 065dddf8d5
			
		
	
	065dddf8d5
	
	
	
		
			
			- Add FUTURE_DEVELOPMENT.md with comprehensive v2 protocol specification - Add MCP integration design and implementation foundation - Add infrastructure and deployment configurations - Update system architecture for v2 evolution 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
		
			
				
	
	
		
			517 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			517 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #!/usr/bin/env python3
 | |
| """
 | |
| BZZZ MCP Integration Example: Collaborative Code Review
 | |
| ======================================================
 | |
| 
 | |
| This example demonstrates how GPT-4 agents collaborate through the BZZZ MCP 
 | |
| integration to perform a comprehensive code review.
 | |
| 
 | |
| Scenario: A pull request requires review from multiple specialized agents:
 | |
| - Architect Agent: Reviews system design and architecture implications
 | |
| - Security Agent: Analyzes security vulnerabilities
 | |
| - Performance Agent: Evaluates performance impact
 | |
| - Documentation Agent: Ensures proper documentation
 | |
| 
 | |
| The agents coordinate through BZZZ semantic addressing and threaded conversations.
 | |
| """
 | |
| 
 | |
| import asyncio
 | |
| import json
 | |
| import os
 | |
| import sys
 | |
| from typing import Dict, List, Any, Optional
 | |
| from dataclasses import dataclass
 | |
| from mcp import ClientSession, StdioServerParameters
 | |
| from mcp.client.stdio import stdio_client
 | |
| 
 | |
| # Add the parent directory to the path to import BZZZ modules
 | |
| sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
 | |
| 
 | |
| @dataclass
 | |
| class CodeReviewTask:
 | |
|     """Represents a code review task"""
 | |
|     repository: str
 | |
|     pull_request_number: int
 | |
|     title: str
 | |
|     description: str
 | |
|     files_changed: List[str]
 | |
|     lines_of_code: int
 | |
|     complexity_score: float
 | |
|     security_risk: str  # low, medium, high
 | |
|     
 | |
| @dataclass  
 | |
| class AgentRole:
 | |
|     """Defines an agent role and its responsibilities"""
 | |
|     name: str
 | |
|     specialization: str
 | |
|     capabilities: List[str]
 | |
|     system_prompt: str
 | |
| 
 | |
| class CollaborativeReviewOrchestrator:
 | |
|     """Orchestrates collaborative code review using BZZZ MCP integration"""
 | |
|     
 | |
|     def __init__(self):
 | |
|         self.mcp_session: Optional[ClientSession] = None
 | |
|         self.agents: Dict[str, AgentRole] = {}
 | |
|         self.active_threads: Dict[str, Dict] = {}
 | |
|         
 | |
|     async def initialize(self):
 | |
|         """Initialize MCP connection to BZZZ server"""
 | |
|         # Connect to the BZZZ MCP server
 | |
|         server_params = StdioServerParameters(
 | |
|             command="node",
 | |
|             args=["/home/tony/chorus/project-queues/active/BZZZ/mcp-server/dist/index.js"]
 | |
|         )
 | |
|         
 | |
|         self.mcp_session = await stdio_client(server_params)
 | |
|         print("✅ Connected to BZZZ MCP Server")
 | |
|         
 | |
|         # Define agent roles
 | |
|         self.define_agent_roles()
 | |
|         
 | |
|     def define_agent_roles(self):
 | |
|         """Define the specialized agent roles for code review"""
 | |
|         self.agents = {
 | |
|             "architect": AgentRole(
 | |
|                 name="architect",
 | |
|                 specialization="system_architecture", 
 | |
|                 capabilities=["system_design", "architecture_review", "scalability_analysis"],
 | |
|                 system_prompt="""You are a senior software architect reviewing code changes.
 | |
|                 Focus on: architectural consistency, design patterns, system boundaries,
 | |
|                 scalability implications, and integration concerns."""
 | |
|             ),
 | |
|             "security": AgentRole(
 | |
|                 name="security_expert",
 | |
|                 specialization="security_analysis",
 | |
|                 capabilities=["security_review", "vulnerability_analysis", "threat_modeling"],
 | |
|                 system_prompt="""You are a security expert reviewing code for vulnerabilities.
 | |
|                 Focus on: input validation, authentication, authorization, data protection,
 | |
|                 injection attacks, and secure coding practices."""
 | |
|             ),
 | |
|             "performance": AgentRole(
 | |
|                 name="performance_expert", 
 | |
|                 specialization="performance_optimization",
 | |
|                 capabilities=["performance_analysis", "optimization", "profiling"],
 | |
|                 system_prompt="""You are a performance expert reviewing code efficiency.
 | |
|                 Focus on: algorithmic complexity, memory usage, database queries,
 | |
|                 caching strategies, and performance bottlenecks."""
 | |
|             ),
 | |
|             "documentation": AgentRole(
 | |
|                 name="documentation_specialist",
 | |
|                 specialization="technical_writing",
 | |
|                 capabilities=["documentation_review", "api_documentation", "code_comments"],
 | |
|                 system_prompt="""You are a documentation specialist ensuring code clarity.
 | |
|                 Focus on: code comments, API documentation, README updates,
 | |
|                 inline documentation, and knowledge transfer."""
 | |
|             )
 | |
|         }
 | |
| 
 | |
|     async def start_collaborative_review(self, task: CodeReviewTask) -> Dict[str, Any]:
 | |
|         """Start a collaborative review process for the given task"""
 | |
|         print(f"🔍 Starting collaborative review for PR #{task.pull_request_number}")
 | |
|         
 | |
|         # Step 1: Announce agents to BZZZ network
 | |
|         await self.announce_agents()
 | |
|         
 | |
|         # Step 2: Create semantic addresses for the review
 | |
|         review_address = f"bzzz://*:*@{task.repository}:pr{task.pull_request_number}/review"
 | |
|         
 | |
|         # Step 3: Determine required agent roles based on task characteristics
 | |
|         required_roles = self.determine_required_roles(task)
 | |
|         print(f"📋 Required roles: {', '.join(required_roles)}")
 | |
|         
 | |
|         # Step 4: Create collaborative thread
 | |
|         thread_id = await self.create_review_thread(task, required_roles)
 | |
|         print(f"💬 Created review thread: {thread_id}")
 | |
|         
 | |
|         # Step 5: Coordinate the review process
 | |
|         review_results = await self.coordinate_review(thread_id, task, required_roles)
 | |
|         
 | |
|         # Step 6: Generate final review summary
 | |
|         final_summary = await self.generate_review_summary(thread_id, review_results)
 | |
|         
 | |
|         print("✅ Collaborative review completed")
 | |
|         return final_summary
 | |
| 
 | |
|     async def announce_agents(self):
 | |
|         """Announce all agent roles to the BZZZ network"""
 | |
|         if not self.mcp_session:
 | |
|             raise RuntimeError("MCP session not initialized")
 | |
|             
 | |
|         for role_name, role in self.agents.items():
 | |
|             result = await self.mcp_session.call_tool(
 | |
|                 "bzzz_announce",
 | |
|                 {
 | |
|                     "agent_id": f"review_agent_{role_name}",
 | |
|                     "role": role.name,
 | |
|                     "capabilities": role.capabilities,
 | |
|                     "specialization": role.specialization,
 | |
|                     "max_tasks": 2
 | |
|                 }
 | |
|             )
 | |
|             print(f"📡 Announced {role_name} agent: {result.content[0].text}")
 | |
| 
 | |
|     def determine_required_roles(self, task: CodeReviewTask) -> List[str]:
 | |
|         """Determine which agent roles are needed based on task characteristics"""
 | |
|         required = ["architect"]  # Architect always participates
 | |
|         
 | |
|         # Add security expert for medium/high risk changes
 | |
|         if task.security_risk in ["medium", "high"]:
 | |
|             required.append("security")
 | |
|             
 | |
|         # Add performance expert for large/complex changes  
 | |
|         if task.lines_of_code > 500 or task.complexity_score > 7.0:
 | |
|             required.append("performance")
 | |
|             
 | |
|         # Add documentation expert if documentation files changed
 | |
|         doc_files = [f for f in task.files_changed if f.endswith(('.md', '.rst', '.txt'))]
 | |
|         if doc_files or task.lines_of_code > 200:
 | |
|             required.append("documentation")
 | |
|             
 | |
|         return required
 | |
| 
 | |
|     async def create_review_thread(self, task: CodeReviewTask, required_roles: List[str]) -> str:
 | |
|         """Create a threaded conversation for the review"""
 | |
|         if not self.mcp_session:
 | |
|             raise RuntimeError("MCP session not initialized")
 | |
|             
 | |
|         participants = [f"review_agent_{role}" for role in required_roles]
 | |
|         
 | |
|         result = await self.mcp_session.call_tool(
 | |
|             "bzzz_thread", 
 | |
|             {
 | |
|                 "action": "create",
 | |
|                 "topic": f"Code Review: {task.title}",
 | |
|                 "participants": participants
 | |
|             }
 | |
|         )
 | |
|         
 | |
|         response_data = json.loads(result.content[0].text)
 | |
|         return response_data["result"]["thread_id"]
 | |
| 
 | |
|     async def coordinate_review(self, thread_id: str, task: CodeReviewTask, required_roles: List[str]) -> Dict[str, Any]:
 | |
|         """Coordinate the collaborative review process"""
 | |
|         review_results = {}
 | |
|         
 | |
|         # Step 1: Share task context with all agents
 | |
|         await self.share_task_context(thread_id, task)
 | |
|         
 | |
|         # Step 2: Each agent performs their specialized review
 | |
|         for role in required_roles:
 | |
|             print(f"🔍 {role} agent performing review...")
 | |
|             agent_review = await self.conduct_role_specific_review(thread_id, role, task)
 | |
|             review_results[role] = agent_review
 | |
|             
 | |
|         # Step 3: Facilitate cross-agent discussion
 | |
|         discussion_results = await self.facilitate_discussion(thread_id, review_results)
 | |
|         review_results["discussion"] = discussion_results
 | |
|         
 | |
|         # Step 4: Reach consensus on final recommendations
 | |
|         consensus = await self.reach_consensus(thread_id, review_results)
 | |
|         review_results["consensus"] = consensus
 | |
|         
 | |
|         return review_results
 | |
| 
 | |
|     async def share_task_context(self, thread_id: str, task: CodeReviewTask):
 | |
|         """Share the task context with all thread participants"""
 | |
|         if not self.mcp_session:
 | |
|             raise RuntimeError("MCP session not initialized")
 | |
|             
 | |
|         context_message = {
 | |
|             "task": {
 | |
|                 "repository": task.repository,
 | |
|                 "pr_number": task.pull_request_number,
 | |
|                 "title": task.title,
 | |
|                 "description": task.description,
 | |
|                 "files_changed": task.files_changed,
 | |
|                 "lines_of_code": task.lines_of_code,
 | |
|                 "complexity_score": task.complexity_score,
 | |
|                 "security_risk": task.security_risk
 | |
|             },
 | |
|             "review_guidelines": {
 | |
|                 "focus_areas": ["correctness", "security", "performance", "maintainability"],
 | |
|                 "severity_levels": ["critical", "major", "minor", "suggestion"],
 | |
|                 "collaboration_expected": True
 | |
|             }
 | |
|         }
 | |
|         
 | |
|         target_address = f"bzzz://*:*@{task.repository}:pr{task.pull_request_number}/context"
 | |
|         
 | |
|         await self.mcp_session.call_tool(
 | |
|             "bzzz_post",
 | |
|             {
 | |
|                 "target_address": target_address,
 | |
|                 "message_type": "task_context",
 | |
|                 "content": context_message,
 | |
|                 "thread_id": thread_id,
 | |
|                 "priority": "high"
 | |
|             }
 | |
|         )
 | |
| 
 | |
|     async def conduct_role_specific_review(self, thread_id: str, role: str, task: CodeReviewTask) -> Dict[str, Any]:
 | |
|         """Simulate a role-specific review (in real implementation, this would call GPT-4)"""
 | |
|         print(f"   Analyzing {len(task.files_changed)} files for {role} concerns...")
 | |
|         
 | |
|         # Simulate different review outcomes based on role
 | |
|         review_data = {
 | |
|             "architect": {
 | |
|                 "findings": [
 | |
|                     "Code follows established patterns",
 | |
|                     "Consider extracting common functionality into utility class",
 | |
|                     "Database schema changes require migration script"
 | |
|                 ],
 | |
|                 "severity": "minor",
 | |
|                 "recommendations": ["Refactor common code", "Add migration script"],
 | |
|                 "approval_status": "approved_with_suggestions"
 | |
|             },
 | |
|             "security": {
 | |
|                 "findings": [
 | |
|                     "Input validation implemented correctly",
 | |
|                     "SQL injection protection in place",
 | |
|                     "Consider adding rate limiting for API endpoints"
 | |
|                 ],
 | |
|                 "severity": "minor",
 | |
|                 "recommendations": ["Add rate limiting", "Update security documentation"],
 | |
|                 "approval_status": "approved_with_suggestions"
 | |
|             },
 | |
|             "performance": {
 | |
|                 "findings": [
 | |
|                     "Database queries are optimized",
 | |
|                     "Memory usage looks reasonable", 
 | |
|                     "Consider caching for frequently accessed data"
 | |
|                 ],
 | |
|                 "severity": "suggestion",
 | |
|                 "recommendations": ["Implement caching strategy", "Add performance monitoring"],
 | |
|                 "approval_status": "approved"
 | |
|             },
 | |
|             "documentation": {
 | |
|                 "findings": [
 | |
|                     "API documentation updated",
 | |
|                     "Some complex functions lack comments",
 | |
|                     "README needs update for new features"
 | |
|                 ],
 | |
|                 "severity": "minor", 
 | |
|                 "recommendations": ["Add function comments", "Update README"],
 | |
|                 "approval_status": "approved_with_suggestions"
 | |
|             }
 | |
|         }.get(role, {})
 | |
|         
 | |
|         # Post review findings to the thread
 | |
|         await self.post_review_findings(thread_id, role, review_data, task)
 | |
|         
 | |
|         return review_data
 | |
| 
 | |
|     async def post_review_findings(self, thread_id: str, role: str, review_data: Dict, task: CodeReviewTask):
 | |
|         """Post review findings to the collaborative thread"""
 | |
|         if not self.mcp_session:
 | |
|             raise RuntimeError("MCP session not initialized")
 | |
|             
 | |
|         message_content = {
 | |
|             "reviewer": role,
 | |
|             "review_type": "initial_review",
 | |
|             "findings": review_data.get("findings", []),
 | |
|             "severity": review_data.get("severity", "info"),
 | |
|             "recommendations": review_data.get("recommendations", []),
 | |
|             "approval_status": review_data.get("approval_status", "pending"),
 | |
|             "timestamp": "2025-01-07T12:00:00Z"
 | |
|         }
 | |
|         
 | |
|         target_address = f"bzzz://*:{role}@{task.repository}:pr{task.pull_request_number}/findings"
 | |
|         
 | |
|         await self.mcp_session.call_tool(
 | |
|             "bzzz_post",
 | |
|             {
 | |
|                 "target_address": target_address,
 | |
|                 "message_type": "review_findings",
 | |
|                 "content": message_content,
 | |
|                 "thread_id": thread_id,
 | |
|                 "priority": "medium"
 | |
|             }
 | |
|         )
 | |
| 
 | |
|     async def facilitate_discussion(self, thread_id: str, review_results: Dict[str, Any]) -> Dict[str, Any]:
 | |
|         """Facilitate cross-agent discussion about conflicting or overlapping concerns"""
 | |
|         print("💭 Facilitating inter-agent discussion...")
 | |
|         
 | |
|         # Identify areas where multiple agents have concerns
 | |
|         common_concerns = self.identify_common_concerns(review_results)
 | |
|         
 | |
|         discussion_points = []
 | |
|         for concern in common_concerns:
 | |
|             discussion_point = {
 | |
|                 "topic": concern["area"],
 | |
|                 "agents_involved": concern["agents"],
 | |
|                 "severity_levels": concern["severities"],
 | |
|                 "proposed_resolution": concern["suggested_approach"]
 | |
|             }
 | |
|             discussion_points.append(discussion_point)
 | |
|             
 | |
|         # Simulate discussion outcomes
 | |
|         discussion_results = {
 | |
|             "discussion_points": discussion_points,
 | |
|             "resolved_conflicts": len(discussion_points),
 | |
|             "consensus_reached": True,
 | |
|             "escalation_needed": False
 | |
|         }
 | |
|         
 | |
|         return discussion_results
 | |
| 
 | |
|     def identify_common_concerns(self, review_results: Dict[str, Any]) -> List[Dict]:
 | |
|         """Identify areas where multiple agents have overlapping concerns"""
 | |
|         # This would analyze the review findings to find common themes
 | |
|         # For demo purposes, return a sample concern
 | |
|         return [
 | |
|             {
 | |
|                 "area": "error_handling",
 | |
|                 "agents": ["architect", "security"],
 | |
|                 "severities": ["minor", "minor"],
 | |
|                 "suggested_approach": "Implement consistent error handling pattern"
 | |
|             }
 | |
|         ]
 | |
| 
 | |
|     async def reach_consensus(self, thread_id: str, review_results: Dict[str, Any]) -> Dict[str, Any]:
 | |
|         """Facilitate consensus-building among reviewing agents"""
 | |
|         print("🤝 Building consensus on final recommendations...")
 | |
|         
 | |
|         # Aggregate all findings and recommendations
 | |
|         all_findings = []
 | |
|         all_recommendations = []
 | |
|         approval_statuses = []
 | |
|         
 | |
|         for role, results in review_results.items():
 | |
|             if role == "discussion":
 | |
|                 continue
 | |
|             all_findings.extend(results.get("findings", []))
 | |
|             all_recommendations.extend(results.get("recommendations", []))
 | |
|             approval_statuses.append(results.get("approval_status", "pending"))
 | |
|             
 | |
|         # Determine overall approval status
 | |
|         if all(status == "approved" for status in approval_statuses):
 | |
|             overall_status = "approved"
 | |
|         elif any(status == "rejected" for status in approval_statuses):
 | |
|             overall_status = "rejected"
 | |
|         else:
 | |
|             overall_status = "approved_with_changes"
 | |
|             
 | |
|         consensus = {
 | |
|             "overall_approval": overall_status,
 | |
|             "critical_issues": 0,
 | |
|             "major_issues": 1,
 | |
|             "minor_issues": 4,
 | |
|             "suggestions": 3,
 | |
|             "consolidated_recommendations": list(set(all_recommendations)),
 | |
|             "requires_changes": overall_status != "approved",
 | |
|             "consensus_confidence": 0.95
 | |
|         }
 | |
|         
 | |
|         return consensus
 | |
| 
 | |
|     async def generate_review_summary(self, thread_id: str, review_results: Dict[str, Any]) -> Dict[str, Any]:
 | |
|         """Generate a comprehensive review summary"""
 | |
|         if not self.mcp_session:
 | |
|             raise RuntimeError("MCP session not initialized")
 | |
|             
 | |
|         # Use thread summarization tool
 | |
|         summary_result = await self.mcp_session.call_tool(
 | |
|             "bzzz_thread",
 | |
|             {
 | |
|                 "action": "summarize",
 | |
|                 "thread_id": thread_id
 | |
|             }
 | |
|         )
 | |
|         
 | |
|         thread_summary = json.loads(summary_result.content[0].text)
 | |
|         
 | |
|         final_summary = {
 | |
|             "review_id": f"review_{thread_id}",
 | |
|             "overall_status": review_results.get("consensus", {}).get("overall_approval", "pending"),
 | |
|             "participating_agents": list(self.agents.keys()),
 | |
|             "thread_summary": thread_summary,
 | |
|             "key_findings": self.extract_key_findings(review_results),
 | |
|             "action_items": self.generate_action_items(review_results),
 | |
|             "approval_required": review_results.get("consensus", {}).get("requires_changes", True),
 | |
|             "estimated_fix_time": "2-4 hours",
 | |
|             "review_completed_at": "2025-01-07T12:30:00Z"
 | |
|         }
 | |
|         
 | |
|         return final_summary
 | |
| 
 | |
|     def extract_key_findings(self, review_results: Dict[str, Any]) -> List[str]:
 | |
|         """Extract the most important findings from all agent reviews"""
 | |
|         key_findings = []
 | |
|         for role, results in review_results.items():
 | |
|             if role in ["discussion", "consensus"]:
 | |
|                 continue
 | |
|             findings = results.get("findings", [])
 | |
|             # Take first 2 findings from each agent as key findings
 | |
|             key_findings.extend(findings[:2])
 | |
|         return key_findings
 | |
| 
 | |
|     def generate_action_items(self, review_results: Dict[str, Any]) -> List[Dict]:
 | |
|         """Generate actionable items based on review findings"""
 | |
|         action_items = []
 | |
|         consensus = review_results.get("consensus", {})
 | |
|         
 | |
|         for rec in consensus.get("consolidated_recommendations", []):
 | |
|             action_items.append({
 | |
|                 "action": rec,
 | |
|                 "priority": "medium",
 | |
|                 "estimated_effort": "1-2 hours",
 | |
|                 "assignee": "developer"
 | |
|             })
 | |
|             
 | |
|         return action_items
 | |
| 
 | |
|     async def cleanup(self):
 | |
|         """Clean up resources and close connections"""
 | |
|         if self.mcp_session:
 | |
|             await self.mcp_session.close()
 | |
|         print("🧹 Cleaned up MCP session")
 | |
| 
 | |
| 
 | |
| async def main():
 | |
|     """Main example demonstrating collaborative code review"""
 | |
|     
 | |
|     # Sample code review task
 | |
|     task = CodeReviewTask(
 | |
|         repository="bzzz-system",
 | |
|         pull_request_number=123,
 | |
|         title="Add user authentication service",
 | |
|         description="Implements JWT-based authentication with role-based access control",
 | |
|         files_changed=[
 | |
|             "src/auth/service.py",
 | |
|             "src/auth/middleware.py", 
 | |
|             "src/models/user.py",
 | |
|             "tests/test_auth.py",
 | |
|             "docs/api/auth.md"
 | |
|         ],
 | |
|         lines_of_code=450,
 | |
|         complexity_score=6.5,
 | |
|         security_risk="medium"
 | |
|     )
 | |
|     
 | |
|     # Initialize the orchestrator
 | |
|     orchestrator = CollaborativeReviewOrchestrator()
 | |
|     
 | |
|     try:
 | |
|         print("🚀 Initializing BZZZ MCP Collaborative Review Example")
 | |
|         await orchestrator.initialize()
 | |
|         
 | |
|         # Start the collaborative review process
 | |
|         results = await orchestrator.start_collaborative_review(task)
 | |
|         
 | |
|         # Display results
 | |
|         print("\n" + "="*60)
 | |
|         print("📊 COLLABORATIVE REVIEW RESULTS")
 | |
|         print("="*60)
 | |
|         print(json.dumps(results, indent=2))
 | |
|         
 | |
|     except Exception as e:
 | |
|         print(f"❌ Error during collaborative review: {e}")
 | |
|         
 | |
|     finally:
 | |
|         await orchestrator.cleanup()
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     # Run the example
 | |
|     asyncio.run(main()) |