"use strict"; // File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) { if (k2 === undefined) k2 = k; var desc = Object.getOwnPropertyDescriptor(m, k); if (!desc || ("get" in desc ? !m.__esModule : desc.writable || desc.configurable)) { desc = { enumerable: true, get: function() { return m[k]; } }; } Object.defineProperty(o, k2, desc); }) : (function(o, m, k, k2) { if (k2 === undefined) k2 = k; o[k2] = m[k]; })); var __setModuleDefault = (this && this.__setModuleDefault) || (Object.create ? (function(o, v) { Object.defineProperty(o, "default", { enumerable: true, value: v }); }) : function(o, v) { o["default"] = v; }); var __importStar = (this && this.__importStar) || function (mod) { if (mod && mod.__esModule) return mod; var result = {}; if (mod != null) for (var k in mod) if (k !== "default" && Object.prototype.hasOwnProperty.call(mod, k)) __createBinding(result, mod, k); __setModuleDefault(result, mod); return result; }; Object.defineProperty(exports, "__esModule", { value: true }); exports.Embeddings = void 0; const resource_1 = require("../resource.js"); const Core = __importStar(require("../core.js")); class Embeddings extends resource_1.APIResource { /** * Creates an embedding vector representing the input text. * * @example * ```ts * const createEmbeddingResponse = * await client.embeddings.create({ * input: 'The quick brown fox jumped over the lazy dog', * model: 'text-embedding-3-small', * }); * ``` */ create(body, options) { const hasUserProvidedEncodingFormat = !!body.encoding_format; // No encoding_format specified, defaulting to base64 for performance reasons // See https://github.com/openai/openai-node/pull/1312 let encoding_format = hasUserProvidedEncodingFormat ? body.encoding_format : 'base64'; if (hasUserProvidedEncodingFormat) { Core.debug('Request', 'User defined encoding_format:', body.encoding_format); } const response = this._client.post('/embeddings', { body: { ...body, encoding_format: encoding_format, }, ...options, }); // if the user specified an encoding_format, return the response as-is if (hasUserProvidedEncodingFormat) { return response; } // in this stage, we are sure the user did not specify an encoding_format // and we defaulted to base64 for performance reasons // we are sure then that the response is base64 encoded, let's decode it // the returned result will be a float32 array since this is OpenAI API's default encoding Core.debug('response', 'Decoding base64 embeddings to float32 array'); return response._thenUnwrap((response) => { if (response && response.data) { response.data.forEach((embeddingBase64Obj) => { const embeddingBase64Str = embeddingBase64Obj.embedding; embeddingBase64Obj.embedding = Core.toFloat32Array(embeddingBase64Str); }); } return response; }); } } exports.Embeddings = Embeddings; //# sourceMappingURL=embeddings.js.map