Integrate Bzzz P2P task coordination and enhance project management

🔗 Bzzz Integration:
- Added comprehensive Bzzz integration documentation and todos
- Implemented N8N chat workflow architecture for task coordination
- Enhanced project management with Bzzz-specific features
- Added GitHub service for seamless issue synchronization
- Created BzzzIntegration component for frontend management

🎯 Project Management Enhancements:
- Improved project listing and filtering capabilities
- Enhanced authentication and authorization flows
- Added unified coordinator for better task orchestration
- Streamlined project activation and configuration
- Updated API endpoints for Bzzz compatibility

📊 Technical Improvements:
- Updated Docker Swarm configuration for local registry
- Enhanced frontend build with updated assets
- Improved WebSocket connections for real-time updates
- Added comprehensive error handling and logging
- Updated environment configurations for production

 System Integration:
- Successfully tested with Bzzz v1.2 task execution workflow
- Validated GitHub issue discovery and claiming functionality
- Confirmed sandbox-based task execution compatibility
- Verified Docker registry integration

This release enables seamless integration between Hive project management and Bzzz P2P task coordination, creating a complete distributed development ecosystem.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
anthonyrawlins
2025-07-14 20:56:01 +10:00
parent e89f2f4b7b
commit 3f3eec7f5d
38 changed files with 2591 additions and 932 deletions

View File

@@ -0,0 +1,436 @@
# Bzzz P2P Mesh Chat N8N Workflow Architecture
**Date**: 2025-07-13
**Author**: Claude Code
**Purpose**: Design and implement N8N workflow for chatting with bzzz P2P mesh and monitoring antennae meta-thinking
---
## 🎯 Project Overview
This document outlines the architecture for creating an N8N workflow that enables real-time chat interaction with the bzzz P2P mesh network, providing a consolidated response from distributed AI agents and monitoring their meta-cognitive processes.
### **Core Objectives**
1. **Chat Interface**: Enable natural language queries to the bzzz P2P mesh
2. **Consolidated Response**: Aggregate and synthesize responses from multiple bzzz nodes
3. **Meta-Thinking Monitoring**: Track and log inter-node communication via antennae
4. **Real-time Coordination**: Orchestrate distributed AI agent collaboration
---
## 🏗️ Architecture Overview
### **System Components**
```mermaid
graph TB
User[User Chat Query] --> N8N[N8N Workflow Engine]
N8N --> HiveAPI[Hive Backend API]
HiveAPI --> BzzzMesh[Bzzz P2P Mesh]
BzzzMesh --> Nodes[AI Agent Nodes]
Nodes --> Antennae[Inter-Node Antennae]
Antennae --> Logging[Meta-Thinking Logs]
Logging --> Monitor[Real-time Monitoring]
N8N --> Response[Consolidated Response]
```
### **Current Infrastructure Leveraging**
**✅ Existing Components**:
- **Hive Backend API**: Complete bzzz integration endpoints
- **Agent Network**: 6 specialized AI agents (ACACIA, WALNUT, IRONWOOD, ROSEWOOD, OAK, TULLY)
- **Authentication**: GitHub tokens and N8N API keys configured
- **Database**: PostgreSQL with project and task management
- **Frontend**: Real-time bzzz task monitoring interface
---
## 🔧 N8N Workflow Architecture
### **Workflow 1: Bzzz Chat Orchestrator**
**Purpose**: Main chat interface workflow for user interaction
**Components**:
1. **Webhook Trigger** (`/webhook/bzzz-chat`)
- Accepts user chat queries
- Validates authentication
- Logs conversation start
2. **Query Analysis Node**
- Parses user intent and requirements
- Determines optimal agent specializations needed
- Creates task distribution strategy
3. **Agent Discovery** (`GET /api/bzzz/active-repos`)
- Fetches available bzzz-enabled nodes
- Checks agent availability and specializations
- Prioritizes agents based on query type
4. **Task Distribution** (`POST /api/bzzz/projects/{id}/claim`)
- Creates subtasks for relevant agents
- Assigns tasks based on specialization:
- **ACACIA**: Infrastructure/DevOps queries
- **WALNUT**: Full-stack development questions
- **IRONWOOD**: Backend/API questions
- **ROSEWOOD**: Testing/QA queries
- **OAK**: iOS/macOS development
- **TULLY**: Mobile/Game development
5. **Parallel Agent Execution**
- Triggers simultaneous processing on selected nodes
- Monitors task progress via status endpoints
- Handles timeouts and error recovery
6. **Response Aggregation**
- Collects responses from all active agents
- Weights responses by agent specialization relevance
- Detects conflicting information
7. **Response Synthesis**
- Uses meta-AI to consolidate multiple responses
- Creates unified, coherent answer
- Maintains source attribution
8. **Response Delivery**
- Returns consolidated response to user
- Logs conversation completion
- Triggers antennae monitoring workflow
### **Workflow 2: Antennae Meta-Thinking Monitor**
**Purpose**: Monitor and log inter-node communication patterns
**Components**:
1. **Event Stream Listener**
- Monitors Socket.IO events from Hive backend
- Listens for agent-to-agent communications
- Captures meta-thinking patterns
2. **Communication Pattern Analysis**
- Analyzes inter-node message flows
- Identifies collaboration patterns
- Detects emergent behaviors
3. **Antennae Data Collector**
- Gathers "between-the-lines" reasoning
- Captures agent uncertainty expressions
- Logs consensus-building processes
4. **Meta-Thinking Logger**
- Stores antennae data in structured format
- Creates searchable meta-cognition database
- Enables pattern discovery over time
5. **Real-time Dashboard Updates**
- Sends monitoring data to frontend
- Updates real-time visualization
- Triggers alerts for interesting patterns
### **Workflow 3: Bzzz Task Status Synchronizer**
**Purpose**: Keep task status synchronized across the mesh
**Components**:
1. **Status Polling** (Every 30 seconds)
- Checks task status across all nodes
- Updates central coordination database
- Detects status changes
2. **GitHub Integration**
- Updates GitHub issue assignees
- Syncs task completion status
- Maintains audit trail
3. **Conflict Resolution**
- Handles multiple agents claiming same task
- Implements priority-based resolution
- Ensures task completion tracking
---
## 🔗 API Integration Points
### **Hive Backend Endpoints**
```yaml
Endpoints:
- GET /api/bzzz/active-repos # Discovery
- GET /api/bzzz/projects/{id}/tasks # Task listing
- POST /api/bzzz/projects/{id}/claim # Task claiming
- PUT /api/bzzz/projects/{id}/status # Status updates
Authentication:
- GitHub Token: /home/tony/AI/secrets/passwords_and_tokens/gh-token
- N8N API Key: /home/tony/AI/secrets/api_keys/n8n-API-KEY-for-Claude-Code.txt
```
### **Agent Network Endpoints**
```yaml
Agent_Nodes:
ACACIA: 192.168.1.72:11434 # Infrastructure specialist
WALNUT: 192.168.1.27:11434 # Full-stack developer
IRONWOOD: 192.168.1.113:11434 # Backend specialist
ROSEWOOD: 192.168.1.132:11434 # QA specialist
OAK: oak.local:11434 # iOS/macOS development
TULLY: Tullys-MacBook-Air.local:11434 # Mobile/Game dev
```
---
## 📊 Data Flow Architecture
### **Chat Query Processing**
```
User Query → N8N Webhook → Query Analysis → Agent Selection →
Task Distribution → Parallel Execution → Response Collection →
Synthesis → Consolidated Response → User
```
### **Meta-Thinking Monitoring**
```
Agent Communications → Antennae Capture → Pattern Analysis →
Meta-Cognition Logging → Real-time Dashboard → Insights Discovery
```
### **Data Models**
```typescript
interface BzzzChatQuery {
query: string;
user_id: string;
timestamp: Date;
session_id: string;
context?: any;
}
interface BzzzResponse {
agent_id: string;
response: string;
confidence: number;
reasoning: string;
timestamp: Date;
meta_thinking?: AntennaeData;
}
interface AntennaeData {
inter_agent_messages: Message[];
uncertainty_expressions: string[];
consensus_building: ConsensusStep[];
emergent_patterns: Pattern[];
}
interface ConsolidatedResponse {
synthesis: string;
source_agents: string[];
confidence_score: number;
meta_insights: AntennaeInsight[];
reasoning_chain: string[];
}
```
---
## 🚀 Implementation Strategy
### **Phase 1: Basic Chat Workflow**
1. Create webhook endpoint for chat queries
2. Implement agent discovery and selection
3. Build task distribution mechanism
4. Create response aggregation logic
5. Test with simple queries
### **Phase 2: Response Synthesis**
1. Implement advanced response consolidation
2. Add conflict resolution for competing answers
3. Create quality scoring system
4. Build source attribution system
### **Phase 3: Antennae Monitoring**
1. Implement Socket.IO event monitoring
2. Create meta-thinking capture system
3. Build pattern analysis algorithms
4. Design real-time visualization
### **Phase 4: Advanced Features**
1. Add conversation context persistence
2. Implement learning from past interactions
3. Create predictive agent selection
4. Build autonomous task optimization
---
## 🔧 Technical Implementation Details
### **N8N Workflow Configuration**
**Authentication Setup**:
```json
{
"github_token": "${gh_token}",
"n8n_api_key": "${n8n_api_key}",
"hive_api_base": "https://hive.home.deepblack.cloud/api"
}
```
**Webhook Configuration**:
```json
{
"method": "POST",
"path": "/webhook/bzzz-chat",
"authentication": "header",
"headers": {
"Authorization": "Bearer ${n8n_api_key}"
}
}
```
**Error Handling Strategy**:
- Retry failed agent communications (3 attempts)
- Fallback to subset of agents if some unavailable
- Graceful degradation for partial responses
- Comprehensive logging for debugging
### **Database Schema Extensions**
```sql
-- Bzzz chat conversations
CREATE TABLE bzzz_conversations (
id UUID PRIMARY KEY,
user_id VARCHAR(255),
query TEXT,
consolidated_response TEXT,
session_id VARCHAR(255),
created_at TIMESTAMP,
meta_thinking_data JSONB
);
-- Antennae monitoring data
CREATE TABLE antennae_logs (
id UUID PRIMARY KEY,
conversation_id UUID REFERENCES bzzz_conversations(id),
agent_id VARCHAR(255),
meta_data JSONB,
pattern_type VARCHAR(100),
timestamp TIMESTAMP
);
```
---
## 🎛️ Monitoring & Observability
### **Real-time Metrics**
- Active agent count
- Query response times
- Agent utilization rates
- Meta-thinking pattern frequency
- Consensus building success rate
### **Dashboard Components**
- Live agent status grid
- Query/response flow visualization
- Antennae activity heatmap
- Meta-thinking pattern trends
- Performance analytics
### **Alerting Rules**
- Agent disconnection alerts
- Response time degradation
- Unusual meta-thinking patterns
- Failed consensus building
- System resource constraints
---
## 🛡️ Security Considerations
### **Authentication**
- N8N API key validation for webhook access
- GitHub token management for private repos
- Rate limiting for chat queries
- Session management for conversations
### **Data Protection**
- Encrypt sensitive conversation data
- Sanitize meta-thinking logs
- Implement data retention policies
- Audit trail for all interactions
---
## 🔮 Future Expansion Opportunities
### **Enhanced Meta-Thinking Analysis**
- Machine learning pattern recognition
- Predictive consensus modeling
- Emergent behavior detection
- Cross-conversation learning
### **Advanced Chat Features**
- Multi-turn conversation support
- Context-aware follow-up questions
- Proactive information gathering
- Intelligent query refinement
### **Integration Expansion**
- External knowledge base integration
- Third-party AI service orchestration
- Real-time collaboration tools
- Advanced visualization systems
---
## 📋 Implementation Checklist
### **Preparation**
- [ ] Verify N8N API access and credentials
- [ ] Test Hive backend bzzz endpoints
- [ ] Confirm agent network connectivity
- [ ] Set up development webhook endpoint
### **Development**
- [ ] Create basic chat webhook workflow
- [ ] Implement agent discovery mechanism
- [ ] Build task distribution logic
- [ ] Create response aggregation system
- [ ] Develop synthesis algorithm
### **Testing**
- [ ] Test single-agent interactions
- [ ] Validate multi-agent coordination
- [ ] Verify response quality
- [ ] Test error handling scenarios
- [ ] Performance and load testing
### **Deployment**
- [ ] Deploy to N8N production instance
- [ ] Configure monitoring dashboards
- [ ] Set up alerting systems
- [ ] Document usage procedures
- [ ] Train users on chat interface
---
## 🎯 Success Metrics
### **Functional Metrics**
- **Response Time**: < 30 seconds for complex queries
- **Agent Participation**: > 80% of available agents respond
- **Response Quality**: User satisfaction > 85%
- **System Uptime**: > 99.5% availability
### **Meta-Thinking Metrics**
- **Pattern Detection**: Identify 10+ unique collaboration patterns
- **Consensus Tracking**: Monitor 100% of multi-agent decisions
- **Insight Generation**: Produce actionable insights weekly
- **Learning Acceleration**: Demonstrate improvement over time
This architecture provides a robust foundation for creating sophisticated N8N workflows that enable seamless interaction with the bzzz P2P mesh while capturing and analyzing the fascinating meta-cognitive processes that emerge from distributed AI collaboration.