provision", "reviewers": "design_validation" } } ``` **2. Code Reviewer Agent** (`bzzz://reviewer@*`) ```json { "role": "reviewer", "capabilities": [ "code_review", "security_analysis", "performance_optimization", "best_practices_enforcement" ], "reasoning_prompts": { "system": "You are a senior code reviewer focused on quality and security...", "review_criteria": "Evaluate code changes against these criteria...", "feedback_delivery": "Provide constructive feedback to developers..." } } ``` **3. Documentation Agent** (`bzzz://docs@*`) ```json { "role": "documentation", "capabilities": [ "technical_writing", "api_documentation", "user_guides", "knowledge_synthesis" ], "reasoning_prompts": { "system": "You specialize in creating clear, comprehensive technical documentation...", "content_analysis": "Analyze technical content and identify documentation needs...", "audience_adaptation": "Adapt documentation for different audience levels..." } } ``` ### 2.2 Agent Lifecycle Management #### Agent States and Transitions ```mermaid stateDiagram-v2 [*] --> Initializing Initializing --> Idle: Registration Complete Idle --> Active: Task Assigned Active --> Collaborating: Multi-agent Context Collaborating --> Active: Individual Work Active --> Idle: Task Complete Idle --> Terminating: Shutdown Signal Terminating --> [*] Active --> Escalating: Human Intervention Needed Escalating --> Active: Issue Resolved Escalating --> Terminating: Unresolvable Issue ``` #### Lifecycle Implementation ```go type GPTAgent struct { ID string Role AgentRole State AgentState Capabilities []string // OpenAI Configuration APIKey string Model string // gpt-4, gpt-4-turbo, etc. TokenLimit int // BZZZ Integration P2PNode *p2p.Node PubSub *pubsub.PubSub Logger *logging.HypercoreLog // Conversation Context ActiveThreads map[string]*ConversationThread Memory *AgentMemory // Cost Management TokenUsage *TokenUsageTracker CostLimits *CostLimitConfig } func (agent *GPTAgent) Initialize() error { // Register with BZZZ network if err := agent.announcePresence(); err != nil { return err } // Subscribe to relevant topics if err := agent.subscribeToBzzzTopics(); err != nil { return err } // Initialize conversation memory agent.Memory = NewAgentMemory(agent.ID) agent.State = AgentStateIdle return nil } func (agent *GPTAgent) ProcessTask(task *repository.Task) error { agent.State = AgentStateActive // Create conversation context context := agent.buildTaskContext(task) // Check if collaboration is needed if agent.shouldCollaborate(task) { return agent.initiateCollaboration(task, context) } // Process individually return agent.processIndividualTask(task, context) } ``` ### 2.3 Context Sharing and Memory Management #### Agent Memory System ```go type AgentMemory struct { WorkingMemory map[string]interface{} // Current task context EpisodicMemory []ConversationEpisode // Past interactions SemanticMemory *KnowledgeGraph // Domain knowledge // Conversation History ThreadMemories map[string]*ThreadMemory // Learning and Adaptation PerformanceFeedback []FeedbackEntry CollaborationHistory []CollaborationEntry } type ConversationEpisode struct { Timestamp time.Time Participants []string Topic string Summary string Outcome string Lessons []string } ``` --- ## 3. Conversation Integration ### 3.1 Threaded Conversation Architecture #### Thread Management System ```go type ConversationManager struct { activeThreads map[string]*ConversationThread threadIndex *ThreadIndex summaryService *ThreadSummaryService escalationRules *EscalationRuleEngine } type ConversationThread struct { ID string Topic string Participants []AgentParticipant Messages []ThreadMessage State ThreadState // Context Management SharedContext map[string]interface{} DecisionLog []Decision // Thread Lifecycle CreatedAt time.Time LastActivity time.Time AutoClose bool CloseAfter time.Duration } type ThreadMessage struct { ID string From string Role AgentRole Content string MessageType MessageType Timestamp time.Time // Threading ReplyTo string Reactions []MessageReaction // GPT-4 Specific TokenCount int Model string Context *GPTContext } ``` ### 3.2 Multi-Agent Collaboration Patterns #### Collaborative Review Pattern ```go func (cm *ConversationManager) InitiateCollaborativeReview( task *repository.Task, requiredRoles []AgentRole, ) (*ConversationThread, error) { // Create thread for collaborative review thread := &ConversationThread{ ID: generateThreadID("review", task.Number), Topic: fmt.Sprintf("Collaborative Review: %s", task.Title), State: ThreadStateActive, } // Invite relevant agents for _, role := range requiredRoles { agents := cm.findAvailableAgents(role) for _, agent := range agents[:min(2, len(agents))] { thread.Participants = append(thread.Participants, AgentParticipant{ AgentID: agent.ID, Role: role, Status: ParticipantStatusInvited, }) } } // Set initial context thread.SharedContext = map[string]interface{}{ "task_details": task, "review_criteria": getReviewCriteria(task), "deadline": calculateReviewDeadline(task), } // Start the conversation initialPrompt := cm.buildCollaborativeReviewPrompt(task, thread) if err := cm.postInitialMessage(thread, initialPrompt); err != nil { return nil, err } return thread, nil } ``` #### Escalation Workflow Pattern ```go type EscalationRuleEngine struct { rules []EscalationRule } type EscalationRule struct { Name string Conditions []EscalationCondition Actions []EscalationAction Priority int } type EscalationCondition struct { Type string // "thread_duration", "consensus_failure", "error_rate" Threshold interface{} Timeframe time.Duration } func (ere *EscalationRuleEngine) CheckEscalation(thread *ConversationThread) []EscalationAction { var actions []EscalationAction for _, rule := range ere.rules { if ere.evaluateConditions(rule.Conditions, thread) { actions = append(actions, rule.Actions...) } } return actions } // Example escalation scenarios var DefaultEscalationRules = []EscalationRule{ { Name: "Long Running Thread", Conditions: []EscalationCondition{ {Type: "thread_duration", Threshold: 2 * time.Hour, Timeframe: 0}, {Type: "no_progress", Threshold: true, Timeframe: 30 * time.Minute}, }, Actions: []EscalationAction{ {Type: "notify_human", Target: "project_manager"}, {Type: "request_expert", Expertise: []string{"domain_expert"}}, }, }, { Name: "Consensus Failure", Conditions: []EscalationCondition{ {Type: "disagreement_count", Threshold: 3, Timeframe: 0}, {Type: "no_resolution", Threshold: true, Timeframe: 1 * time.Hour}, }, Actions: []EscalationAction{ {Type: "escalate_to_architect", Priority: "high"}, {Type: "create_decision_thread", Participants: []string{"senior_architect"}}, }, }, } ``` --- ## 4. CHORUS Integration Patterns ### 4.1 SLURP Context Integration #### SLURP Event Generation from HMMM Consensus ```go type SLURPIntegrationService struct { slurpClient *slurp.Client conversationMgr *ConversationManager eventGenerator *ConsensusEventGenerator } func (sis *SLURPIntegrationService) GenerateSLURPEventFromConsensus( thread *ConversationThread, consensus *ThreadConsensus, ) (*slurp.ContextEvent, error) { // Analyze conversation for insights insights := sis.extractInsights(thread) // Generate structured event event := &slurp.ContextEvent{ Type: "agent_consensus", Source: "bzzz_mcp_integration", Timestamp: time.Now(), Context: slurp.ContextData{ ConversationID: thread.ID, Participants: getParticipantRoles(thread.Participants), Topic: thread.Topic, Insights: insights, DecisionPoints: consensus.Decisions, Confidence: consensus.ConfidenceScore, }, Metadata: map[string]interface{}{ "thread_duration": thread.LastActivity.Sub(thread.CreatedAt).Minutes(), "message_count": len(thread.Messages), "agent_count": len(thread.Participants), "consensus_type": consensus.Type, }, } // Send to SLURP system if err := sis.slurpClient.SubmitContextEvent(event); err != nil { return nil, fmt.Errorf("failed to submit SLURP event: %w", err) } // Notify BZZZ network of event generation sis.notifyEventGenerated(thread, event) return event, nil } ``` ### 4.2 WHOOSH Orchestration Integration #### GPT-4 Agent Registration with WHOOSH ```go type WHOOSHIntegrationService struct { whooshClient *whoosh.Client agentRegistry map[string]*GPTAgent } func (wis *WHOOSHIntegrationService) RegisterGPTAgentWithWHOOSH( agent *GPTAgent, ) error { // Create WHOOSH agent registration registration := &whoosh.AgentRegistration{ AgentID: agent.ID, Type: "gpt_agent", Role: string(agent.Role), Capabilities: agent.Capabilities, Metadata: map[string]interface{}{ "model": agent.Model, "max_tokens": agent.TokenLimit, "cost_per_token": getTokenCost(agent.Model), "bzzz_address": fmt.Sprintf("bzzz://%s:%s@*", agent.ID, agent.Role), }, Endpoints: whoosh.AgentEndpoints{ StatusCheck: fmt.Sprintf("http://mcp-server:8080/agents/%s/status", agent.ID), TaskAssign: fmt.Sprintf("http://mcp-server:8080/agents/%s/tasks", agent.ID), Collaborate: fmt.Sprintf("http://mcp-server:8080/agents/%s/collaborate", agent.ID), }, HealthCheck: whoosh.HealthCheckConfig{ Interval: 30 * time.Second, Timeout: 10 * time.Second, Retries: 3, }, } // Submit registration if err := wis.whooshClient.RegisterAgent(registration); err != nil { return fmt.Errorf("failed to register with WHOOSH: %w", err) } // Start health reporting go wis.reportAgentHealth(agent) return nil } ``` ### 4.3 TGN (The Garden Network) Connectivity #### Cross-Network Agent Discovery ```go type TGNConnector struct { tgnClient *tgn.Client bzzzNetwork *BzzzNetwork agentRegistry *AgentRegistry } func (tgn *TGNConnector) DiscoverCrossNetworkAgents( query *AgentDiscoveryQuery, ) ([]*RemoteAgent, error) { // Query TGN for agents matching criteria tgnQuery := &tgn.AgentQuery{ Capabilities: query.RequiredCapabilities, Role: query.Role, Network: "bzzz", Available: true, } remoteAgents, err := tgn.tgnClient.DiscoverAgents(tgnQuery) if err != nil { return nil, err } // Convert TGN agents to BZZZ addressable agents var bzzzAgents []*RemoteAgent for _, remote := range remoteAgents { bzzzAgent := &RemoteAgent{ ID: remote.ID, Network: remote.Network, BzzzAddress: fmt.Sprintf("bzzz://%s:%s@%s/*", remote.ID, remote.Role, remote.Network), Capabilities: remote.Capabilities, Endpoint: remote.Endpoint, } bzzzAgents = append(bzzzAgents, bzzzAgent) } return bzzzAgents, nil } ``` --- ## 5. Implementation Roadmap ### 5.1 Phase 1: Core MCP Infrastructure (Weeks 1-2) #### Week 1: MCP Server Foundation - [ ] Implement basic MCP server with tool registry - [ ] Create OpenAI API integration wrapper - [ ] Establish P2P node connection interface - [ ] Basic agent lifecycle management **Key Deliverables:** - MCP server binary with basic tool definitions - OpenAI GPT-4 integration module - Agent registration and deregistration flows #### Week 2: Protocol Tool Implementation - [ ] Implement all six core bzzz:// protocol tools - [ ] Add semantic addressing support - [ ] Create pubsub message routing - [ ] Basic conversation threading **Key Deliverables:** - Full protocol tool suite - Address resolution system - Message routing infrastructure ### 5.2 Phase 2: Agent Framework (Weeks 3-4) #### Week 3: Agent Specializations - [ ] Define role-based agent templates - [ ] Implement reasoning prompt systems - [ ] Create capability matching logic - [ ] Agent memory management #### Week 4: Collaboration Patterns - [ ] Multi-agent conversation threading - [ ] Consensus building algorithms - [ ] Escalation rule engine - [ ] Human intervention workflows ### 5.3 Phase 3: CHORUS Integration (Weeks 5-6) #### Week 5: SLURP Integration - [ ] Consensus-to-SLURP event generation - [ ] Context relevance scoring - [ ] Feedback loop implementation - [ ] Performance optimization #### Week 6: WHOOSH & TGN Integration - [ ] Agent registration with WHOOSH - [ ] Cross-network agent discovery - [ ] Task orchestration bridging - [ ] Network topology management ### 5.4 Phase 4: Production Readiness (Weeks 7-8) #### Week 7: Monitoring & Cost Management - [ ] OpenAI cost tracking and limits - [ ] Performance monitoring dashboards - [ ] Conversation analytics - [ ] Agent efficiency metrics #### Week 8: Testing & Deployment - [ ] End-to-end integration testing - [ ] Load testing with multiple agents - [ ] Security auditing - [ ] Production deployment automation --- ## 6. Technical Requirements ### 6.1 Infrastructure Requirements #### Server Specifications - **CPU**: 8+ cores for concurrent agent processing - **RAM**: 32GB+ for conversation context management - **Storage**: 1TB+ SSD for conversation history and logs - **Network**: High-speed connection for P2P communication #### Software Dependencies - **Go 1.21+**: For BZZZ P2P integration - **Node.js 18+**: For MCP server implementation - **Docker**: For containerized deployment - **PostgreSQL 14+**: For conversation persistence ### 6.2 Security Considerations #### API Key Management - OpenAI API keys stored in secure vault - Per-agent API key rotation - Usage monitoring and alerting - Rate limiting and quotas #### P2P Security - Message signing and verification - Agent authentication protocols - Network access controls - Audit logging ### 6.3 Cost Management #### Token Usage Optimization ```go type CostOptimizer struct { tokenBudgets map[string]*TokenBudget usageTracking *UsageTracker costCalculator *CostCalculator } func (co *CostOptimizer) OptimizeConversation(thread *ConversationThread) { // Compress context when approaching limits if thread.EstimatedTokens() > thread.TokenBudget * 0.8 { co.compressConversationHistory(thread) } // Use cheaper models for routine tasks if thread.Complexity < ComplexityThreshold { co.assignModel(thread, "gpt-4o-mini") } // Implement conversation summarization if len(thread.Messages) > MaxMessagesBeforeSummary { co.summarizeAndTruncate(thread) } } ``` --- ## 7. Code Examples ### 7.1 MCP Server Implementation ```go // pkg/mcp/server.go package mcp import ( "context" "encoding/json" "fmt" "net/http" "github.com/anthonyrawlins/bzzz/p2p" "github.com/anthonyrawlins/bzzz/pubsub" openai "github.com/sashabaranov/go-openai" ) type McpServer struct { p2pNode *p2p.Node pubsub *pubsub.PubSub openaiClient *openai.Client agents map[string]*GPTAgent tools map[string]ToolHandler } func NewMcpServer(apiKey string, node *p2p.Node, ps *pubsub.PubSub) *McpServer { server := &McpServer{ p2pNode: node, pubsub: ps, openaiClient: openai.NewClient(apiKey), agents: make(map[string]*GPTAgent), tools: make(map[string]ToolHandler), } // Register protocol tools server.registerProtocolTools() return server } func (s *McpServer) registerProtocolTools() { s.tools["bzzz_announce"] = s.handleBzzzAnnounce s.tools["bzzz_lookup"] = s.handleBzzzLookup s.tools["bzzz_get"] = s.handleBzzzGet s.tools["bzzz_post"] = s.handleBzzzPost s.tools["bzzz_thread"] = s.handleBzzzThread s.tools["bzzz_subscribe"] = s.handleBzzzSubscribe } func (s *McpServer) handleBzzzAnnounce(params map[string]interface{}) (interface{}, error) { agentID, ok := params["agent_id"].(string) if !ok { return nil, fmt.Errorf("agent_id is required") } role, ok := params["role"].(string) if !ok { return nil, fmt.Errorf("role is required") } // Create announcement message announcement := map[string]interface{}{ "agent_id": agentID, "role": role, "capabilities": params["capabilities"], "specialization": params["specialization"], "max_tasks": params["max_tasks"], "announced_at": time.Now(), } // Publish to BZZZ network err := s.pubsub.PublishBzzzMessage(pubsub.CapabilityBcast, announcement) if err != nil { return nil, fmt.Errorf("failed to announce: %w", err) } return map[string]interface{}{ "status": "announced", "message": fmt.Sprintf("Agent %s (%s) announced to network", agentID, role), }, nil } func (s *McpServer) handleBzzzLookup(params map[string]interface{}) (interface{}, error) { address, ok := params["semantic_address"].(string) if !ok { return nil, fmt.Errorf("semantic_address is required") } // Parse semantic address (bzzz://agent:role@project:task/path) parsedAddr, err := parseSemanticAddress(address) if err != nil { return nil, fmt.Errorf("invalid semantic address: %w", err) } // Discover matching agents agents := s.discoverAgents(parsedAddr, params["filter_criteria"]) return map[string]interface{}{ "address": address, "matches": agents, "count": len(agents), }, nil } ``` ### 7.2 GPT-4 Agent Implementation ```go // pkg/agents/gpt_agent.go package agents import ( "context" "fmt" openai "github.com/sashabaranov/go-openai" "github.com/anthonyrawlins/bzzz/pubsub" ) type GPTAgent struct { ID string Role AgentRole Model string Client *openai.Client SystemPrompt string Memory *AgentMemory CostTracker *CostTracker // BZZZ Integration PubSub *pubsub.PubSub Logger *logging.HypercoreLog } func (agent *GPTAgent) ProcessCollaborativeTask( task *repository.Task, thread *ConversationThread, ) error { // Build context from conversation history context := agent.buildTaskContext(task, thread) // Create GPT-4 request messages := []openai.ChatCompletionMessage{ { Role: openai.ChatMessageRoleSystem, Content: agent.buildSystemPrompt(task, thread), }, } // Add conversation history for _, msg := range thread.Messages { messages = append(messages, openai.ChatCompletionMessage{ Role: openai.ChatMessageRoleUser, Content: fmt.Sprintf("[%s]: %s", msg.From, msg.Content), }) } // Add current task context messages = append(messages, openai.ChatCompletionMessage{ Role: openai.ChatMessageRoleUser, Content: agent.formatTaskForGPT(task), }) // Make GPT-4 request resp, err := agent.Client.CreateChatCompletion( context.Background(), openai.ChatCompletionRequest{ Model: agent.Model, Messages: messages, MaxTokens: 2000, Tools: agent.getAvailableTools(), }, ) if err != nil { return fmt.Errorf("GPT-4 request failed: %w", err) } // Process response and tool calls return agent.processGPTResponse(resp, thread) } func (agent *GPTAgent) buildSystemPrompt(task *repository.Task, thread *ConversationThread) string { basePrompt := agent.SystemPrompt // Add role-specific context roleContext := agent.getRoleSpecificContext(task) // Add collaboration context collabContext := fmt.Sprintf( "\nYou are collaborating with %d other agents in thread '%s'.\n"+ "Current participants: %s\n"+ "Thread topic: %s\n"+ "Your role in this collaboration: %s\n", len(thread.Participants)-1, thread.ID, getParticipantList(thread.Participants), thread.Topic, agent.Role, ) // Add available tools context toolsContext := "\nAvailable BZZZ tools:\n" for toolName, tool := range agent.getAvailableTools() { toolsContext += fmt.Sprintf("- %s: %s\n", toolName, tool.Function.Description) } return basePrompt + roleContext + collabContext + toolsContext } ``` ### 7.3 Conversation Threading ```go // pkg/conversations/thread_manager.go package conversations type ThreadManager struct { threads map[string]*ConversationThread participants map[string][]string // agentID -> threadIDs summaryEngine *SummaryEngine escalationMgr *EscalationManager } func (tm *ThreadManager) CreateCollaborativeThread( topic string, task *repository.Task, requiredRoles []AgentRole, ) (*ConversationThread, error) { thread := &ConversationThread{ ID: generateThreadID(topic, task.Number), Topic: topic, State: ThreadStateActive, CreatedAt: time.Now(), SharedContext: map[string]interface{}{ "task": task, "required_roles": requiredRoles, }, } // Find and invite agents for _, role := range requiredRoles { agents := tm.findAvailableAgentsByRole(role) if len(agents) == 0 { return nil, fmt.Errorf("no available agents for role: %s", role) } // Select best agent for this role selectedAgent := tm.selectBestAgent(agents, task) thread.Participants = append(thread.Participants, AgentParticipant{ AgentID: selectedAgent.ID, Role: role, Status: ParticipantStatusInvited, }) } // Initialize thread tm.threads[thread.ID] = thread // Send invitations for _, participant := range thread.Participants { if err := tm.inviteToThread(participant.AgentID, thread); err != nil { fmt.Printf("Failed to invite agent %s: %v\n", participant.AgentID, err) } } // Start thread monitoring go tm.monitorThread(thread) return thread, nil } func (tm *ThreadManager) PostMessage( threadID string, fromAgent string, content string, messageType MessageType, ) error { thread, exists := tm.threads[threadID] if !exists { return fmt.Errorf("thread %s not found", threadID) } message := ThreadMessage{ ID: generateMessageID(), From: fromAgent, Content: content, Type: messageType, Timestamp: time.Now(), } thread.Messages = append(thread.Messages, message) thread.LastActivity = time.Now() // Notify all participants for _, participant := range thread.Participants { if participant.AgentID != fromAgent { if err := tm.notifyParticipant(participant.AgentID, thread, message); err != nil { fmt.Printf("Failed to notify %s: %v\n", participant.AgentID, err) } } } // Check for escalation conditions if actions := tm.escalationMgr.CheckEscalation(thread); len(actions) > 0 { tm.executeEscalationActions(thread, actions) } return nil } ``` --- ## 8. Success Metrics ### 8.1 Performance Metrics - **Agent Response Time**: < 30 seconds for routine tasks - **Collaboration Efficiency**: 40% reduction in task completion time - **Consensus Success Rate**: > 85% of collaborative discussions reach consensus - **Escalation Rate**: < 15% of threads require human intervention ### 8.2 Cost Metrics - **Token Efficiency**: < $0.50 per task for routine tasks - **Model Selection Accuracy**: > 90% appropriate model selection - **Context Compression Ratio**: 70% reduction in token usage through compression ### 8.3 Quality Metrics - **Code Review Accuracy**: > 95% critical issues detected - **Documentation Completeness**: > 90% coverage of technical requirements - **Architecture Consistency**: > 95% adherence to established patterns --- ## 9. Security and Compliance ### 9.1 Data Protection - All conversation data encrypted at rest and in transit - Agent memory isolation between different projects - Automatic PII detection and redaction - Configurable data retention policies ### 9.2 Access Control - Role-based access to different agent capabilities - Project-level agent permissions - API key scoping and rotation - Audit logging of all agent actions ### 9.3 Compliance Considerations - GDPR compliance for European operations - SOC 2 Type II compliance framework - Regular security audits and penetration testing - Incident response procedures for AI agent failures --- This comprehensive design provides the foundation for implementing GPT-4 agents as first-class citizens in the BZZZ v2 distributed system, enabling sophisticated multi-agent collaboration while maintaining the security, performance, and cost-effectiveness required for production deployment.