Refactor UnifiedCoordinator to follow Single Responsibility Principle

- Create dedicated service classes for separated concerns:
  * AgentService: Agent management and health monitoring
  * WorkflowService: Workflow parsing and execution tracking
  * PerformanceService: Metrics and load balancing
  * BackgroundService: Background processes and cleanup
  * TaskService: Database persistence (already existed)

- Refactor UnifiedCoordinator into UnifiedCoordinatorRefactored
  * Clean separation of responsibilities
  * Improved maintainability and testability
  * Dependency injection pattern for services
  * Clear service boundaries and interfaces

- Maintain backward compatibility through re-exports
- Update main.py to use refactored coordinator

🚀 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
anthonyrawlins
2025-07-11 09:09:11 +10:00
parent 36c5e10a51
commit c6d69695a8
3042 changed files with 45137 additions and 46134 deletions

View File

@@ -0,0 +1,300 @@
"""
Agent Management Service
Handles agent registration, health monitoring, and connectivity management.
"""
import asyncio
import aiohttp
import time
import logging
from typing import Dict, List, Optional, Set, Any
from dataclasses import dataclass, field
from sqlalchemy.orm import Session
from enum import Enum
from ..models.agent import Agent as ORMAgent
from ..core.database import SessionLocal
from ..cli_agents.cli_agent_manager import get_cli_agent_manager
logger = logging.getLogger(__name__)
class AgentType(Enum):
"""Unified agent types supporting both original and distributed workflows"""
# Original agent types
KERNEL_DEV = "kernel_dev"
PYTORCH_DEV = "pytorch_dev"
PROFILER = "profiler"
DOCS_WRITER = "docs_writer"
TESTER = "tester"
CLI_GEMINI = "cli_gemini"
GENERAL_AI = "general_ai"
REASONING = "reasoning"
# Distributed workflow types
CODE_GENERATION = "code_generation"
CODE_REVIEW = "code_review"
TESTING = "testing"
COMPILATION = "compilation"
OPTIMIZATION = "optimization"
DOCUMENTATION = "documentation"
DEPLOYMENT = "deployment"
@dataclass
class Agent:
"""Unified agent representation supporting both Ollama and CLI agents"""
id: str
endpoint: str
model: str
specialty: AgentType
max_concurrent: int = 2
current_tasks: int = 0
agent_type: str = "ollama" # "ollama" or "cli"
cli_config: Optional[Dict[str, Any]] = None
# Enhanced fields for distributed workflows
gpu_type: str = "unknown"
capabilities: Set[str] = field(default_factory=set)
performance_history: List[float] = field(default_factory=list)
specializations: List[AgentType] = field(default_factory=list)
last_heartbeat: float = field(default_factory=time.time)
def __post_init__(self):
if self.specializations:
self.capabilities.update([spec.value for spec in self.specializations])
class AgentService:
"""Service for managing agents in the Hive cluster"""
def __init__(self):
self.agents: Dict[str, Agent] = {}
self.cli_agent_manager = None
self._initialized = False
async def initialize(self):
"""Initialize the agent service"""
if self._initialized:
return
try:
# Initialize CLI agent manager
self.cli_agent_manager = get_cli_agent_manager()
# Load agents from database
await self._load_database_agents()
# Initialize predefined cluster agents
self._initialize_cluster_agents()
# Test initial connectivity
await self._test_initial_connectivity()
self._initialized = True
logger.info("✅ Agent Service initialized successfully")
except Exception as e:
logger.error(f"❌ Failed to initialize agent service: {e}")
raise
def add_agent(self, agent: Agent):
"""Add an agent to the service"""
self.agents[agent.id] = agent
logger.info(f"✅ Added agent: {agent.id} ({agent.specialty.value})")
def get_agent(self, agent_id: str) -> Optional[Agent]:
"""Get agent by ID"""
return self.agents.get(agent_id)
def get_all_agents(self) -> Dict[str, Agent]:
"""Get all agents"""
return self.agents.copy()
def get_agents_by_specialty(self, specialty: AgentType) -> List[Agent]:
"""Get agents by specialty"""
return [
agent for agent in self.agents.values()
if agent.specialty == specialty or specialty in agent.specializations
]
def get_available_agents(self, specialty: Optional[AgentType] = None) -> List[Agent]:
"""Get available agents, optionally filtered by specialty"""
available = [
agent for agent in self.agents.values()
if agent.current_tasks < agent.max_concurrent
]
if specialty:
available = [
agent for agent in available
if agent.specialty == specialty or specialty in agent.specializations
]
return available
def get_optimal_agent(self, specialty: AgentType, load_balancer=None) -> Optional[Agent]:
"""Get the optimal agent for a task type"""
available_agents = [
agent for agent in self.agents.values()
if (agent.specialty == specialty or specialty in agent.specializations)
and agent.current_tasks < agent.max_concurrent
]
if not available_agents:
# Fallback to general AI agents
available_agents = [
agent for agent in self.agents.values()
if agent.specialty == AgentType.GENERAL_AI
and agent.current_tasks < agent.max_concurrent
]
if available_agents:
if load_balancer:
return min(available_agents, key=lambda a: load_balancer.get_weight(a.id))
else:
# Simple round-robin based on current tasks
return min(available_agents, key=lambda a: a.current_tasks)
return None
def increment_agent_tasks(self, agent_id: str):
"""Increment current task count for an agent"""
if agent_id in self.agents:
self.agents[agent_id].current_tasks += 1
def decrement_agent_tasks(self, agent_id: str):
"""Decrement current task count for an agent"""
if agent_id in self.agents:
self.agents[agent_id].current_tasks = max(0, self.agents[agent_id].current_tasks - 1)
def update_agent_heartbeat(self, agent_id: str):
"""Update agent heartbeat timestamp"""
if agent_id in self.agents:
self.agents[agent_id].last_heartbeat = time.time()
async def _load_database_agents(self):
"""Load agents from database"""
try:
db = SessionLocal()
orm_agents = db.query(ORMAgent).all()
for orm_agent in orm_agents:
specialty = AgentType(orm_agent.specialty) if orm_agent.specialty else AgentType.GENERAL_AI
agent = Agent(
id=orm_agent.id,
endpoint=orm_agent.endpoint,
model=orm_agent.model or "unknown",
specialty=specialty,
max_concurrent=orm_agent.max_concurrent,
current_tasks=orm_agent.current_tasks,
agent_type=orm_agent.agent_type,
cli_config=orm_agent.cli_config
)
self.add_agent(agent)
db.close()
logger.info(f"📊 Loaded {len(orm_agents)} agents from database")
except Exception as e:
logger.error(f"❌ Failed to load agents from database: {e}")
def _initialize_cluster_agents(self):
"""Initialize predefined cluster agents"""
cluster_agents = [
Agent(
id="walnut-codellama",
endpoint="http://walnut.local:11434",
model="codellama:34b",
specialty=AgentType.KERNEL_DEV
),
Agent(
id="oak-gemma",
endpoint="http://oak.local:11434",
model="gemma2:27b",
specialty=AgentType.PYTORCH_DEV
),
Agent(
id="ironwood-llama",
endpoint="http://ironwood.local:11434",
model="llama3.1:70b",
specialty=AgentType.GENERAL_AI
)
]
for agent in cluster_agents:
if agent.id not in self.agents:
self.add_agent(agent)
async def _test_initial_connectivity(self):
"""Test connectivity to all agents"""
logger.info("🔍 Testing agent connectivity...")
for agent in self.agents.values():
try:
if agent.agent_type == "cli":
# Test CLI agent
if self.cli_agent_manager:
await self.cli_agent_manager.test_agent(agent.id)
else:
# Test Ollama agent
async with aiohttp.ClientSession() as session:
async with session.get(
f"{agent.endpoint}/api/tags",
timeout=aiohttp.ClientTimeout(total=5)
) as response:
if response.status == 200:
logger.info(f"✅ Agent {agent.id} is responsive")
else:
logger.warning(f"⚠️ Agent {agent.id} returned HTTP {response.status}")
except Exception as e:
logger.warning(f"⚠️ Agent {agent.id} is not responsive: {e}")
async def check_agent_health(self, agent: Agent) -> bool:
"""Check individual agent health"""
try:
if agent.agent_type == "cli":
# CLI agent health check
if self.cli_agent_manager:
return await self.cli_agent_manager.test_agent(agent.id)
return False
else:
# Ollama agent health check
async with aiohttp.ClientSession() as session:
async with session.get(
f"{agent.endpoint}/api/tags",
timeout=aiohttp.ClientTimeout(total=10)
) as response:
return response.status == 200
except Exception as e:
logger.warning(f"⚠️ Agent {agent.id} health check error: {e}")
return False
async def health_monitor_cycle(self):
"""Single cycle of health monitoring for all agents"""
try:
for agent in self.agents.values():
is_healthy = await self.check_agent_health(agent)
if is_healthy:
agent.last_heartbeat = time.time()
else:
logger.warning(f"⚠️ Agent {agent.id} health check failed")
except Exception as e:
logger.error(f"❌ Health monitor cycle error: {e}")
def get_agent_status(self) -> Dict[str, Dict]:
"""Get status of all agents"""
agent_status = {}
for agent_id, agent in self.agents.items():
agent_status[agent_id] = {
"type": agent.agent_type,
"model": agent.model,
"specialty": agent.specialty.value,
"current_tasks": agent.current_tasks,
"max_concurrent": agent.max_concurrent,
"last_heartbeat": agent.last_heartbeat,
"utilization": agent.current_tasks / agent.max_concurrent if agent.max_concurrent > 0 else 0
}
return agent_status

View File

@@ -0,0 +1,163 @@
"""
Background Processing Service
Handles background tasks, cleanup, monitoring, and maintenance operations.
"""
import asyncio
import logging
from typing import Set, Optional, Callable
from concurrent.futures import ThreadPoolExecutor
logger = logging.getLogger(__name__)
class BackgroundService:
"""Service for managing background tasks and processes"""
def __init__(self):
self.running = False
self.executor = ThreadPoolExecutor(max_workers=4)
self._background_tasks: Set[asyncio.Task] = set()
self._initialized = False
# Service references (injected)
self.agent_service = None
self.task_service = None
self.workflow_service = None
self.performance_service = None
def initialize(self, agent_service, task_service, workflow_service, performance_service):
"""Initialize the background service with dependencies"""
if self._initialized:
return
self.agent_service = agent_service
self.task_service = task_service
self.workflow_service = workflow_service
self.performance_service = performance_service
self._initialized = True
logger.info("✅ Background Service initialized successfully")
async def start(self):
"""Start background processes"""
if not self._initialized:
raise Exception("Background service not initialized")
self.running = True
# Start background tasks
self._background_tasks.add(asyncio.create_task(self._health_monitor()))
self._background_tasks.add(asyncio.create_task(self._performance_optimizer()))
self._background_tasks.add(asyncio.create_task(self._cleanup_manager()))
logger.info("🚀 Background Service processes started")
async def shutdown(self):
"""Shutdown background processes"""
logger.info("🛑 Shutting down Background Service...")
self.running = False
# Cancel background tasks
for task in self._background_tasks:
task.cancel()
# Wait for tasks to complete
if self._background_tasks:
await asyncio.gather(*self._background_tasks, return_exceptions=True)
# Shutdown executor
self.executor.shutdown(wait=True)
logger.info("✅ Background Service shutdown complete")
async def _health_monitor(self):
"""Background health monitoring"""
while self.running:
try:
if self.agent_service:
await self.agent_service.health_monitor_cycle()
await asyncio.sleep(30) # Check every 30 seconds
except Exception as e:
logger.error(f"❌ Health monitor error: {e}")
await asyncio.sleep(60)
async def _performance_optimizer(self):
"""Background performance optimization"""
while self.running:
try:
if self.performance_service and self.agent_service:
await self.performance_service.optimization_cycle(
self.agent_service.get_all_agents()
)
await asyncio.sleep(300) # Optimize every 5 minutes
except Exception as e:
logger.error(f"❌ Performance optimizer error: {e}")
await asyncio.sleep(600)
async def _cleanup_manager(self):
"""Background cleanup management"""
while self.running:
try:
# Cleanup completed tasks
if self.task_service:
cleaned_count = await self._cleanup_completed_tasks()
if cleaned_count > 0:
logger.info(f"🧹 Cleaned up {cleaned_count} old tasks")
# Cleanup workflows
if self.workflow_service:
workflow_cleaned = self.workflow_service.cleanup_completed_workflows(max_age_hours=24)
if workflow_cleaned > 0:
logger.info(f"🧹 Cleaned up {workflow_cleaned} old workflows")
await asyncio.sleep(3600) # Cleanup every hour
except Exception as e:
logger.error(f"❌ Cleanup manager error: {e}")
await asyncio.sleep(1800) # Retry in 30 minutes
async def _cleanup_completed_tasks(self) -> int:
"""Clean up old completed tasks"""
try:
# Clean up database tasks (older ones)
db_cleaned_count = self.task_service.cleanup_completed_tasks(max_age_hours=24)
return db_cleaned_count
except Exception as e:
logger.error(f"❌ Failed to cleanup completed tasks: {e}")
return 0
def add_background_task(self, coro):
"""Add a custom background task"""
if self.running:
task = asyncio.create_task(coro)
self._background_tasks.add(task)
# Clean up completed tasks
task.add_done_callback(self._background_tasks.discard)
return task
return None
def schedule_periodic_task(self, coro_func: Callable, interval_seconds: int):
"""Schedule a periodic task"""
async def periodic_wrapper():
while self.running:
try:
await coro_func()
await asyncio.sleep(interval_seconds)
except Exception as e:
logger.error(f"❌ Periodic task error: {e}")
await asyncio.sleep(interval_seconds)
return self.add_background_task(periodic_wrapper())
def get_status(self) -> dict:
"""Get background service status"""
return {
"running": self.running,
"active_tasks": len([t for t in self._background_tasks if not t.done()]),
"total_tasks": len(self._background_tasks),
"executor_threads": self.executor._threads if hasattr(self.executor, '_threads') else 0
}

View File

@@ -0,0 +1,173 @@
"""
Performance Monitoring and Optimization Service
Handles performance metrics, load balancing, and system optimization.
"""
import time
import logging
from typing import Dict, List, Optional
from prometheus_client import Counter, Histogram, Gauge
logger = logging.getLogger(__name__)
# Performance Metrics
TASK_COUNTER = Counter('hive_tasks_total', 'Total tasks processed', ['task_type', 'agent'])
TASK_DURATION = Histogram('hive_task_duration_seconds', 'Task execution time', ['task_type', 'agent'])
ACTIVE_TASKS = Gauge('hive_active_tasks', 'Currently active tasks', ['agent'])
AGENT_UTILIZATION = Gauge('hive_agent_utilization', 'Agent utilization percentage', ['agent'])
class AdaptiveLoadBalancer:
"""Adaptive load balancer for optimal agent selection"""
def __init__(self):
self.weights: Dict[str, float] = {}
self.performance_history: Dict[str, List[float]] = {}
self.max_history = 100 # Keep last 100 performance measurements
def update_weight(self, agent_id: str, performance_metric: float):
"""Update agent weight based on performance (lower is better)"""
# Inverse relationship: better performance = lower weight
self.weights[agent_id] = performance_metric
# Update performance history
if agent_id not in self.performance_history:
self.performance_history[agent_id] = []
self.performance_history[agent_id].append(performance_metric)
# Keep only recent history
if len(self.performance_history[agent_id]) > self.max_history:
self.performance_history[agent_id] = self.performance_history[agent_id][-self.max_history:]
def get_weight(self, agent_id: str) -> float:
"""Get agent weight (lower = more preferred)"""
return self.weights.get(agent_id, 1.0)
def get_average_performance(self, agent_id: str) -> float:
"""Get average performance for an agent"""
history = self.performance_history.get(agent_id, [])
if not history:
return 1.0
return sum(history) / len(history)
def get_performance_stats(self) -> Dict[str, Dict[str, float]]:
"""Get performance statistics for all agents"""
stats = {}
for agent_id in self.weights:
history = self.performance_history.get(agent_id, [])
if history:
stats[agent_id] = {
"current_weight": self.weights[agent_id],
"average_time": sum(history) / len(history),
"min_time": min(history),
"max_time": max(history),
"sample_count": len(history)
}
return stats
class PerformanceService:
"""Service for performance monitoring and optimization"""
def __init__(self):
self.load_balancer = AdaptiveLoadBalancer()
self._initialized = False
def initialize(self):
"""Initialize the performance service"""
if self._initialized:
return
self._initialized = True
logger.info("✅ Performance Service initialized successfully")
def record_task_start(self, agent_id: str):
"""Record task start for metrics"""
ACTIVE_TASKS.labels(agent=agent_id).inc()
def record_task_completion(self, agent_id: str, task_type: str, execution_time: float):
"""Record task completion metrics"""
TASK_COUNTER.labels(task_type=task_type, agent=agent_id).inc()
TASK_DURATION.labels(task_type=task_type, agent=agent_id).observe(execution_time)
ACTIVE_TASKS.labels(agent=agent_id).dec()
# Update load balancer
self.load_balancer.update_weight(agent_id, execution_time)
def record_task_failure(self, agent_id: str):
"""Record task failure for metrics"""
ACTIVE_TASKS.labels(agent=agent_id).dec()
def update_agent_utilization(self, agent_id: str, current_tasks: int, max_concurrent: int):
"""Update agent utilization metrics"""
utilization = current_tasks / max_concurrent if max_concurrent > 0 else 0
AGENT_UTILIZATION.labels(agent=agent_id).set(utilization)
def get_load_balancer(self) -> AdaptiveLoadBalancer:
"""Get the load balancer instance"""
return self.load_balancer
async def optimization_cycle(self, agents: Dict):
"""Single cycle of performance optimization"""
try:
# Update utilization metrics for all agents
for agent in agents.values():
utilization = agent.current_tasks / agent.max_concurrent if agent.max_concurrent > 0 else 0
AGENT_UTILIZATION.labels(agent=agent.id).set(utilization)
# Additional optimization logic could go here
# - Dynamic scaling recommendations
# - Agent rebalancing suggestions
# - Performance alerts
except Exception as e:
logger.error(f"❌ Performance optimization cycle error: {e}")
def get_performance_metrics(self) -> Dict:
"""Get current performance metrics"""
return {
"load_balancer_stats": self.load_balancer.get_performance_stats(),
"prometheus_available": True
}
async def get_prometheus_metrics(self):
"""Get Prometheus metrics"""
from prometheus_client import generate_latest, CONTENT_TYPE_LATEST
return generate_latest()
def generate_performance_report(self, agents: Dict, tasks: Dict) -> Dict:
"""Generate comprehensive performance report"""
from .workflow_service import TaskStatus
# Agent performance
agent_stats = {}
for agent_id, agent in agents.items():
agent_stats[agent_id] = {
"current_tasks": agent.current_tasks,
"max_concurrent": agent.max_concurrent,
"utilization": agent.current_tasks / agent.max_concurrent if agent.max_concurrent > 0 else 0,
"average_performance": self.load_balancer.get_average_performance(agent_id),
"weight": self.load_balancer.get_weight(agent_id)
}
# Task statistics
total_tasks = len(tasks)
completed_tasks = len([t for t in tasks.values() if t.status == TaskStatus.COMPLETED])
failed_tasks = len([t for t in tasks.values() if t.status == TaskStatus.FAILED])
active_tasks = len([t for t in tasks.values() if t.status == TaskStatus.IN_PROGRESS])
return {
"timestamp": time.time(),
"task_statistics": {
"total": total_tasks,
"completed": completed_tasks,
"failed": failed_tasks,
"active": active_tasks,
"success_rate": completed_tasks / total_tasks if total_tasks > 0 else 0
},
"agent_performance": agent_stats,
"active_agents": len([a for a in agents.values() if a.current_tasks > 0]),
"load_balancer": self.load_balancer.get_performance_stats()
}

View File

@@ -0,0 +1,263 @@
"""
Workflow Management Service
Handles workflow parsing, scheduling, dependency tracking, and execution management.
"""
import time
import logging
from typing import Dict, List, Optional, Any
from dataclasses import dataclass, field
from enum import Enum
# Import shared types
from .agent_service import AgentType
logger = logging.getLogger(__name__)
class TaskStatus(Enum):
"""Task status tracking"""
PENDING = "pending"
IN_PROGRESS = "in_progress"
COMPLETED = "completed"
FAILED = "failed"
@dataclass
class Task:
"""Unified task representation"""
id: str
type: AgentType
priority: int = 3
status: TaskStatus = TaskStatus.PENDING
context: Dict[str, Any] = field(default_factory=dict)
payload: Dict[str, Any] = field(default_factory=dict)
assigned_agent: Optional[str] = None
result: Optional[Dict] = None
created_at: float = field(default_factory=time.time)
completed_at: Optional[float] = None
# Workflow support
workflow_id: Optional[str] = None
dependencies: List[str] = field(default_factory=list)
def cache_key(self) -> str:
"""Generate cache key for task result"""
import hashlib
import json
payload_hash = hashlib.md5(json.dumps(self.payload, sort_keys=True).encode()).hexdigest()
return f"task_result:{self.type.value}:{payload_hash}"
@dataclass
class WorkflowExecution:
"""Represents a workflow execution instance"""
workflow_id: str
execution_id: str
tasks: List[Task]
created_at: float
completed_at: Optional[float] = None
status: str = "running"
metadata: Dict[str, Any] = None
def __post_init__(self):
if self.metadata is None:
self.metadata = {}
class WorkflowService:
"""Service for managing workflows and their execution"""
def __init__(self):
self.workflow_tasks: Dict[str, List[Task]] = {}
self.workflow_executions: Dict[str, WorkflowExecution] = {}
self._initialized = False
def initialize(self):
"""Initialize the workflow service"""
if self._initialized:
return
self._initialized = True
logger.info("✅ Workflow Service initialized successfully")
async def submit_workflow(self, workflow: Dict[str, Any]) -> str:
"""Submit a workflow for execution"""
workflow_id = f"workflow_{int(time.time())}"
execution_id = f"exec_{workflow_id}"
tasks = self._parse_workflow_to_tasks(workflow, workflow_id)
# Create workflow execution record
execution = WorkflowExecution(
workflow_id=workflow_id,
execution_id=execution_id,
tasks=tasks,
created_at=time.time(),
metadata=workflow.get('metadata', {})
)
self.workflow_tasks[workflow_id] = tasks
self.workflow_executions[execution_id] = execution
logger.info(f"🔄 Submitted workflow: {workflow_id} with {len(tasks)} tasks")
return workflow_id
def _parse_workflow_to_tasks(self, workflow: Dict[str, Any], workflow_id: str) -> List[Task]:
"""Parse workflow definition into tasks"""
tasks = []
base_tasks = workflow.get('tasks', [])
for i, task_def in enumerate(base_tasks):
task_id = f"{workflow_id}_task_{i}"
task_type = AgentType(task_def.get('type', 'general_ai'))
task = Task(
id=task_id,
type=task_type,
workflow_id=workflow_id,
context=task_def.get('context', {}),
payload=task_def.get('payload', {}),
dependencies=task_def.get('dependencies', []),
priority=task_def.get('priority', 3)
)
tasks.append(task)
return tasks
def get_ready_workflow_tasks(self, all_tasks: Dict[str, Task]) -> List[Task]:
"""Get workflow tasks that are ready to execute (dependencies satisfied)"""
ready_tasks = []
for workflow_id, workflow_tasks in self.workflow_tasks.items():
for task in workflow_tasks:
if (task.status == TaskStatus.PENDING and
self._dependencies_satisfied(task, all_tasks)):
ready_tasks.append(task)
return ready_tasks
def _dependencies_satisfied(self, task: Task, all_tasks: Dict[str, Task]) -> bool:
"""Check if task dependencies are satisfied"""
for dep_id in task.dependencies:
dep_task = all_tasks.get(dep_id)
if not dep_task or dep_task.status != TaskStatus.COMPLETED:
return False
return True
def handle_task_completion(self, task: Task):
"""Handle completion of a workflow task"""
if not task.workflow_id:
return
# Check if workflow is complete
workflow_tasks = self.workflow_tasks.get(task.workflow_id, [])
completed_tasks = [t for t in workflow_tasks if t.status == TaskStatus.COMPLETED]
failed_tasks = [t for t in workflow_tasks if t.status == TaskStatus.FAILED]
# Update workflow execution status
for execution in self.workflow_executions.values():
if execution.workflow_id == task.workflow_id:
if len(failed_tasks) > 0:
execution.status = "failed"
execution.completed_at = time.time()
logger.info(f"❌ Workflow {task.workflow_id} failed")
elif len(completed_tasks) == len(workflow_tasks):
execution.status = "completed"
execution.completed_at = time.time()
logger.info(f"🎉 Workflow {task.workflow_id} completed")
break
def get_workflow_status(self, workflow_id: str) -> Dict[str, Any]:
"""Get workflow execution status"""
workflow_tasks = self.workflow_tasks.get(workflow_id, [])
if not workflow_tasks:
return {"error": "Workflow not found"}
status_counts = {}
for status in TaskStatus:
status_counts[status.value] = len([t for t in workflow_tasks if t.status == status])
# Find execution record
execution = None
for exec_record in self.workflow_executions.values():
if exec_record.workflow_id == workflow_id:
execution = exec_record
break
return {
"workflow_id": workflow_id,
"execution_id": execution.execution_id if execution else None,
"total_tasks": len(workflow_tasks),
"status_breakdown": status_counts,
"completed": status_counts.get("completed", 0) == len(workflow_tasks),
"status": execution.status if execution else "unknown",
"created_at": execution.created_at if execution else None,
"completed_at": execution.completed_at if execution else None
}
def get_workflow_tasks(self, workflow_id: str) -> List[Task]:
"""Get all tasks for a workflow"""
return self.workflow_tasks.get(workflow_id, [])
def get_all_workflows(self) -> Dict[str, List[Task]]:
"""Get all workflows"""
return self.workflow_tasks.copy()
def get_workflow_executions(self, workflow_id: Optional[str] = None) -> List[Dict[str, Any]]:
"""Get workflow execution history"""
executions = []
for execution in self.workflow_executions.values():
if workflow_id is None or execution.workflow_id == workflow_id:
executions.append({
"workflow_id": execution.workflow_id,
"execution_id": execution.execution_id,
"status": execution.status,
"task_count": len(execution.tasks),
"created_at": execution.created_at,
"completed_at": execution.completed_at,
"metadata": execution.metadata
})
# Sort by creation time, newest first
executions.sort(key=lambda x: x["created_at"], reverse=True)
return executions
def cleanup_completed_workflows(self, max_age_hours: int = 24):
"""Clean up old completed workflow executions"""
cutoff_time = time.time() - (max_age_hours * 3600)
# Find completed executions older than cutoff
to_remove = []
for execution_id, execution in self.workflow_executions.items():
if (execution.status in ["completed", "failed"] and
execution.completed_at and
execution.completed_at < cutoff_time):
to_remove.append(execution_id)
# Remove old executions and their associated workflow tasks
removed_count = 0
for execution_id in to_remove:
execution = self.workflow_executions[execution_id]
workflow_id = execution.workflow_id
# Remove workflow tasks if this is the only execution for this workflow
other_executions = [
e for e in self.workflow_executions.values()
if e.workflow_id == workflow_id and e.execution_id != execution_id
]
if not other_executions:
self.workflow_tasks.pop(workflow_id, None)
# Remove execution record
del self.workflow_executions[execution_id]
removed_count += 1
if removed_count > 0:
logger.info(f"🧹 Cleaned up {removed_count} old workflow executions")
return removed_count