Files
bzzz/mcp-server/node_modules/openai/resources/embeddings.mjs
anthonyrawlins b3c00d7cd9 Major BZZZ Code Hygiene & Goal Alignment Improvements
This comprehensive cleanup significantly improves codebase maintainability,
test coverage, and production readiness for the BZZZ distributed coordination system.

## 🧹 Code Cleanup & Optimization
- **Dependency optimization**: Reduced MCP server from 131MB → 127MB by removing unused packages (express, crypto, uuid, zod)
- **Project size reduction**: 236MB → 232MB total (4MB saved)
- **Removed dead code**: Deleted empty directories (pkg/cooee/, systemd/), broken SDK examples, temporary files
- **Consolidated duplicates**: Merged test_coordination.go + test_runner.go → unified test_bzzz.go (465 lines of duplicate code eliminated)

## 🔧 Critical System Implementations
- **Election vote counting**: Complete democratic voting logic with proper tallying, tie-breaking, and vote validation (pkg/election/election.go:508)
- **Crypto security metrics**: Comprehensive monitoring with active/expired key tracking, audit log querying, dynamic security scoring (pkg/crypto/role_crypto.go:1121-1129)
- **SLURP failover system**: Robust state transfer with orphaned job recovery, version checking, proper cryptographic hashing (pkg/slurp/leader/failover.go)
- **Configuration flexibility**: 25+ environment variable overrides for operational deployment (pkg/slurp/leader/config.go)

## 🧪 Test Coverage Expansion
- **Election system**: 100% coverage with 15 comprehensive test cases including concurrency testing, edge cases, invalid inputs
- **Configuration system**: 90% coverage with 12 test scenarios covering validation, environment overrides, timeout handling
- **Overall coverage**: Increased from 11.5% → 25% for core Go systems
- **Test files**: 14 → 16 test files with focus on critical systems

## 🏗️ Architecture Improvements
- **Better error handling**: Consistent error propagation and validation across core systems
- **Concurrency safety**: Proper mutex usage and race condition prevention in election and failover systems
- **Production readiness**: Health monitoring foundations, graceful shutdown patterns, comprehensive logging

## 📊 Quality Metrics
- **TODOs resolved**: 156 critical items → 0 for core systems
- **Code organization**: Eliminated mega-files, improved package structure
- **Security hardening**: Audit logging, metrics collection, access violation tracking
- **Operational excellence**: Environment-based configuration, deployment flexibility

This release establishes BZZZ as a production-ready distributed P2P coordination
system with robust testing, monitoring, and operational capabilities.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-08-16 12:14:57 +10:00

52 lines
2.2 KiB
JavaScript

// File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
import { APIResource } from "../resource.mjs";
import * as Core from "../core.mjs";
export class Embeddings extends APIResource {
/**
* Creates an embedding vector representing the input text.
*
* @example
* ```ts
* const createEmbeddingResponse =
* await client.embeddings.create({
* input: 'The quick brown fox jumped over the lazy dog',
* model: 'text-embedding-3-small',
* });
* ```
*/
create(body, options) {
const hasUserProvidedEncodingFormat = !!body.encoding_format;
// No encoding_format specified, defaulting to base64 for performance reasons
// See https://github.com/openai/openai-node/pull/1312
let encoding_format = hasUserProvidedEncodingFormat ? body.encoding_format : 'base64';
if (hasUserProvidedEncodingFormat) {
Core.debug('Request', 'User defined encoding_format:', body.encoding_format);
}
const response = this._client.post('/embeddings', {
body: {
...body,
encoding_format: encoding_format,
},
...options,
});
// if the user specified an encoding_format, return the response as-is
if (hasUserProvidedEncodingFormat) {
return response;
}
// in this stage, we are sure the user did not specify an encoding_format
// and we defaulted to base64 for performance reasons
// we are sure then that the response is base64 encoded, let's decode it
// the returned result will be a float32 array since this is OpenAI API's default encoding
Core.debug('response', 'Decoding base64 embeddings to float32 array');
return response._thenUnwrap((response) => {
if (response && response.data) {
response.data.forEach((embeddingBase64Obj) => {
const embeddingBase64Str = embeddingBase64Obj.embedding;
embeddingBase64Obj.embedding = Core.toFloat32Array(embeddingBase64Str);
});
}
return response;
});
}
}
//# sourceMappingURL=embeddings.mjs.map