Add comprehensive frontend UI and distributed infrastructure

Frontend Enhancements:
- Complete React TypeScript frontend with modern UI components
- Distributed workflows management interface with real-time updates
- Socket.IO integration for live agent status monitoring
- Agent management dashboard with cluster visualization
- Project management interface with metrics and task tracking
- Responsive design with proper error handling and loading states

Backend Infrastructure:
- Distributed coordinator for multi-agent workflow orchestration
- Cluster management API with comprehensive agent operations
- Enhanced database models for agents and projects
- Project service for filesystem-based project discovery
- Performance monitoring and metrics collection
- Comprehensive API documentation and error handling

Documentation:
- Complete distributed development guide (README_DISTRIBUTED.md)
- Comprehensive development report with architecture insights
- System configuration templates and deployment guides

The platform now provides a complete web interface for managing the distributed AI cluster
with real-time monitoring, workflow orchestration, and agent coordination capabilities.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
anthonyrawlins
2025-07-10 08:41:59 +10:00
parent fc0eec91ef
commit 85bf1341f3
28348 changed files with 2646896 additions and 69 deletions

125
frontend/node_modules/d3-array/src/bin.js generated vendored Normal file
View File

@@ -0,0 +1,125 @@
import {slice} from "./array.js";
import bisect from "./bisect.js";
import constant from "./constant.js";
import extent from "./extent.js";
import identity from "./identity.js";
import nice from "./nice.js";
import ticks, {tickIncrement} from "./ticks.js";
import sturges from "./threshold/sturges.js";
export default function bin() {
var value = identity,
domain = extent,
threshold = sturges;
function histogram(data) {
if (!Array.isArray(data)) data = Array.from(data);
var i,
n = data.length,
x,
step,
values = new Array(n);
for (i = 0; i < n; ++i) {
values[i] = value(data[i], i, data);
}
var xz = domain(values),
x0 = xz[0],
x1 = xz[1],
tz = threshold(values, x0, x1);
// Convert number of thresholds into uniform thresholds, and nice the
// default domain accordingly.
if (!Array.isArray(tz)) {
const max = x1, tn = +tz;
if (domain === extent) [x0, x1] = nice(x0, x1, tn);
tz = ticks(x0, x1, tn);
// If the domain is aligned with the first tick (which it will by
// default), then we can use quantization rather than bisection to bin
// values, which is substantially faster.
if (tz[0] <= x0) step = tickIncrement(x0, x1, tn);
// If the last threshold is coincident with the domains upper bound, the
// last bin will be zero-width. If the default domain is used, and this
// last threshold is coincident with the maximum input value, we can
// extend the niced upper bound by one tick to ensure uniform bin widths;
// otherwise, we simply remove the last threshold. Note that we dont
// coerce values or the domain to numbers, and thus must be careful to
// compare order (>=) rather than strict equality (===)!
if (tz[tz.length - 1] >= x1) {
if (max >= x1 && domain === extent) {
const step = tickIncrement(x0, x1, tn);
if (isFinite(step)) {
if (step > 0) {
x1 = (Math.floor(x1 / step) + 1) * step;
} else if (step < 0) {
x1 = (Math.ceil(x1 * -step) + 1) / -step;
}
}
} else {
tz.pop();
}
}
}
// Remove any thresholds outside the domain.
// Be careful not to mutate an array owned by the user!
var m = tz.length, a = 0, b = m;
while (tz[a] <= x0) ++a;
while (tz[b - 1] > x1) --b;
if (a || b < m) tz = tz.slice(a, b), m = b - a;
var bins = new Array(m + 1),
bin;
// Initialize bins.
for (i = 0; i <= m; ++i) {
bin = bins[i] = [];
bin.x0 = i > 0 ? tz[i - 1] : x0;
bin.x1 = i < m ? tz[i] : x1;
}
// Assign data to bins by value, ignoring any outside the domain.
if (isFinite(step)) {
if (step > 0) {
for (i = 0; i < n; ++i) {
if ((x = values[i]) != null && x0 <= x && x <= x1) {
bins[Math.min(m, Math.floor((x - x0) / step))].push(data[i]);
}
}
} else if (step < 0) {
for (i = 0; i < n; ++i) {
if ((x = values[i]) != null && x0 <= x && x <= x1) {
const j = Math.floor((x0 - x) * step);
bins[Math.min(m, j + (tz[j] <= x))].push(data[i]); // handle off-by-one due to rounding
}
}
}
} else {
for (i = 0; i < n; ++i) {
if ((x = values[i]) != null && x0 <= x && x <= x1) {
bins[bisect(tz, x, 0, m)].push(data[i]);
}
}
}
return bins;
}
histogram.value = function(_) {
return arguments.length ? (value = typeof _ === "function" ? _ : constant(_), histogram) : value;
};
histogram.domain = function(_) {
return arguments.length ? (domain = typeof _ === "function" ? _ : constant([_[0], _[1]]), histogram) : domain;
};
histogram.thresholds = function(_) {
return arguments.length ? (threshold = typeof _ === "function" ? _ : constant(Array.isArray(_) ? slice.call(_) : _), histogram) : threshold;
};
return histogram;
}