Here’s a **clean, production-ready system prompt** for that agent: --- **πŸ›‘οΈ System Prompt – β€œSecrets Sentinel” Agent** > **Role & Mission**: > You are the **Secrets Sentinel**, an autonomous security agent tasked with **monitoring all incoming log entries** for any potential leaks of **API keys, passwords, tokens, or other sensitive credentials**. Your primary goal is to **detect and prevent secret exposure** before it propagates further through the system. > > **Core Responsibilities**: > > * **Scan all log streams in real-time** for: > > * API keys (common formats: AWS, GCP, Azure, etc.) > * OAuth tokens > * SSH keys > * Passwords (plain text or encoded) > * JWTs or other bearer tokens > * Database connection strings > * **Immediately flag** any suspicious entries. > * **Classify severity** (e.g., HIGH – AWS root key; MEDIUM – temporary token). > * **Sanitize or redact** leaked secrets before they’re written to persistent storage or shared further. > * **Notify designated security channels or agents** of leaks, providing minimal necessary context. > > **Guidelines**: > > * Never expose the full secret in your alerts β€” redact most of it (e.g., `AKIA************XYZ`). > * Be cautious of **false positives** (e.g., test data, dummy keys); err on the side of safety but include a β€œconfidence score.” > * Respect **privacy and operational integrity**: do not log or store the full value of any detected secret. > * Assume the system may expand; be prepared to recognize **new secret formats** and learn from curator feedback. > > **Behavior Under Edge Cases**: > > * If unsure whether a string is a secret, flag it as **LOW severity** with a note for human review. > * If you detect a high-severity leak, **trigger immediate alerts** and halt propagation of the compromised entry. > > **Your Output**: > > * A **structured alert** (JSON preferred) with: > > * `timestamp` > * `source` (which log/agent) > * `type` of suspected secret > * `redacted_sample` > * `confidence_score` (0–1) > * `recommended_action` (e.g., β€œrevoke key,” β€œrotate password,” β€œignore dummy”) > > **Tone & Style**: > > * Precise, neutral, security-minded. > * Avoid speculation beyond what you can confidently identify. --- ## πŸ“‚ **Version-Controlled `patterns.yaml` Format** This lets you add/update/remove detection patterns **without touching code**. ```yaml version: 1.2 last_updated: 2025-08-02 patterns: AWS_ACCESS_KEY: regex: "AKIA[0-9A-Z]{16}" description: "AWS Access Key ID" severity: HIGH confidence: 0.99 active: true AWS_SECRET_KEY: regex: "(?i)aws(.{0,20})?(?-i)['\"][0-9a-zA-Z\/+]{40}['\"]" description: "AWS Secret Key" severity: HIGH confidence: 0.99 active: true GITHUB_TOKEN: regex: "gh[pousr]_[0-9A-Za-z]{36}" description: "GitHub Personal Access Token" severity: HIGH confidence: 0.97 active: true JWT: regex: "eyJ[A-Za-z0-9_-]+?\\.[A-Za-z0-9._-]+?\\.[A-Za-z0-9._-]+" description: "JSON Web Token" severity: MEDIUM confidence: 0.95 active: true meta: allow_feedback_learning: true require_human_review_above_confidence: 0.8 ``` βœ… **Advantages:** - Regexes are editable without code changes. - Can be versioned in Git for full audit trail. - Can toggle `active: false` for deprecating broken rules. --- ## πŸ–Ό **Flow Diagram (Secrets Sentinel)** **Secrets Flow** ``` β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” Logs Stream β†’β”‚ Secrets β”‚ β”‚ Sentinel β”‚ β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ [Quarantine] [Sanitized Logs] β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β” β”‚High Severityβ”‚ β”‚ Safe Dataβ”‚ β”‚Secrets Only β”‚ β”‚ Storage β”‚ β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ Revocation Hooks β”‚ β”‚ β”‚ (AWS, GitHub, β”‚ β”‚ β”‚ Slack, etc.) β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β”‚ β”Œβ”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β” β”‚ β”‚ Webhooks β”‚ β”‚ β”‚ Key Kill β”‚ β”‚ β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Feedback Loop β”‚ β”‚ (Curator/Human) β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β” β”‚ Meta-Learnerβ”‚ β”‚ (new regex) β”‚ β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β” β”‚ patterns.yamlβ”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ ``` --- ## πŸ§ͺ **Test Harness Script** This script simulates log scanning, quarantining, and revocation. ```python import yaml, json, re from datetime import datetime # --- Load patterns.yaml --- with open("patterns.yaml", "r") as f: patterns_config = yaml.safe_load(f) PATTERNS = patterns_config["patterns"] QUARANTINE = [] SANITIZED_LOGS = [] def redact(secret): return secret[:4] + "*" * (len(secret) - 7) + secret[-3:] def scan_log(log_line, log_id, source_agent): alerts = [] for secret_type, props in PATTERNS.items(): if not props.get("active", True): continue match = re.search(props["regex"], log_line) if match: secret = match.group(0) severity = props["severity"] alert = { "timestamp": datetime.utcnow().isoformat() + "Z", "source_agent": source_agent, "log_line_id": log_id, "secret_type": secret_type, "redacted_sample": redact(secret), "confidence_score": props["confidence"], "severity": severity, "recommended_action": "Revoke key/rotate credentials" if severity == "HIGH" else "Review" } alerts.append(alert) # Quarantine if severity is HIGH if severity == "HIGH": quarantine_log(log_line, f"High severity secret detected: {secret_type}") trigger_revocation(secret_type, redact(secret)) return alerts def quarantine_log(log_line, reason): entry = {"timestamp": datetime.utcnow().isoformat() + "Z", "reason": reason, "log_line": log_line} QUARANTINE.append(entry) print(f"[QUARANTINE] {reason}") def trigger_revocation(secret_type, redacted_sample): # Simulated webhook call print(f"[REVOCATION] Simulated revocation triggered for {secret_type} ({redacted_sample})") def process_logs(logs): for i, log_line in enumerate(logs): alerts = scan_log(log_line, f"log_{i}", "agent_demo") if alerts: print(json.dumps(alerts, indent=2)) else: SANITIZED_LOGS.append(log_line) # --- Test Run --- sample_logs = [ "INFO User logged in successfully", "WARNING Found AWS key AKIA1234567890ABCD in commit", "DEBUG JWT detected eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.fake.fake" ] process_logs(sample_logs) print("\n--- Quarantine Store ---") print(json.dumps(QUARANTINE, indent=2)) ``` βœ… **What this does:** - Reads `patterns.yaml` - Scans logs, prints alerts, quarantines high-severity entries - Simulates revocation calls for AWS/GitHub/Slack - Keeps sanitized logs separate from quarantined logs --- ## βœ… Next Expansions (Optional) - πŸ“¦ **Redis/DB backend** for QUARANTINE instead of memory. - πŸ“‘ **Real webhook integrations** (AWS STS, GitHub API, Slack API). - 🧠 **Feedback ingestion module** (e.g., curator submits: `"false_positive": "AWS_ACCESS_KEY"` β†’ adjusts regex in `patterns.yaml`). - πŸ”„ **Auto-replay from Hyperlog** so Sentinel can retroactively scan old logs with new regex rules. --- πŸ”₯ **production-grade spec**. --- ## πŸ“‚ **1️⃣ Feedback Ingestion Spec** This defines how curators/humans give feedback to the Sentinel so it can **update its detection rules (patterns.yaml)** safely. --- ### πŸ”„ **Feedback Flow** 1. **Curator/Reviewer sees alert** β†’ marks it as: - `false_positive` (regex over-triggered) - `missed_secret` (regex failed to detect) - `uncertain` (needs better regex refinement) 2. **Feedback API** ingests the report: ```json { "alert_id": "log_345", "secret_type": "AWS_ACCESS_KEY", "feedback_type": "false_positive", "evidence": "Key was dummy data: TESTKEY123", "suggested_regex_fix": null } ``` 3. **Meta-Learner** updates rules: - `false_positive` β†’ adds **exceptions** (e.g., allowlist prefixes like `TESTKEY`). - `missed_secret` β†’ drafts **new regex** from evidence (using regex generator or LLM). - Writes changes to **patterns.yaml** under `pending_review`. 4. **Security admin approves** before the new regex is marked `active: true`. --- ### 🧠 **Feedback Schema in YAML** ```yaml pending_updates: - regex_name: AWS_ACCESS_KEY action: modify new_regex: "AKIA[0-9A-Z]{16}(?!TESTKEY)" confidence: 0.82 status: "pending human review" submitted_by: curator_2 timestamp: 2025-08-02T12:40:00Z ``` βœ… This keeps **audit trails** & allows **safe hot updates**. --- ## βš™οΈ **2️⃣ Real AWS/GitHub Webhook Payload Templates** These are **example POST payloads** your Sentinel would send when it detects a leaked secret. --- ### πŸ” **AWS Access Key Revocation** **Endpoint:** `POST https://security.example.com/hooks/aws-revoke` **Payload:** ```json { "event": "secret_leak_detected", "secret_type": "AWS_ACCESS_KEY", "redacted_key": "AKIA****XYZ", "log_reference": "hyperlog:58321", "recommended_action": "Revoke IAM access key immediately", "severity": "HIGH", "timestamp": "2025-08-02T12:45:00Z" } ``` ➑ Your security automation would call AWS CLI or IAM API: ```bash aws iam update-access-key --access-key-id --status Inactive aws iam delete-access-key --access-key-id ``` --- ### πŸ™ **GitHub Token Revocation** **Endpoint:** `POST https://security.example.com/hooks/github-revoke` **Payload:** ```json { "event": "secret_leak_detected", "secret_type": "GITHUB_TOKEN", "redacted_key": "ghp_****abcd", "repository": "repo-name", "log_reference": "hyperlog:58322", "severity": "HIGH", "recommended_action": "Invalidate GitHub token via API", "timestamp": "2025-08-02T12:46:00Z" } ``` ➑ This would tie into GitHub’s [token-scanning API](https://docs.github.com/en/developers/overview/secret-scanning) or use PAT revocation. --- ### πŸ’¬ **Slack Token Revocation** **Endpoint:** `POST https://security.example.com/hooks/slack-revoke` **Payload:** ```json { "event": "secret_leak_detected", "secret_type": "SLACK_TOKEN", "redacted_key": "xoxb****hjk", "workspace": "company-slack", "log_reference": "hyperlog:58323", "severity": "HIGH", "recommended_action": "Revoke Slack bot/user token", "timestamp": "2025-08-02T12:47:00Z" } ``` ➑ Slack Admin API can be used to **revoke** or **rotate**. --- ## πŸ“‘ **3️⃣ Redis or PostgreSQL Quarantine Store** Switching from memory to **persistent storage** means quarantined logs survive restarts. --- ### βœ… **Redis Option (Fast, Volatile)** ```python import redis, json r = redis.Redis(host='localhost', port=6379, decode_responses=True) def quarantine_log(log_line, reason): entry = {"timestamp": datetime.utcnow().isoformat() + "Z", "reason": reason, "log_line": log_line} r.lpush("quarantine", json.dumps(entry)) print(f"[QUARANTINE] Stored in Redis: {reason}") ``` - 🏎 **Pros:** Fast, easy to scale. - ⚠️ **Cons:** Volatile unless persisted (RDB/AOF). --- ### βœ… **PostgreSQL Option (Auditable, Durable)** **Schema:** ```sql CREATE TABLE quarantine ( id SERIAL PRIMARY KEY, timestamp TIMESTAMPTZ NOT NULL, reason TEXT NOT NULL, log_line TEXT NOT NULL, reviewed BOOLEAN DEFAULT FALSE ); ``` **Python Insert:** ```python import psycopg2 conn = psycopg2.connect("dbname=sentinel user=postgres password=secret") cursor = conn.cursor() def quarantine_log(log_line, reason): entry_time = datetime.utcnow().isoformat() + "Z" cursor.execute( "INSERT INTO quarantine (timestamp, reason, log_line) VALUES (%s, %s, %s)", (entry_time, reason, log_line) ) conn.commit() print(f"[QUARANTINE] Stored in PostgreSQL: {reason}") ``` βœ… **Postgres is better for long-term auditing** β€” you can run reports like: - β€œHow many AWS keys leaked this month?” - β€œWhich agents generated the most HIGH-severity quarantines?” --- ## πŸš€ **What’s Next?** We now have: βœ… **Detection β†’ Redaction β†’ Quarantine β†’ Revocation β†’ Feedback β†’ Pattern Evolution** βœ… **patterns.yaml** for versioned regex βœ… **Webhooks** for real-time secret revocation βœ… **Persistent quarantine store** (Redis or Postgres) --- ## πŸ›‘οΈ **Expanded System Prompt for Secrets Sentinel** > **Role & Mission**: > You are the **Secrets Sentinel**, a security-focused agent monitoring all log streams for potential leaks of sensitive information (API keys, passwords, tokens, etc.). Your mission: **detect**, **sanitize**, and **prevent** secret exposure while keeping operations secure and auditable. > > **Core Responsibilities**: > βœ… Scan **all log entries** for API keys, passwords, JWTs, database strings, and private keys. > βœ… **Redact** any detected secrets in-flight before writing them to storage or forwarding. > βœ… **Generate structured alerts** for each detection with relevant metadata. > βœ… **Quarantine** log lines that contain **high-severity** secrets (so they aren’t distributed further). > βœ… Support **continuous learning** by flagging uncertain cases for human/curator review. > > **Secret Detection Targets**: > > - **Cloud Keys** (AWS, GCP, Azure, etc.) > > - **OAuth Tokens** (Bearer, Slack, Discord, GitHub, etc.) > > - **JWTs** (header.payload.signature format) > > - **SSH Private Keys** (`-----BEGIN PRIVATE KEY-----`) > > - **Database Connection Strings** (Postgres, MySQL, MongoDB, etc.) > > - **Generic Passwords** (detected from common prefixes, e.g. `pwd=`, `password:`). > > > **Detection Rules**: > > - Use **regex patterns** for known key formats. > > - Score detections with a **confidence metric** (0–1). > > - If a string doesn’t fully match, classify as **LOW confidence** for review. > > > **Redaction Policy**: > > - Always redact most of the secret (`AKIA************XYZ`). > > - Never store or transmit the **full secret**. > > > **Alert Format (JSON)**: > > ```json > { > "timestamp": "2025-08-02T10:12:34Z", > "source_agent": "agent_42", > "log_line_id": "hyperlog:134593", > "secret_type": "AWS_ACCESS_KEY", > "redacted_sample": "AKIA********XYZ", > "confidence_score": 0.95, > "severity": "HIGH", > "recommended_action": "Revoke AWS key immediately and rotate credentials" > } > ``` > > **Behavior Under Edge Cases**: > > - If unsure: flag as LOW severity with `"recommended_action": "Manual review"`. > > - If a secret is clearly fake (like `TESTKEY123`), still alert but tag as `test_credential: true`. > > > **Tone & Style**: > > - Precise, security-minded, and concise in reporting. > --- ## πŸ“š **Regex Patterns Library (Starter Set)** ```python REGEX_PATTERNS = { "AWS_ACCESS_KEY": r"AKIA[0-9A-Z]{16}", "AWS_SECRET_KEY": r"(?i)aws(.{0,20})?(?-i)['\"][0-9a-zA-Z\/+]{40}['\"]", "GCP_API_KEY": r"AIza[0-9A-Za-z\\-_]{35}", "GITHUB_TOKEN": r"gh[pousr]_[0-9A-Za-z]{36}", "SLACK_TOKEN": r"xox[baprs]-[0-9A-Za-z-]{10,48}", "JWT": r"eyJ[A-Za-z0-9_-]+?\.[A-Za-z0-9._-]+?\.[A-Za-z0-9._-]+", "SSH_PRIVATE_KEY": r"-----BEGIN (RSA|DSA|EC|OPENSSH) PRIVATE KEY-----", "GENERIC_PASSWORD": r"(?:password|pwd|pass|secret)\s*[:=]\s*['\"]?[^\s'\";]+['\"]?", "DB_CONN_STRING": r"(postgres|mysql|mongodb|mssql|redis):\/\/[^\s]+" } ``` --- ## πŸ›  **Python Skeleton Implementation** ```python import re import json from datetime import datetime REGEX_PATTERNS = { "AWS_ACCESS_KEY": r"AKIA[0-9A-Z]{16}", "AWS_SECRET_KEY": r"(?i)aws(.{0,20})?(?-i)['\"][0-9a-zA-Z\/+]{40}['\"]", "GCP_API_KEY": r"AIza[0-9A-Za-z\\-_]{35}", "GITHUB_TOKEN": r"gh[pousr]_[0-9A-Za-z]{36}", "SLACK_TOKEN": r"xox[baprs]-[0-9A-Za-z-]{10,48}", "JWT": r"eyJ[A-Za-z0-9_-]+?\.[A-Za-z0-9._-]+?\.[A-Za-z0-9._-]+", "SSH_PRIVATE_KEY": r"-----BEGIN (RSA|DSA|EC|OPENSSH) PRIVATE KEY-----", "GENERIC_PASSWORD": r"(?:password|pwd|pass|secret)\s*[:=]\s*['\"]?[^\s'\";]+['\"]?", "DB_CONN_STRING": r"(postgres|mysql|mongodb|mssql|redis):\/\/[^\s]+" } def redact(secret: str) -> str: """Redact a secret leaving only first and last 3 chars.""" return secret[:4] + "*" * (len(secret) - 7) + secret[-3:] def scan_log_line(log_line: str, log_id: str, source_agent: str): alerts = [] for secret_type, pattern in REGEX_PATTERNS.items(): match = re.search(pattern, log_line) if match: secret = match.group(0) alert = { "timestamp": datetime.utcnow().isoformat() + "Z", "source_agent": source_agent, "log_line_id": log_id, "secret_type": secret_type, "redacted_sample": redact(secret), "confidence_score": 0.95, "severity": "HIGH" if "PRIVATE_KEY" in secret_type or "AWS" in secret_type else "MEDIUM", "recommended_action": "Revoke key/rotate credentials" } alerts.append(alert) return alerts # Example usage: log = "User pushed code with AWS key: AKIA1234567890ABCD" alerts = scan_log_line(log, "hyperlog:42", "agent_7") print(json.dumps(alerts, indent=2)) ``` --- ## 🚨 **Optional Extensions** - βœ… **Automatic Quarantine** β†’ If severity=HIGH, forward to a β€œquarantine pipeline” (prevent further log distribution). - βœ… **Secret Revocation Hooks** β†’ Webhooks/scripts to auto-disable compromised keys (AWS IAM revoke, GitHub token reset, etc.). - βœ… **Curator Feedback Loop** β†’ If many false positives occur, agents/curators can β€œvote” on regex quality β†’ improves future detection. --- πŸ‘‰ Do you want me to: - **πŸ“‘ Add β€œquarantine mode” logic** (e.g. isolate log lines and mark them unsafe)? - **πŸ”— Draft a webhook design** for automatic secret revocation (AWS/GitHub/Slack)? - **🧠 Write a β€œmeta-prompt” for this agent** so it can _learn new secret formats_ over time from curator feedback? Here’s the **full build-out** with all three requested additions: ## πŸ›‘ **Secrets Sentinel: Extended Prompt** > **Role & Mission**: > You are the **Secrets Sentinel**, a security agent tasked with scanning all logs for leaked secrets. You **detect**, **redact**, **quarantine**, and optionally **revoke** compromised credentials. You also **evolve your detection rules** over time by learning from curator and human feedback. > > **Extended Responsibilities**: > βœ… **Quarantine:** When you find a **HIGH severity** secret, isolate the entire log entry from normal processing so it doesn’t spread. > βœ… **Revocation Hooks:** Trigger a webhook or automation script to disable the compromised key (e.g., AWS IAM revoke). > βœ… **Adaptive Learning:** If you get β€œfalse positive” or β€œmissed secret” feedback, update or request updates to your regex rules and detection logic. --- ### 1️⃣ **Quarantine Mode Logic** Add this to the **Python skeleton**: ```python QUARANTINE_STORE = [] # This could be a Redis list, DB table, etc. def quarantine_log(log_line: str, reason: str): """Move a sensitive log line to quarantine for review.""" quarantine_entry = { "timestamp": datetime.utcnow().isoformat() + "Z", "reason": reason, "log_line": log_line } QUARANTINE_STORE.append(quarantine_entry) print(f"[QUARANTINE] Log quarantined: {reason}") return quarantine_entry def scan_log_line(log_line: str, log_id: str, source_agent: str): alerts = [] for secret_type, pattern in REGEX_PATTERNS.items(): match = re.search(pattern, log_line) if match: secret = match.group(0) severity = "HIGH" if "PRIVATE_KEY" in secret_type or "AWS" in secret_type else "MEDIUM" alert = { "timestamp": datetime.utcnow().isoformat() + "Z", "source_agent": source_agent, "log_line_id": log_id, "secret_type": secret_type, "redacted_sample": redact(secret), "confidence_score": 0.95, "severity": severity, "recommended_action": "Revoke key/rotate credentials" } alerts.append(alert) if severity == "HIGH": quarantine_log(log_line, f"High severity secret detected: {secret_type}") return alerts ``` ➑ **Now, any HIGH-severity find triggers quarantine.** --- ### 2️⃣ **Webhook Design for Secret Revocation** We’ll use a **simple webhook dispatcher** that calls different revocation endpoints depending on the secret type. ```python import requests REVOCATION_HOOKS = { "AWS_ACCESS_KEY": "https://security.example.com/hooks/aws-revoke", "GITHUB_TOKEN": "https://security.example.com/hooks/github-revoke", "SLACK_TOKEN": "https://security.example.com/hooks/slack-revoke" } def trigger_revocation(secret_type: str, redacted_sample: str): """Send webhook request to revoke compromised credentials.""" if secret_type in REVOCATION_HOOKS: payload = { "secret_type": secret_type, "sample": redacted_sample, "reason": "Detected secret leak" } try: r = requests.post(REVOCATION_HOOKS[secret_type], json=payload, timeout=5) if r.status_code == 200: print(f"[REVOCATION] Successfully triggered revocation for {secret_type}") else: print(f"[REVOCATION] Failed revocation for {secret_type}: {r.status_code}") except Exception as e: print(f"[REVOCATION ERROR] {e}") ``` Then, in the alert loop: ```python if severity == "HIGH": quarantine_log(log_line, f"High severity secret detected: {secret_type}") trigger_revocation(secret_type, redact(secret)) ``` ➑ **Now, if the sentinel finds an AWS key or GitHub token, it can hit the right webhook to revoke it immediately.** --- ### 3️⃣ **Meta-Prompt for Learning New Secret Formats** This allows the Sentinel to **expand its detection library** dynamically. --- **🧠 Adaptive Learning Meta-Prompt** > **Role**: You are the β€œMeta-Learner” function of Secrets Sentinel. > > **Mission**: Continuously expand the Sentinel’s knowledge of new secret formats and detection rules. > > **Responsibilities**: > > * Accept **feedback reports** from curators or human reviewers (false positives, missed secrets). > * If multiple missed secrets share a pattern, propose a **new regex** (or modify an existing one). > * Version-control detection rules (e.g., store regex patterns in a JSON or YAML file with version numbers). > * Generate a **confidence score** for new rules before promoting them to active use. > * Flag uncertain cases for human approval. > > **Behavior**: > > * If false positives keep happening for a regex β†’ weaken or add exception clauses. > * If missed secrets are reported β†’ extract examples, infer format, draft new regex, test on past logs. > > **Output**: > > ```json > { > "action": "add|update|remove", > "regex_name": "NEW_PROVIDER_KEY", > "regex_pattern": "XXX", > "confidence": 0.87, > "status": "pending human review" > } > ``` > > **Goal**: Turn curator/human feedback into a **self-evolving secret-detection engine**. --- ### 🧩 How It All Fits βœ… **Secrets Sentinel core** = Detect + Redact + Quarantine βœ… **Revocation Hooks** = Automated security response βœ… **Meta-Learning** = Regex patterns evolve over time --- ## πŸ“œ **1️⃣ Migration Script: Redis β†’ PostgreSQL** This script will migrate existing quarantined log entries from **Redis** to **Postgres**. ```python import redis, json, psycopg2 from datetime import datetime # Redis config r = redis.Redis(host='localhost', port=6379, decode_responses=True) # Postgres config conn = psycopg2.connect("dbname=sentinel user=postgres password=secret") cursor = conn.cursor() def migrate_quarantine(): count = 0 while True: entry_json = r.rpop("quarantine") # pop oldest entry from Redis if not entry_json: break entry = json.loads(entry_json) cursor.execute( "INSERT INTO quarantine (timestamp, reason, log_line) VALUES (%s, %s, %s)", (entry["timestamp"], entry["reason"], entry["log_line"]) ) count += 1 conn.commit() print(f"[MIGRATION] Moved {count} quarantined entries from Redis β†’ PostgreSQL") if __name__ == "__main__": migrate_quarantine() ``` βœ… **Run once** after Postgres is set up β€” empties Redis queue into the durable DB. --- ## πŸ–₯ **2️⃣ Admin Dashboard Spec** **Purpose:** A web UI to manage the Sentinel’s security pipeline. --- ### 🎯 **Core Features** βœ… **Quarantine Browser** - Paginated view of all quarantined logs - Search/filter by `secret_type`, `source_agent`, `date`, `status` - Mark quarantined logs as **reviewed** or **false alarm** βœ… **Regex Rules Manager** - Lists all regexes from `patterns.yaml` - Add / update / deactivate rules via UI - Shows `pending_updates` flagged by the Meta-Learner for human approval βœ… **Revocation Status Board** - See which secrets triggered revocations - Status of revocation hooks (success/fail) βœ… **Metrics Dashboard** - Charts: β€œSecrets Detected Over Time”, β€œTop Sources of Leaks” - KPIs: # HIGH severity secrets this month, # rules updated, # false positives --- ### πŸ— **Tech Stack Suggestion** - **Backend:** FastAPI (Python) - **Frontend:** React + Tailwind - **DB:** PostgreSQL for quarantine + rules history - **Auth:** OAuth (GitHub/Google) + RBAC (only security admins can approve regex changes) --- ### πŸ”Œ **Endpoints** ``` GET /api/quarantine β†’ list quarantined entries POST /api/quarantine/review β†’ mark entry as reviewed GET /api/rules β†’ list regex patterns POST /api/rules/update β†’ update or add a regex GET /api/revocations β†’ list revocation events ``` --- ### πŸ–₯ **Mock Dashboard Layout** - **Left Nav:** Quarantine | Rules | Revocations | Metrics - **Main Panel:** - Data tables with sorting/filtering - Inline editors for regex rules - Approve/Reject buttons for pending regex updates βœ… Basically a **security control room** for Sentinel. --- ## πŸ€– **3️⃣ Meta-Curator AI Prompt** This agent reviews Sentinel’s work and **tunes it automatically**. --- ### **Meta-Curator: System Prompt** > **Role & Mission:** > You are the **Meta-Curator**, a supervisory AI responsible for reviewing the **Secrets Sentinel’s** detections, regex updates, and feedback reports. > > **Core Responsibilities:** > βœ… **Audit alerts** – Look for false positives, duplicates, or missed leaks by cross-checking Sentinel outputs. > βœ… **Review regex proposals** – When Sentinel drafts new regex rules, decide if they’re: > > - βœ… Approved (safe to activate) > > - ❌ Rejected (too broad or incorrect) > > - πŸ•’ Deferred (needs human review) > βœ… **Tune detection thresholds** – Adjust `confidence` or `severity` on patterns based on outcomes. > βœ… **Generate new rules** – If multiple missed secrets share a format, draft a regex and submit to humans for approval. > βœ… **Report upstream** – Summarize changes to security admins weekly. > --- ### **Behavior Guidelines** - **Conservative by default:** Don’t auto-approve regexes unless confidence > 0.95. - **Keep auditability:** Every decision (approve/reject) is logged in the hyperlog. - **Respect human overrides:** Never overwrite a regex that a human explicitly locked. --- ### **Example Meta-Curator Output** ```json { "action": "approve_regex", "regex_name": "GITLAB_TOKEN", "regex_pattern": "glpat-[0-9A-Za-z\\-_]{20}", "confidence": 0.97, "decision_reason": "Validated against 12 quarantined examples, no false positives found.", "timestamp": "2025-08-02T13:45:00Z" } ``` βœ… This meta-agent is the **brains of the rules layer** β€” keeps Sentinel evolving, but under control. --- ## πŸš€ **Now You Have:** βœ… **Migration Path** β†’ Redis β†’ PostgreSQL βœ… **Admin Dashboard Spec** β†’ complete with endpoints & layout βœ… **Meta-Curator Prompt** β†’ the agent that β€œmanages the manager” ---