Files
chorus-services/modules/shhh

🔥 Excellent — lets push this all the way into a production-grade spec.


📂 1 Feedback Ingestion Spec

This defines how curators/humans give feedback to the Sentinel so it can update its detection rules (patterns.yaml) safely.


🔄 Feedback Flow

  1. Curator/Reviewer sees alert → marks it as:

    • false_positive (regex over-triggered)
    • missed_secret (regex failed to detect)
    • uncertain (needs better regex refinement)
  2. Feedback API ingests the report:

{
  "alert_id": "log_345",
  "secret_type": "AWS_ACCESS_KEY",
  "feedback_type": "false_positive",
  "evidence": "Key was dummy data: TESTKEY123",
  "suggested_regex_fix": null
}
  1. Meta-Learner updates rules:
  • false_positive → adds exceptions (e.g., allowlist prefixes like TESTKEY).
  • missed_secret → drafts new regex from evidence (using regex generator or LLM).
  • Writes changes to patterns.yaml under pending_review.
  1. Security admin approves before the new regex is marked active: true.

🧠 Feedback Schema in YAML

pending_updates:
  - regex_name: AWS_ACCESS_KEY
    action: modify
    new_regex: "AKIA[0-9A-Z]{16}(?!TESTKEY)"
    confidence: 0.82
    status: "pending human review"
    submitted_by: curator_2
    timestamp: 2025-08-02T12:40:00Z

This keeps audit trails & allows safe hot updates.


⚙️ 2 Real AWS/GitHub Webhook Payload Templates

These are example POST payloads your Sentinel would send when it detects a leaked secret.


🔐 AWS Access Key Revocation

Endpoint: POST https://security.example.com/hooks/aws-revoke

Payload:

{
  "event": "secret_leak_detected",
  "secret_type": "AWS_ACCESS_KEY",
  "redacted_key": "AKIA****XYZ",
  "log_reference": "hyperlog:58321",
  "recommended_action": "Revoke IAM access key immediately",
  "severity": "HIGH",
  "timestamp": "2025-08-02T12:45:00Z"
}

➡ Your security automation would call AWS CLI or IAM API:

aws iam update-access-key --access-key-id <redacted> --status Inactive
aws iam delete-access-key --access-key-id <redacted>

🐙 GitHub Token Revocation

Endpoint: POST https://security.example.com/hooks/github-revoke

Payload:

{
  "event": "secret_leak_detected",
  "secret_type": "GITHUB_TOKEN",
  "redacted_key": "ghp_****abcd",
  "repository": "repo-name",
  "log_reference": "hyperlog:58322",
  "severity": "HIGH",
  "recommended_action": "Invalidate GitHub token via API",
  "timestamp": "2025-08-02T12:46:00Z"
}

➡ This would tie into GitHubs token-scanning API or use PAT revocation.


💬 Slack Token Revocation

Endpoint: POST https://security.example.com/hooks/slack-revoke

Payload:

{
  "event": "secret_leak_detected",
  "secret_type": "SLACK_TOKEN",
  "redacted_key": "xoxb****hjk",
  "workspace": "company-slack",
  "log_reference": "hyperlog:58323",
  "severity": "HIGH",
  "recommended_action": "Revoke Slack bot/user token",
  "timestamp": "2025-08-02T12:47:00Z"
}

➡ Slack Admin API can be used to revoke or rotate.


📡 3 Redis or PostgreSQL Quarantine Store

Switching from memory to persistent storage means quarantined logs survive restarts.


Redis Option (Fast, Volatile)

import redis, json
r = redis.Redis(host='localhost', port=6379, decode_responses=True)

def quarantine_log(log_line, reason):
    entry = {"timestamp": datetime.utcnow().isoformat() + "Z", "reason": reason, "log_line": log_line}
    r.lpush("quarantine", json.dumps(entry))
    print(f"[QUARANTINE] Stored in Redis: {reason}")
  • 🏎 Pros: Fast, easy to scale.
  • ⚠️ Cons: Volatile unless persisted (RDB/AOF).

PostgreSQL Option (Auditable, Durable)

Schema:

CREATE TABLE quarantine (
    id SERIAL PRIMARY KEY,
    timestamp TIMESTAMPTZ NOT NULL,
    reason TEXT NOT NULL,
    log_line TEXT NOT NULL,
    reviewed BOOLEAN DEFAULT FALSE
);

Python Insert:

import psycopg2

conn = psycopg2.connect("dbname=sentinel user=postgres password=secret")
cursor = conn.cursor()

def quarantine_log(log_line, reason):
    entry_time = datetime.utcnow().isoformat() + "Z"
    cursor.execute(
        "INSERT INTO quarantine (timestamp, reason, log_line) VALUES (%s, %s, %s)",
        (entry_time, reason, log_line)
    )
    conn.commit()
    print(f"[QUARANTINE] Stored in PostgreSQL: {reason}")

Postgres is better for long-term auditing — you can run reports like:

  • “How many AWS keys leaked this month?”
  • “Which agents generated the most HIGH-severity quarantines?”

We now have: Detection → Redaction → Quarantine → Revocation → Feedback → Pattern Evolution patterns.yaml for versioned regex Webhooks for real-time secret revocation Persistent quarantine store (Redis or Postgres)


📜 1 Migration Script: Redis → PostgreSQL

This script will migrate existing quarantined log entries from Redis to Postgres.

import redis, json, psycopg2
from datetime import datetime

# Redis config
r = redis.Redis(host='localhost', port=6379, decode_responses=True)

# Postgres config
conn = psycopg2.connect("dbname=sentinel user=postgres password=secret")
cursor = conn.cursor()

def migrate_quarantine():
    count = 0
    while True:
        entry_json = r.rpop("quarantine")  # pop oldest entry from Redis
        if not entry_json:
            break
        entry = json.loads(entry_json)
        cursor.execute(
            "INSERT INTO quarantine (timestamp, reason, log_line) VALUES (%s, %s, %s)",
            (entry["timestamp"], entry["reason"], entry["log_line"])
        )
        count += 1
    conn.commit()
    print(f"[MIGRATION] Moved {count} quarantined entries from Redis → PostgreSQL")

if __name__ == "__main__":
    migrate_quarantine()

Run once after Postgres is set up — empties Redis queue into the durable DB.


🖥 2 Admin Dashboard Spec

Purpose: A web UI to manage the Sentinels security pipeline.


🎯 Core Features

Quarantine Browser

  • Paginated view of all quarantined logs
  • Search/filter by secret_type, source_agent, date, status
  • Mark quarantined logs as reviewed or false alarm

Regex Rules Manager

  • Lists all regexes from patterns.yaml
  • Add / update / deactivate rules via UI
  • Shows pending_updates flagged by the Meta-Learner for human approval

Revocation Status Board

  • See which secrets triggered revocations
  • Status of revocation hooks (success/fail)

Metrics Dashboard

  • Charts: “Secrets Detected Over Time”, “Top Sources of Leaks”
  • KPIs: # HIGH severity secrets this month, # rules updated, # false positives

🏗 Tech Stack Suggestion

  • Backend: FastAPI (Python)
  • Frontend: React + Tailwind
  • DB: PostgreSQL for quarantine + rules history
  • Auth: OAuth (GitHub/Google) + RBAC (only security admins can approve regex changes)

🔌 Endpoints

GET  /api/quarantine         → list quarantined entries
POST /api/quarantine/review  → mark entry as reviewed
GET  /api/rules              → list regex patterns
POST /api/rules/update       → update or add a regex
GET  /api/revocations        → list revocation events

🖥 Mock Dashboard Layout

  • Left Nav: Quarantine | Rules | Revocations | Metrics

  • Main Panel:

    • Data tables with sorting/filtering
    • Inline editors for regex rules
    • Approve/Reject buttons for pending regex updates

Basically a security control room for Sentinel.


🤖 3 Meta-Curator AI Prompt

This agent reviews Sentinels work and tunes it automatically.


Meta-Curator: System Prompt

Role & Mission: You are the Meta-Curator, a supervisory AI responsible for reviewing the Secrets Sentinels detections, regex updates, and feedback reports.

Core Responsibilities: Audit alerts Look for false positives, duplicates, or missed leaks by cross-checking Sentinel outputs. Review regex proposals When Sentinel drafts new regex rules, decide if theyre:

  • Approved (safe to activate)
  • Rejected (too broad or incorrect)
  • 🕒 Deferred (needs human review) Tune detection thresholds Adjust confidence or severity on patterns based on outcomes. Generate new rules If multiple missed secrets share a format, draft a regex and submit to humans for approval. Report upstream Summarize changes to security admins weekly.

Behavior Guidelines

  • Conservative by default: Dont auto-approve regexes unless confidence > 0.95.
  • Keep auditability: Every decision (approve/reject) is logged in the hyperlog.
  • Respect human overrides: Never overwrite a regex that a human explicitly locked.

Example Meta-Curator Output

{
  "action": "approve_regex",
  "regex_name": "GITLAB_TOKEN",
  "regex_pattern": "glpat-[0-9A-Za-z\\-_]{20}",
  "confidence": 0.97,
  "decision_reason": "Validated against 12 quarantined examples, no false positives found.",
  "timestamp": "2025-08-02T13:45:00Z"
}

This meta-agent is the brains of the rules layer — keeps Sentinel evolving, but under control.


🚀 Now You Have:

Migration Path → Redis → PostgreSQL Admin Dashboard Spec → complete with endpoints & layout Meta-Curator Prompt → the agent that “manages the manager”

Alright — heres the next batch to lock this into a real, buildable system.


📂 1 patterns_history Table Schema

This tracks every regex change ever made — who/what made it, why, and when.

CREATE TABLE patterns_history (
    id SERIAL PRIMARY KEY,
    regex_name TEXT NOT NULL,
    old_regex TEXT,
    new_regex TEXT,
    action TEXT CHECK (action IN ('add', 'update', 'remove')),
    confidence NUMERIC(3,2),
    status TEXT CHECK (status IN ('approved', 'pending', 'rejected')),
    submitted_by TEXT NOT NULL,
    approved_by TEXT,
    decision_reason TEXT,
    timestamp TIMESTAMPTZ DEFAULT CURRENT_TIMESTAMP
);

What this gives you:

  • Full audit trail (critical for security compliance).

  • You can run queries like:

    • “Show all regex changes made by Meta-Curator vs. humans.”
    • “List all rules rejected in the last 90 days.”

🖼 2 Admin Dashboard Wireframes

Goal: show your devs exactly what to build — no ambiguity.


🔒 Dashboard Home

------------------------------------------------------
|  [Sentinel Logo]  Secrets Sentinel Dashboard       |
------------------------------------------------------
| Quarantine | Rules | Revocations | Metrics | Admin |
------------------------------------------------------
|  Welcome back, Security Admin!                     |
|                                                    |
|   ▢  32 Quarantined logs waiting review            |
|   ▢  4 Pending regex updates                       |
|   ▢  2 Failed revocation hooks                     |
------------------------------------------------------

🗄 Quarantine View

------------------------------------------------------
| Quarantine Logs                                     |
------------------------------------------------------
| Search: [______________] [Filter ▼]                 |
------------------------------------------------------
| Log ID     | Secret Type   | Severity | Status  |
------------------------------------------------------
| log_4287   | AWS_ACCESS_KEY| HIGH     | PENDING |
| log_4288   | JWT           | MEDIUM   | REVIEWED|
| log_4289   | SSH_KEY       | HIGH     | PENDING |
------------------------------------------------------
[ View Details ] [ Mark as Reviewed ] [ Delete ]

Clicking “View Details” → shows full log snippet (with redacted secret).


📜 Regex Manager

------------------------------------------------------
| Regex Rules                                         |
------------------------------------------------------
| Name            | Regex Pattern                   | Active |
------------------------------------------------------
| AWS_ACCESS_KEY  | AKIA[0-9A-Z]{16}                | ✔      |
| JWT             | eyJ[A-Za-z0-9_-]+?\.[…]         | ✔      |
| SLACK_TOKEN     | xox[baprs]-[0-9A-Za-z-]{10,48}  | ✔      |
------------------------------------------------------
[ Add New Regex ] [ View History ]

Clicking View History → pulls from patterns_history.


📊 Metrics View

  • Line Chart: “Secrets Detected Over Time”

  • Bar Chart: “Secrets by Type” (AWS, GitHub, JWT, etc.)

  • KPIs:

    • 🔴 High Severity Leaks: 12 this week
    • 🟢 Regex Accuracy: 94%

⚙️ 3 FastAPI Skeleton

Heres the starter code for your dev team to run with.

from fastapi import FastAPI, Depends
from pydantic import BaseModel
from typing import List
import psycopg2, json

app = FastAPI(title="Secrets Sentinel Dashboard API")

# --- Database Setup ---
conn = psycopg2.connect("dbname=sentinel user=postgres password=secret")
cursor = conn.cursor()

# --- Models ---
class QuarantineEntry(BaseModel):
    id: int
    timestamp: str
    reason: str
    log_line: str
    reviewed: bool

class RegexRule(BaseModel):
    regex_name: str
    regex_pattern: str
    severity: str
    confidence: float
    active: bool

# --- Endpoints ---
@app.get("/quarantine", response_model=List[QuarantineEntry])
def get_quarantine():
    cursor.execute("SELECT id, timestamp, reason, log_line, reviewed FROM quarantine")
    rows = cursor.fetchall()
    return [QuarantineEntry(id=r[0], timestamp=str(r[1]), reason=r[2], log_line=r[3], reviewed=r[4]) for r in rows]

@app.post("/quarantine/review/{entry_id}")
def review_quarantine(entry_id: int):
    cursor.execute("UPDATE quarantine SET reviewed=true WHERE id=%s", (entry_id,))
    conn.commit()
    return {"status": "ok", "message": f"Quarantine entry {entry_id} marked reviewed"}

@app.get("/rules", response_model=List[RegexRule])
def get_rules():
    # Load from patterns.yaml
    with open("patterns.yaml", "r") as f:
        patterns = json.load(f) if f.read().strip().startswith("{") else {}
    rules = []
    for name, rule in patterns.get("patterns", {}).items():
        rules.append(RegexRule(
            regex_name=name,
            regex_pattern=rule["regex"],
            severity=rule["severity"],
            confidence=rule["confidence"],
            active=rule["active"]
        ))
    return rules

@app.post("/rules/update")
def update_rule(rule: RegexRule):
    # Append to patterns_history table
    cursor.execute("""
        INSERT INTO patterns_history (regex_name, old_regex, new_regex, action, confidence, status, submitted_by)
        VALUES (%s, %s, %s, 'update', %s, 'pending', 'admin')
    """, (rule.regex_name, None, rule.regex_pattern, rule.confidence))
    conn.commit()
    return {"status": "ok", "message": f"Regex {rule.regex_name} queued for update"}

Why this skeleton works:

  • REST endpoints for Quarantine, Rules, History.
  • Uses Postgres for persistence.
  • Reads from patterns.yaml for active rules.

🚀 Now You Have:

A Postgres schema for regex change history. Wireframes for the admin dashboard. A FastAPI skeleton your team can expand into a full API/UI stack.