 5978a0b8f5
			
		
	
	5978a0b8f5
	
	
	
		
			
			- Agent roles and coordination features - Chat API integration testing - New configuration and workspace management 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
		
			
				
	
	
		
			510 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			510 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2011 The Go Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| // Package base32 implements base32 encoding as specified by RFC 4648.
 | |
| package base32
 | |
| 
 | |
| import (
 | |
| 	"io"
 | |
| 	"strconv"
 | |
| )
 | |
| 
 | |
| /*
 | |
|  * Encodings
 | |
|  */
 | |
| 
 | |
| // An Encoding is a radix 32 encoding/decoding scheme, defined by a
 | |
| // 32-character alphabet. The most common is the "base32" encoding
 | |
| // introduced for SASL GSSAPI and standardized in RFC 4648.
 | |
| // The alternate "base32hex" encoding is used in DNSSEC.
 | |
| type Encoding struct {
 | |
| 	encode    string
 | |
| 	decodeMap [256]byte
 | |
| 	padChar   rune
 | |
| }
 | |
| 
 | |
| // Alphabet returns the Base32 alphabet used
 | |
| func (enc *Encoding) Alphabet() string {
 | |
| 	return enc.encode
 | |
| }
 | |
| 
 | |
| const (
 | |
| 	StdPadding rune = '='
 | |
| 	NoPadding  rune = -1
 | |
| )
 | |
| 
 | |
| const encodeStd = "ABCDEFGHIJKLMNOPQRSTUVWXYZ234567"
 | |
| const encodeHex = "0123456789ABCDEFGHIJKLMNOPQRSTUV"
 | |
| 
 | |
| // NewEncoding returns a new Encoding defined by the given alphabet,
 | |
| // which must be a 32-byte string.
 | |
| func NewEncoding(encoder string) *Encoding {
 | |
| 	e := new(Encoding)
 | |
| 	e.padChar = StdPadding
 | |
| 	e.encode = encoder
 | |
| 	for i := 0; i < len(e.decodeMap); i++ {
 | |
| 		e.decodeMap[i] = 0xFF
 | |
| 	}
 | |
| 	for i := 0; i < len(encoder); i++ {
 | |
| 		e.decodeMap[encoder[i]] = byte(i)
 | |
| 	}
 | |
| 	return e
 | |
| }
 | |
| 
 | |
| // NewEncoding returns a new case insensitive Encoding defined by the
 | |
| // given alphabet, which must be a 32-byte string.
 | |
| func NewEncodingCI(encoder string) *Encoding {
 | |
| 	e := new(Encoding)
 | |
| 	e.padChar = StdPadding
 | |
| 	e.encode = encoder
 | |
| 	for i := 0; i < len(e.decodeMap); i++ {
 | |
| 		e.decodeMap[i] = 0xFF
 | |
| 	}
 | |
| 	for i := 0; i < len(encoder); i++ {
 | |
| 		e.decodeMap[asciiToLower(encoder[i])] = byte(i)
 | |
| 		e.decodeMap[asciiToUpper(encoder[i])] = byte(i)
 | |
| 	}
 | |
| 	return e
 | |
| }
 | |
| 
 | |
| func asciiToLower(c byte) byte {
 | |
| 	if c >= 'A' && c <= 'Z' {
 | |
| 		return c + 32
 | |
| 	}
 | |
| 	return c
 | |
| }
 | |
| 
 | |
| func asciiToUpper(c byte) byte {
 | |
| 	if c >= 'a' && c <= 'z' {
 | |
| 		return c - 32
 | |
| 	}
 | |
| 	return c
 | |
| }
 | |
| 
 | |
| // WithPadding creates a new encoding identical to enc except
 | |
| // with a specified padding character, or NoPadding to disable padding.
 | |
| func (enc Encoding) WithPadding(padding rune) *Encoding {
 | |
| 	enc.padChar = padding
 | |
| 	return &enc
 | |
| }
 | |
| 
 | |
| // StdEncoding is the standard base32 encoding, as defined in
 | |
| // RFC 4648.
 | |
| var StdEncoding = NewEncodingCI(encodeStd)
 | |
| 
 | |
| // HexEncoding is the “Extended Hex Alphabet” defined in RFC 4648.
 | |
| // It is typically used in DNS.
 | |
| var HexEncoding = NewEncodingCI(encodeHex)
 | |
| 
 | |
| var RawStdEncoding = NewEncodingCI(encodeStd).WithPadding(NoPadding)
 | |
| var RawHexEncoding = NewEncodingCI(encodeHex).WithPadding(NoPadding)
 | |
| 
 | |
| /*
 | |
|  * Encoder
 | |
|  */
 | |
| 
 | |
| // Encode encodes src using the encoding enc, writing
 | |
| // EncodedLen(len(src)) bytes to dst.
 | |
| //
 | |
| // The encoding pads the output to a multiple of 8 bytes,
 | |
| // so Encode is not appropriate for use on individual blocks
 | |
| // of a large data stream. Use NewEncoder() instead.
 | |
| func (enc *Encoding) Encode(dst, src []byte) {
 | |
| 	if len(src) == 0 {
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	// Unpack 8x 5-bit source blocks into a 5 byte
 | |
| 	// destination quantum
 | |
| 	for len(src) > 4 {
 | |
| 		dst[7] = enc.encode[src[4]&0x1F]
 | |
| 		dst[6] = enc.encode[(src[4]>>5)|(src[3]<<3)&0x1F]
 | |
| 		dst[5] = enc.encode[(src[3]>>2)&0x1F]
 | |
| 		dst[4] = enc.encode[(src[3]>>7)|(src[2]<<1)&0x1F]
 | |
| 		dst[3] = enc.encode[((src[2]>>4)|(src[1]<<4))&0x1F]
 | |
| 		dst[2] = enc.encode[(src[1]>>1)&0x1F]
 | |
| 		dst[1] = enc.encode[((src[1]>>6)|(src[0]<<2))&0x1F]
 | |
| 		dst[0] = enc.encode[src[0]>>3]
 | |
| 		src = src[5:]
 | |
| 		dst = dst[8:]
 | |
| 	}
 | |
| 
 | |
| 	var carry byte
 | |
| 
 | |
| 	switch len(src) {
 | |
| 	case 4:
 | |
| 		dst[6] = enc.encode[(src[3]<<3)&0x1F]
 | |
| 		dst[5] = enc.encode[(src[3]>>2)&0x1F]
 | |
| 		carry = src[3] >> 7
 | |
| 		fallthrough
 | |
| 	case 3:
 | |
| 		dst[4] = enc.encode[carry|(src[2]<<1)&0x1F]
 | |
| 		carry = (src[2] >> 4) & 0x1F
 | |
| 		fallthrough
 | |
| 	case 2:
 | |
| 		dst[3] = enc.encode[carry|(src[1]<<4)&0x1F]
 | |
| 		dst[2] = enc.encode[(src[1]>>1)&0x1F]
 | |
| 		carry = (src[1] >> 6) & 0x1F
 | |
| 		fallthrough
 | |
| 	case 1:
 | |
| 		dst[1] = enc.encode[carry|(src[0]<<2)&0x1F]
 | |
| 		dst[0] = enc.encode[src[0]>>3]
 | |
| 	case 0:
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	if enc.padChar != NoPadding {
 | |
| 		dst[7] = byte(enc.padChar)
 | |
| 		if len(src) < 4 {
 | |
| 			dst[6] = byte(enc.padChar)
 | |
| 			dst[5] = byte(enc.padChar)
 | |
| 			if len(src) < 3 {
 | |
| 				dst[4] = byte(enc.padChar)
 | |
| 				if len(src) < 2 {
 | |
| 					dst[3] = byte(enc.padChar)
 | |
| 					dst[2] = byte(enc.padChar)
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // EncodeToString returns the base32 encoding of src.
 | |
| func (enc *Encoding) EncodeToString(src []byte) string {
 | |
| 	buf := make([]byte, enc.EncodedLen(len(src)))
 | |
| 	enc.Encode(buf, src)
 | |
| 	return string(buf)
 | |
| }
 | |
| 
 | |
| type encoder struct {
 | |
| 	err  error
 | |
| 	enc  *Encoding
 | |
| 	w    io.Writer
 | |
| 	buf  [5]byte    // buffered data waiting to be encoded
 | |
| 	nbuf int        // number of bytes in buf
 | |
| 	out  [1024]byte // output buffer
 | |
| }
 | |
| 
 | |
| func (e *encoder) Write(p []byte) (n int, err error) {
 | |
| 	if e.err != nil {
 | |
| 		return 0, e.err
 | |
| 	}
 | |
| 
 | |
| 	// Leading fringe.
 | |
| 	if e.nbuf > 0 {
 | |
| 		var i int
 | |
| 		for i = 0; i < len(p) && e.nbuf < 5; i++ {
 | |
| 			e.buf[e.nbuf] = p[i]
 | |
| 			e.nbuf++
 | |
| 		}
 | |
| 		n += i
 | |
| 		p = p[i:]
 | |
| 		if e.nbuf < 5 {
 | |
| 			return
 | |
| 		}
 | |
| 		e.enc.Encode(e.out[0:], e.buf[0:])
 | |
| 		if _, e.err = e.w.Write(e.out[0:8]); e.err != nil {
 | |
| 			return n, e.err
 | |
| 		}
 | |
| 		e.nbuf = 0
 | |
| 	}
 | |
| 
 | |
| 	// Large interior chunks.
 | |
| 	for len(p) >= 5 {
 | |
| 		nn := len(e.out) / 8 * 5
 | |
| 		if nn > len(p) {
 | |
| 			nn = len(p)
 | |
| 			nn -= nn % 5
 | |
| 		}
 | |
| 		e.enc.Encode(e.out[0:], p[0:nn])
 | |
| 		if _, e.err = e.w.Write(e.out[0 : nn/5*8]); e.err != nil {
 | |
| 			return n, e.err
 | |
| 		}
 | |
| 		n += nn
 | |
| 		p = p[nn:]
 | |
| 	}
 | |
| 
 | |
| 	// Trailing fringe.
 | |
| 	//lint:ignore S1001 fixed-length 5-byte slice
 | |
| 	for i := 0; i < len(p); i++ {
 | |
| 		e.buf[i] = p[i]
 | |
| 	}
 | |
| 	e.nbuf = len(p)
 | |
| 	n += len(p)
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // Close flushes any pending output from the encoder.
 | |
| // It is an error to call Write after calling Close.
 | |
| func (e *encoder) Close() error {
 | |
| 	// If there's anything left in the buffer, flush it out
 | |
| 	if e.err == nil && e.nbuf > 0 {
 | |
| 		e.enc.Encode(e.out[0:], e.buf[0:e.nbuf])
 | |
| 		e.nbuf = 0
 | |
| 		_, e.err = e.w.Write(e.out[0:8])
 | |
| 	}
 | |
| 	return e.err
 | |
| }
 | |
| 
 | |
| // NewEncoder returns a new base32 stream encoder. Data written to
 | |
| // the returned writer will be encoded using enc and then written to w.
 | |
| // Base32 encodings operate in 5-byte blocks; when finished
 | |
| // writing, the caller must Close the returned encoder to flush any
 | |
| // partially written blocks.
 | |
| func NewEncoder(enc *Encoding, w io.Writer) io.WriteCloser {
 | |
| 	return &encoder{enc: enc, w: w}
 | |
| }
 | |
| 
 | |
| // EncodedLen returns the length in bytes of the base32 encoding
 | |
| // of an input buffer of length n.
 | |
| func (enc *Encoding) EncodedLen(n int) int {
 | |
| 	if enc.padChar == NoPadding {
 | |
| 		return (n*8 + 4) / 5 // minimum # chars at 5 bits per char
 | |
| 	}
 | |
| 	return (n + 4) / 5 * 8
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Decoder
 | |
|  */
 | |
| 
 | |
| type CorruptInputError int64
 | |
| 
 | |
| func (e CorruptInputError) Error() string {
 | |
| 	return "illegal base32 data at input byte " + strconv.FormatInt(int64(e), 10)
 | |
| }
 | |
| 
 | |
| // decode is like Decode but returns an additional 'end' value, which
 | |
| // indicates if end-of-message padding was encountered and thus any
 | |
| // additional data is an error. This method assumes that src has been
 | |
| // stripped of all supported whitespace ('\r' and '\n').
 | |
| func (enc *Encoding) decode(dst, src []byte) (n int, end bool, err error) {
 | |
| 	olen := len(src)
 | |
| 	for len(src) > 0 && !end {
 | |
| 		// Decode quantum using the base32 alphabet
 | |
| 		var dbuf [8]byte
 | |
| 		dlen := 8
 | |
| 
 | |
| 		for j := 0; j < 8; {
 | |
| 			if len(src) == 0 {
 | |
| 				if enc.padChar != NoPadding {
 | |
| 					return n, false, CorruptInputError(olen - len(src) - j)
 | |
| 				}
 | |
| 				dlen = j
 | |
| 				break
 | |
| 			}
 | |
| 			in := src[0]
 | |
| 			src = src[1:]
 | |
| 			if in == byte(enc.padChar) && j >= 2 && len(src) < 8 {
 | |
| 				if enc.padChar == NoPadding {
 | |
| 					return n, false, CorruptInputError(olen)
 | |
| 				}
 | |
| 
 | |
| 				// We've reached the end and there's padding
 | |
| 				if len(src)+j < 8-1 {
 | |
| 					// not enough padding
 | |
| 					return n, false, CorruptInputError(olen)
 | |
| 				}
 | |
| 				for k := 0; k < 8-1-j; k++ {
 | |
| 					if len(src) > k && src[k] != byte(enc.padChar) {
 | |
| 						// incorrect padding
 | |
| 						return n, false, CorruptInputError(olen - len(src) + k - 1)
 | |
| 					}
 | |
| 				}
 | |
| 				dlen, end = j, true
 | |
| 				// 7, 5 and 2 are not valid padding lengths, and so 1, 3 and 6 are not
 | |
| 				// valid dlen values. See RFC 4648 Section 6 "Base 32 Encoding" listing
 | |
| 				// the five valid padding lengths, and Section 9 "Illustrations and
 | |
| 				// Examples" for an illustration for how the 1st, 3rd and 6th base32
 | |
| 				// src bytes do not yield enough information to decode a dst byte.
 | |
| 				if dlen == 1 || dlen == 3 || dlen == 6 {
 | |
| 					return n, false, CorruptInputError(olen - len(src) - 1)
 | |
| 				}
 | |
| 				break
 | |
| 			}
 | |
| 			dbuf[j] = enc.decodeMap[in]
 | |
| 			if dbuf[j] == 0xFF {
 | |
| 				return n, false, CorruptInputError(olen - len(src) - 1)
 | |
| 			}
 | |
| 			j++
 | |
| 		}
 | |
| 
 | |
| 		// Pack 8x 5-bit source blocks into 5 byte destination
 | |
| 		// quantum
 | |
| 		switch dlen {
 | |
| 		case 8:
 | |
| 			dst[4] = dbuf[6]<<5 | dbuf[7]
 | |
| 			fallthrough
 | |
| 		case 7:
 | |
| 			dst[3] = dbuf[4]<<7 | dbuf[5]<<2 | dbuf[6]>>3
 | |
| 			fallthrough
 | |
| 		case 5:
 | |
| 			dst[2] = dbuf[3]<<4 | dbuf[4]>>1
 | |
| 			fallthrough
 | |
| 		case 4:
 | |
| 			dst[1] = dbuf[1]<<6 | dbuf[2]<<1 | dbuf[3]>>4
 | |
| 			fallthrough
 | |
| 		case 2:
 | |
| 			dst[0] = dbuf[0]<<3 | dbuf[1]>>2
 | |
| 		}
 | |
| 
 | |
| 		if len(dst) > 5 {
 | |
| 			dst = dst[5:]
 | |
| 		}
 | |
| 
 | |
| 		switch dlen {
 | |
| 		case 2:
 | |
| 			n += 1
 | |
| 		case 4:
 | |
| 			n += 2
 | |
| 		case 5:
 | |
| 			n += 3
 | |
| 		case 7:
 | |
| 			n += 4
 | |
| 		case 8:
 | |
| 			n += 5
 | |
| 		}
 | |
| 	}
 | |
| 	return n, end, nil
 | |
| }
 | |
| 
 | |
| // Decode decodes src using the encoding enc. It writes at most
 | |
| // DecodedLen(len(src)) bytes to dst and returns the number of bytes
 | |
| // written. If src contains invalid base32 data, it will return the
 | |
| // number of bytes successfully written and CorruptInputError.
 | |
| // New line characters (\r and \n) are ignored.
 | |
| func (enc *Encoding) Decode(dst, s []byte) (n int, err error) {
 | |
| 	// FIXME: if dst is the same as s use decodeInPlace
 | |
| 	stripped := make([]byte, 0, len(s))
 | |
| 	for _, c := range s {
 | |
| 		if c != '\r' && c != '\n' {
 | |
| 			stripped = append(stripped, c)
 | |
| 		}
 | |
| 	}
 | |
| 	n, _, err = enc.decode(dst, stripped)
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func (enc *Encoding) decodeInPlace(strb []byte) (n int, err error) {
 | |
| 	off := 0
 | |
| 	for _, b := range strb {
 | |
| 		if b == '\n' || b == '\r' {
 | |
| 			continue
 | |
| 		}
 | |
| 		strb[off] = b
 | |
| 		off++
 | |
| 	}
 | |
| 	n, _, err = enc.decode(strb, strb[:off])
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // DecodeString returns the bytes represented by the base32 string s.
 | |
| func (enc *Encoding) DecodeString(s string) ([]byte, error) {
 | |
| 	strb := []byte(s)
 | |
| 	n, err := enc.decodeInPlace(strb)
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	return strb[:n], nil
 | |
| }
 | |
| 
 | |
| type decoder struct {
 | |
| 	err    error
 | |
| 	enc    *Encoding
 | |
| 	r      io.Reader
 | |
| 	end    bool       // saw end of message
 | |
| 	buf    [1024]byte // leftover input
 | |
| 	nbuf   int
 | |
| 	out    []byte // leftover decoded output
 | |
| 	outbuf [1024 / 8 * 5]byte
 | |
| }
 | |
| 
 | |
| func (d *decoder) Read(p []byte) (n int, err error) {
 | |
| 	if d.err != nil {
 | |
| 		return 0, d.err
 | |
| 	}
 | |
| 
 | |
| 	// Use leftover decoded output from last read.
 | |
| 	if len(d.out) > 0 {
 | |
| 		n = copy(p, d.out)
 | |
| 		d.out = d.out[n:]
 | |
| 		return n, nil
 | |
| 	}
 | |
| 
 | |
| 	// Read a chunk.
 | |
| 	nn := len(p) / 5 * 8
 | |
| 	if nn < 8 {
 | |
| 		nn = 8
 | |
| 	}
 | |
| 	if nn > len(d.buf) {
 | |
| 		nn = len(d.buf)
 | |
| 	}
 | |
| 	nn, d.err = io.ReadAtLeast(d.r, d.buf[d.nbuf:nn], 8-d.nbuf)
 | |
| 	d.nbuf += nn
 | |
| 	if d.nbuf < 8 {
 | |
| 		return 0, d.err
 | |
| 	}
 | |
| 
 | |
| 	// Decode chunk into p, or d.out and then p if p is too small.
 | |
| 	nr := d.nbuf / 8 * 8
 | |
| 	nw := d.nbuf / 8 * 5
 | |
| 	if nw > len(p) {
 | |
| 		nw, d.end, d.err = d.enc.decode(d.outbuf[0:], d.buf[0:nr])
 | |
| 		d.out = d.outbuf[0:nw]
 | |
| 		n = copy(p, d.out)
 | |
| 		d.out = d.out[n:]
 | |
| 	} else {
 | |
| 		n, d.end, d.err = d.enc.decode(p, d.buf[0:nr])
 | |
| 	}
 | |
| 	d.nbuf -= nr
 | |
| 	for i := 0; i < d.nbuf; i++ {
 | |
| 		d.buf[i] = d.buf[i+nr]
 | |
| 	}
 | |
| 
 | |
| 	if d.err == nil {
 | |
| 		d.err = err
 | |
| 	}
 | |
| 	return n, d.err
 | |
| }
 | |
| 
 | |
| type newlineFilteringReader struct {
 | |
| 	wrapped io.Reader
 | |
| }
 | |
| 
 | |
| func (r *newlineFilteringReader) Read(p []byte) (int, error) {
 | |
| 	n, err := r.wrapped.Read(p)
 | |
| 	for n > 0 {
 | |
| 		offset := 0
 | |
| 		for i, b := range p[0:n] {
 | |
| 			if b != '\r' && b != '\n' {
 | |
| 				if i != offset {
 | |
| 					p[offset] = b
 | |
| 				}
 | |
| 				offset++
 | |
| 			}
 | |
| 		}
 | |
| 		if offset > 0 {
 | |
| 			return offset, err
 | |
| 		}
 | |
| 		// Previous buffer entirely whitespace, read again
 | |
| 		n, err = r.wrapped.Read(p)
 | |
| 	}
 | |
| 	return n, err
 | |
| }
 | |
| 
 | |
| // NewDecoder constructs a new base32 stream decoder.
 | |
| func NewDecoder(enc *Encoding, r io.Reader) io.Reader {
 | |
| 	return &decoder{enc: enc, r: &newlineFilteringReader{r}}
 | |
| }
 | |
| 
 | |
| // DecodedLen returns the maximum length in bytes of the decoded data
 | |
| // corresponding to n bytes of base32-encoded data.
 | |
| func (enc *Encoding) DecodedLen(n int) int {
 | |
| 	if enc.padChar == NoPadding {
 | |
| 		return (n*5 + 7) / 8
 | |
| 	}
 | |
| 
 | |
| 	return n / 8 * 5
 | |
| }
 |