Initial commit: Complete Hive distributed AI orchestration platform
This comprehensive implementation includes: - FastAPI backend with MCP server integration - React/TypeScript frontend with Vite - PostgreSQL database with Redis caching - Grafana/Prometheus monitoring stack - Docker Compose orchestration - Full MCP protocol support for Claude Code integration Features: - Agent discovery and management across network - Visual workflow editor and execution engine - Real-time task coordination and monitoring - Multi-model support with specialized agents - Distributed development task allocation 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
717
ARCHITECTURE.md
Normal file
717
ARCHITECTURE.md
Normal file
@@ -0,0 +1,717 @@
|
||||
# 🏗️ Hive Architecture Documentation
|
||||
|
||||
## System Overview
|
||||
|
||||
Hive is designed as a microservices architecture with clear separation of concerns, real-time communication, and scalable agent management.
|
||||
|
||||
## Core Services Architecture
|
||||
|
||||
```mermaid
|
||||
graph TB
|
||||
subgraph "Frontend Layer"
|
||||
UI[React Dashboard]
|
||||
WS_CLIENT[WebSocket Client]
|
||||
API_CLIENT[API Client]
|
||||
end
|
||||
|
||||
subgraph "API Gateway"
|
||||
NGINX[Nginx/Traefik]
|
||||
AUTH[Authentication Middleware]
|
||||
RATE_LIMIT[Rate Limiting]
|
||||
end
|
||||
|
||||
subgraph "Backend Services"
|
||||
COORDINATOR[Hive Coordinator]
|
||||
WORKFLOW_ENGINE[Workflow Engine]
|
||||
AGENT_MANAGER[Agent Manager]
|
||||
PERF_MONITOR[Performance Monitor]
|
||||
MCP_BRIDGE[MCP Bridge]
|
||||
end
|
||||
|
||||
subgraph "Data Layer"
|
||||
POSTGRES[(PostgreSQL)]
|
||||
REDIS[(Redis Cache)]
|
||||
INFLUX[(InfluxDB Metrics)]
|
||||
end
|
||||
|
||||
subgraph "Agent Network"
|
||||
ACACIA[ACACIA Agent]
|
||||
WALNUT[WALNUT Agent]
|
||||
IRONWOOD[IRONWOOD Agent]
|
||||
AGENTS[... Additional Agents]
|
||||
end
|
||||
|
||||
UI --> NGINX
|
||||
WS_CLIENT --> NGINX
|
||||
API_CLIENT --> NGINX
|
||||
|
||||
NGINX --> AUTH
|
||||
AUTH --> COORDINATOR
|
||||
AUTH --> WORKFLOW_ENGINE
|
||||
AUTH --> AGENT_MANAGER
|
||||
|
||||
COORDINATOR --> POSTGRES
|
||||
COORDINATOR --> REDIS
|
||||
COORDINATOR --> PERF_MONITOR
|
||||
|
||||
WORKFLOW_ENGINE --> MCP_BRIDGE
|
||||
AGENT_MANAGER --> ACACIA
|
||||
AGENT_MANAGER --> WALNUT
|
||||
AGENT_MANAGER --> IRONWOOD
|
||||
|
||||
PERF_MONITOR --> INFLUX
|
||||
```
|
||||
|
||||
## Component Specifications
|
||||
|
||||
### 🧠 Hive Coordinator
|
||||
|
||||
**Purpose**: Central orchestration service that manages task distribution, workflow execution, and system coordination.
|
||||
|
||||
**Key Responsibilities**:
|
||||
- Task queue management with priority scheduling
|
||||
- Agent assignment based on capabilities and availability
|
||||
- Workflow lifecycle management
|
||||
- Real-time status coordination
|
||||
- Performance metrics aggregation
|
||||
|
||||
**API Endpoints**:
|
||||
```
|
||||
POST /api/tasks # Create new task
|
||||
GET /api/tasks/{id} # Get task status
|
||||
PUT /api/tasks/{id}/assign # Assign task to agent
|
||||
DELETE /api/tasks/{id} # Cancel task
|
||||
|
||||
GET /api/status/cluster # Overall cluster status
|
||||
GET /api/status/agents # All agent statuses
|
||||
GET /api/metrics/performance # Performance metrics
|
||||
```
|
||||
|
||||
**Database Schema**:
|
||||
```sql
|
||||
tasks (
|
||||
id UUID PRIMARY KEY,
|
||||
title VARCHAR(255),
|
||||
description TEXT,
|
||||
priority INTEGER,
|
||||
status task_status_enum,
|
||||
assigned_agent_id UUID,
|
||||
created_at TIMESTAMP,
|
||||
started_at TIMESTAMP,
|
||||
completed_at TIMESTAMP,
|
||||
metadata JSONB
|
||||
);
|
||||
|
||||
task_dependencies (
|
||||
task_id UUID REFERENCES tasks(id),
|
||||
depends_on_task_id UUID REFERENCES tasks(id),
|
||||
PRIMARY KEY (task_id, depends_on_task_id)
|
||||
);
|
||||
```
|
||||
|
||||
### 🤖 Agent Manager
|
||||
|
||||
**Purpose**: Manages the lifecycle, health, and capabilities of all AI agents in the network.
|
||||
|
||||
**Key Responsibilities**:
|
||||
- Agent registration and discovery
|
||||
- Health monitoring and heartbeat tracking
|
||||
- Capability assessment and scoring
|
||||
- Load balancing and routing decisions
|
||||
- Performance benchmarking
|
||||
|
||||
**Agent Registration Protocol**:
|
||||
```json
|
||||
{
|
||||
"agent_id": "acacia",
|
||||
"name": "ACACIA Infrastructure Specialist",
|
||||
"endpoint": "http://192.168.1.72:11434",
|
||||
"model": "deepseek-r1:7b",
|
||||
"capabilities": [
|
||||
{"name": "devops", "proficiency": 0.95},
|
||||
{"name": "architecture", "proficiency": 0.90},
|
||||
{"name": "deployment", "proficiency": 0.88}
|
||||
],
|
||||
"hardware": {
|
||||
"gpu_type": "AMD Radeon RX 7900 XTX",
|
||||
"vram_gb": 24,
|
||||
"cpu_cores": 16,
|
||||
"ram_gb": 64
|
||||
},
|
||||
"performance_targets": {
|
||||
"min_tps": 15,
|
||||
"max_response_time": 30
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
**Health Check System**:
|
||||
```python
|
||||
@dataclass
|
||||
class AgentHealthCheck:
|
||||
agent_id: str
|
||||
timestamp: datetime
|
||||
response_time: float
|
||||
tokens_per_second: float
|
||||
cpu_usage: float
|
||||
memory_usage: float
|
||||
gpu_usage: float
|
||||
available: bool
|
||||
error_message: Optional[str] = None
|
||||
```
|
||||
|
||||
### 🔄 Workflow Engine
|
||||
|
||||
**Purpose**: Executes n8n-compatible workflows with real-time monitoring and MCP integration.
|
||||
|
||||
**Core Components**:
|
||||
1. **N8n Parser**: Converts n8n JSON to executable workflow graph
|
||||
2. **Execution Engine**: Manages workflow execution with dependency resolution
|
||||
3. **MCP Bridge**: Translates workflow nodes to MCP tool calls
|
||||
4. **Progress Tracker**: Real-time execution status and metrics
|
||||
|
||||
**Workflow Execution Flow**:
|
||||
```python
|
||||
class WorkflowExecution:
|
||||
async def execute(self, workflow: Workflow, input_data: Dict) -> ExecutionResult:
|
||||
# Parse workflow into execution graph
|
||||
graph = self.parser.parse_n8n_workflow(workflow.n8n_data)
|
||||
|
||||
# Validate dependencies and create execution plan
|
||||
execution_plan = self.planner.create_execution_plan(graph)
|
||||
|
||||
# Execute nodes in dependency order
|
||||
for step in execution_plan:
|
||||
node_result = await self.execute_node(step, input_data)
|
||||
await self.emit_progress_update(step, node_result)
|
||||
|
||||
return ExecutionResult(status="completed", output=final_output)
|
||||
```
|
||||
|
||||
**WebSocket Events**:
|
||||
```typescript
|
||||
interface WorkflowEvent {
|
||||
type: 'execution_started' | 'node_completed' | 'execution_completed' | 'error';
|
||||
execution_id: string;
|
||||
workflow_id: string;
|
||||
timestamp: string;
|
||||
data: {
|
||||
node_id?: string;
|
||||
progress?: number;
|
||||
result?: any;
|
||||
error?: string;
|
||||
};
|
||||
}
|
||||
```
|
||||
|
||||
### 📊 Performance Monitor
|
||||
|
||||
**Purpose**: Collects, analyzes, and visualizes system and agent performance metrics.
|
||||
|
||||
**Metrics Collection**:
|
||||
```python
|
||||
@dataclass
|
||||
class PerformanceMetrics:
|
||||
# System Metrics
|
||||
cpu_usage: float
|
||||
memory_usage: float
|
||||
disk_usage: float
|
||||
network_io: Dict[str, float]
|
||||
|
||||
# AI-Specific Metrics
|
||||
tokens_per_second: float
|
||||
response_time: float
|
||||
queue_length: int
|
||||
active_tasks: int
|
||||
|
||||
# GPU Metrics (if available)
|
||||
gpu_usage: float
|
||||
gpu_memory: float
|
||||
gpu_temperature: float
|
||||
|
||||
# Quality Metrics
|
||||
success_rate: float
|
||||
error_rate: float
|
||||
retry_count: int
|
||||
```
|
||||
|
||||
**Alert System**:
|
||||
```yaml
|
||||
alerts:
|
||||
high_cpu:
|
||||
condition: "cpu_usage > 85"
|
||||
severity: "warning"
|
||||
cooldown: 300 # 5 minutes
|
||||
|
||||
agent_down:
|
||||
condition: "agent_available == false"
|
||||
severity: "critical"
|
||||
cooldown: 60 # 1 minute
|
||||
|
||||
slow_response:
|
||||
condition: "avg_response_time > 60"
|
||||
severity: "warning"
|
||||
cooldown: 180 # 3 minutes
|
||||
```
|
||||
|
||||
### 🌉 MCP Bridge
|
||||
|
||||
**Purpose**: Provides standardized integration between n8n workflows and MCP (Model Context Protocol) servers.
|
||||
|
||||
**Protocol Translation**:
|
||||
```python
|
||||
class MCPBridge:
|
||||
async def translate_n8n_node(self, node: N8nNode) -> MCPTool:
|
||||
"""Convert n8n node to MCP tool specification"""
|
||||
match node.type:
|
||||
case "n8n-nodes-base.httpRequest":
|
||||
return MCPTool(
|
||||
name="http_request",
|
||||
description=node.parameters.get("description", ""),
|
||||
input_schema=self.extract_input_schema(node),
|
||||
function=self.create_http_handler(node.parameters)
|
||||
)
|
||||
case "n8n-nodes-base.code":
|
||||
return MCPTool(
|
||||
name="code_execution",
|
||||
description="Execute custom code",
|
||||
input_schema={"code": "string", "language": "string"},
|
||||
function=self.create_code_handler(node.parameters)
|
||||
)
|
||||
```
|
||||
|
||||
**MCP Server Registry**:
|
||||
```json
|
||||
{
|
||||
"servers": {
|
||||
"comfyui": {
|
||||
"endpoint": "ws://localhost:8188/api/mcp",
|
||||
"capabilities": ["image_generation", "image_processing"],
|
||||
"version": "1.0.0",
|
||||
"status": "active"
|
||||
},
|
||||
"code_review": {
|
||||
"endpoint": "http://localhost:8000/mcp",
|
||||
"capabilities": ["code_analysis", "security_scan"],
|
||||
"version": "1.2.0",
|
||||
"status": "active"
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Data Layer Design
|
||||
|
||||
### 🗄️ Database Schema
|
||||
|
||||
**Core Tables**:
|
||||
```sql
|
||||
-- Agent Management
|
||||
CREATE TABLE agents (
|
||||
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
|
||||
name VARCHAR(255) NOT NULL,
|
||||
endpoint VARCHAR(512) NOT NULL,
|
||||
model VARCHAR(255),
|
||||
specialization VARCHAR(100),
|
||||
hardware_config JSONB,
|
||||
capabilities JSONB,
|
||||
status agent_status DEFAULT 'offline',
|
||||
created_at TIMESTAMP DEFAULT NOW(),
|
||||
last_seen TIMESTAMP
|
||||
);
|
||||
|
||||
-- Workflow Management
|
||||
CREATE TABLE workflows (
|
||||
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
|
||||
name VARCHAR(255) NOT NULL,
|
||||
description TEXT,
|
||||
n8n_data JSONB NOT NULL,
|
||||
mcp_tools JSONB,
|
||||
created_by UUID REFERENCES users(id),
|
||||
version INTEGER DEFAULT 1,
|
||||
active BOOLEAN DEFAULT true,
|
||||
created_at TIMESTAMP DEFAULT NOW()
|
||||
);
|
||||
|
||||
-- Execution Tracking
|
||||
CREATE TABLE executions (
|
||||
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
|
||||
workflow_id UUID REFERENCES workflows(id),
|
||||
status execution_status DEFAULT 'pending',
|
||||
input_data JSONB,
|
||||
output_data JSONB,
|
||||
error_message TEXT,
|
||||
started_at TIMESTAMP,
|
||||
completed_at TIMESTAMP,
|
||||
created_at TIMESTAMP DEFAULT NOW()
|
||||
);
|
||||
|
||||
-- Performance Metrics (Time Series)
|
||||
CREATE TABLE agent_metrics (
|
||||
agent_id UUID REFERENCES agents(id),
|
||||
timestamp TIMESTAMP NOT NULL,
|
||||
metrics JSONB NOT NULL,
|
||||
PRIMARY KEY (agent_id, timestamp)
|
||||
);
|
||||
|
||||
CREATE INDEX idx_agent_metrics_timestamp ON agent_metrics(timestamp);
|
||||
CREATE INDEX idx_agent_metrics_agent_timestamp ON agent_metrics(agent_id, timestamp);
|
||||
```
|
||||
|
||||
**Indexing Strategy**:
|
||||
```sql
|
||||
-- Performance optimization indexes
|
||||
CREATE INDEX idx_tasks_status ON tasks(status) WHERE status IN ('pending', 'running');
|
||||
CREATE INDEX idx_tasks_priority ON tasks(priority DESC, created_at ASC);
|
||||
CREATE INDEX idx_executions_workflow_status ON executions(workflow_id, status);
|
||||
CREATE INDEX idx_agent_metrics_recent ON agent_metrics(timestamp) WHERE timestamp > NOW() - INTERVAL '24 hours';
|
||||
```
|
||||
|
||||
### 🔄 Caching Strategy
|
||||
|
||||
**Redis Cache Layout**:
|
||||
```
|
||||
# Agent Status Cache (TTL: 30 seconds)
|
||||
agent:status:{agent_id} -> {status, last_seen, performance}
|
||||
|
||||
# Task Queue Cache
|
||||
task:queue:high -> [task_id_1, task_id_2, ...]
|
||||
task:queue:medium -> [task_id_3, task_id_4, ...]
|
||||
task:queue:low -> [task_id_5, task_id_6, ...]
|
||||
|
||||
# Workflow Cache (TTL: 5 minutes)
|
||||
workflow:{workflow_id} -> {serialized_workflow_data}
|
||||
|
||||
# Performance Metrics Cache (TTL: 1 minute)
|
||||
metrics:cluster -> {aggregated_cluster_metrics}
|
||||
metrics:agent:{agent_id} -> {recent_agent_metrics}
|
||||
```
|
||||
|
||||
## Real-time Communication
|
||||
|
||||
### 🔌 WebSocket Architecture
|
||||
|
||||
**Connection Management**:
|
||||
```typescript
|
||||
interface WebSocketConnection {
|
||||
id: string;
|
||||
userId: string;
|
||||
subscriptions: Set<string>; // Topic subscriptions
|
||||
lastPing: Date;
|
||||
authenticated: boolean;
|
||||
}
|
||||
|
||||
// Subscription Topics
|
||||
type SubscriptionTopic =
|
||||
| `agent.${string}` // Specific agent updates
|
||||
| `execution.${string}` // Specific execution updates
|
||||
| `cluster.status` // Overall cluster status
|
||||
| `alerts.${severity}` // Alerts by severity
|
||||
| `user.${string}`; // User-specific notifications
|
||||
```
|
||||
|
||||
**Message Protocol**:
|
||||
```typescript
|
||||
interface WebSocketMessage {
|
||||
id: string;
|
||||
type: 'subscribe' | 'unsubscribe' | 'data' | 'error' | 'ping' | 'pong';
|
||||
topic?: string;
|
||||
data?: any;
|
||||
timestamp: string;
|
||||
}
|
||||
|
||||
// Example messages
|
||||
{
|
||||
"id": "msg_123",
|
||||
"type": "data",
|
||||
"topic": "agent.acacia",
|
||||
"data": {
|
||||
"status": "busy",
|
||||
"current_task": "task_456",
|
||||
"performance": {
|
||||
"tps": 18.5,
|
||||
"cpu_usage": 67.2
|
||||
}
|
||||
},
|
||||
"timestamp": "2025-07-06T12:00:00Z"
|
||||
}
|
||||
```
|
||||
|
||||
### 📡 Event Streaming
|
||||
|
||||
**Event Bus Architecture**:
|
||||
```python
|
||||
@dataclass
|
||||
class HiveEvent:
|
||||
id: str
|
||||
type: str
|
||||
source: str
|
||||
timestamp: datetime
|
||||
data: Dict[str, Any]
|
||||
correlation_id: Optional[str] = None
|
||||
|
||||
class EventBus:
|
||||
async def publish(self, event: HiveEvent) -> None:
|
||||
"""Publish event to all subscribers"""
|
||||
|
||||
async def subscribe(self, event_type: str, handler: Callable) -> str:
|
||||
"""Subscribe to specific event types"""
|
||||
|
||||
async def unsubscribe(self, subscription_id: str) -> None:
|
||||
"""Remove subscription"""
|
||||
```
|
||||
|
||||
**Event Types**:
|
||||
```python
|
||||
# Agent Events
|
||||
AGENT_REGISTERED = "agent.registered"
|
||||
AGENT_STATUS_CHANGED = "agent.status_changed"
|
||||
AGENT_PERFORMANCE_UPDATE = "agent.performance_update"
|
||||
|
||||
# Task Events
|
||||
TASK_CREATED = "task.created"
|
||||
TASK_ASSIGNED = "task.assigned"
|
||||
TASK_STARTED = "task.started"
|
||||
TASK_COMPLETED = "task.completed"
|
||||
TASK_FAILED = "task.failed"
|
||||
|
||||
# Workflow Events
|
||||
WORKFLOW_EXECUTION_STARTED = "workflow.execution_started"
|
||||
WORKFLOW_NODE_COMPLETED = "workflow.node_completed"
|
||||
WORKFLOW_EXECUTION_COMPLETED = "workflow.execution_completed"
|
||||
|
||||
# System Events
|
||||
SYSTEM_ALERT = "system.alert"
|
||||
SYSTEM_MAINTENANCE = "system.maintenance"
|
||||
```
|
||||
|
||||
## Security Architecture
|
||||
|
||||
### 🔒 Authentication & Authorization
|
||||
|
||||
**JWT Token Structure**:
|
||||
```json
|
||||
{
|
||||
"sub": "user_id",
|
||||
"iat": 1625097600,
|
||||
"exp": 1625184000,
|
||||
"roles": ["admin", "developer"],
|
||||
"permissions": [
|
||||
"workflows.create",
|
||||
"agents.manage",
|
||||
"executions.view"
|
||||
],
|
||||
"tenant": "organization_id"
|
||||
}
|
||||
```
|
||||
|
||||
**Permission Matrix**:
|
||||
```yaml
|
||||
roles:
|
||||
admin:
|
||||
permissions: ["*"]
|
||||
description: "Full system access"
|
||||
|
||||
developer:
|
||||
permissions:
|
||||
- "workflows.*"
|
||||
- "executions.*"
|
||||
- "agents.view"
|
||||
- "tasks.create"
|
||||
description: "Development and execution access"
|
||||
|
||||
viewer:
|
||||
permissions:
|
||||
- "workflows.view"
|
||||
- "executions.view"
|
||||
- "agents.view"
|
||||
description: "Read-only access"
|
||||
```
|
||||
|
||||
### 🛡️ API Security
|
||||
|
||||
**Rate Limiting**:
|
||||
```python
|
||||
# Rate limits by endpoint and user role
|
||||
RATE_LIMITS = {
|
||||
"api.workflows.create": {"admin": 100, "developer": 50, "viewer": 0},
|
||||
"api.executions.start": {"admin": 200, "developer": 100, "viewer": 0},
|
||||
"api.agents.register": {"admin": 10, "developer": 0, "viewer": 0},
|
||||
}
|
||||
```
|
||||
|
||||
**Input Validation**:
|
||||
```python
|
||||
from pydantic import BaseModel, validator
|
||||
|
||||
class WorkflowCreateRequest(BaseModel):
|
||||
name: str
|
||||
description: Optional[str]
|
||||
n8n_data: Dict[str, Any]
|
||||
|
||||
@validator('name')
|
||||
def validate_name(cls, v):
|
||||
if len(v) < 3 or len(v) > 255:
|
||||
raise ValueError('Name must be 3-255 characters')
|
||||
return v
|
||||
|
||||
@validator('n8n_data')
|
||||
def validate_n8n_data(cls, v):
|
||||
required_fields = ['nodes', 'connections']
|
||||
if not all(field in v for field in required_fields):
|
||||
raise ValueError('Invalid n8n workflow format')
|
||||
return v
|
||||
```
|
||||
|
||||
## Deployment Architecture
|
||||
|
||||
### 🐳 Container Strategy
|
||||
|
||||
**Docker Compose Structure**:
|
||||
```yaml
|
||||
version: '3.8'
|
||||
services:
|
||||
hive-coordinator:
|
||||
image: hive/coordinator:latest
|
||||
environment:
|
||||
- DATABASE_URL=postgresql://user:pass@postgres:5432/hive
|
||||
- REDIS_URL=redis://redis:6379
|
||||
depends_on: [postgres, redis]
|
||||
|
||||
hive-frontend:
|
||||
image: hive/frontend:latest
|
||||
environment:
|
||||
- API_URL=http://hive-coordinator:8000
|
||||
depends_on: [hive-coordinator]
|
||||
|
||||
postgres:
|
||||
image: postgres:15
|
||||
environment:
|
||||
- POSTGRES_DB=hive
|
||||
- POSTGRES_USER=hive
|
||||
- POSTGRES_PASSWORD=${DB_PASSWORD}
|
||||
volumes:
|
||||
- postgres_data:/var/lib/postgresql/data
|
||||
|
||||
redis:
|
||||
image: redis:7-alpine
|
||||
volumes:
|
||||
- redis_data:/data
|
||||
|
||||
prometheus:
|
||||
image: prom/prometheus:latest
|
||||
volumes:
|
||||
- ./monitoring/prometheus.yml:/etc/prometheus/prometheus.yml
|
||||
|
||||
grafana:
|
||||
image: grafana/grafana:latest
|
||||
environment:
|
||||
- GF_SECURITY_ADMIN_PASSWORD=${GRAFANA_PASSWORD}
|
||||
volumes:
|
||||
- grafana_data:/var/lib/grafana
|
||||
```
|
||||
|
||||
### 🌐 Network Architecture
|
||||
|
||||
**Production Network Topology**:
|
||||
```
|
||||
Internet
|
||||
↓
|
||||
[Traefik Load Balancer] (SSL Termination)
|
||||
↓
|
||||
[tengig Overlay Network]
|
||||
↓
|
||||
┌─────────────────────────────────────┐
|
||||
│ Hive Application Services │
|
||||
│ ├── Frontend (React) │
|
||||
│ ├── Backend API (FastAPI) │
|
||||
│ ├── WebSocket Gateway │
|
||||
│ └── Task Queue Workers │
|
||||
└─────────────────────────────────────┘
|
||||
↓
|
||||
┌─────────────────────────────────────┐
|
||||
│ Data Services │
|
||||
│ ├── PostgreSQL (Primary DB) │
|
||||
│ ├── Redis (Cache + Sessions) │
|
||||
│ ├── InfluxDB (Metrics) │
|
||||
│ └── Prometheus (Monitoring) │
|
||||
└─────────────────────────────────────┘
|
||||
↓
|
||||
┌─────────────────────────────────────┐
|
||||
│ AI Agent Network │
|
||||
│ ├── ACACIA (192.168.1.72:11434) │
|
||||
│ ├── WALNUT (192.168.1.27:11434) │
|
||||
│ ├── IRONWOOD (192.168.1.113:11434)│
|
||||
│ └── [Additional Agents...] │
|
||||
└─────────────────────────────────────┘
|
||||
```
|
||||
|
||||
## Performance Considerations
|
||||
|
||||
### 🚀 Optimization Strategies
|
||||
|
||||
**Database Optimization**:
|
||||
- Connection pooling with asyncpg
|
||||
- Query optimization with proper indexing
|
||||
- Time-series data partitioning for metrics
|
||||
- Read replicas for analytics queries
|
||||
|
||||
**Caching Strategy**:
|
||||
- Redis for session and temporary data
|
||||
- Application-level caching for expensive computations
|
||||
- CDN for static assets
|
||||
- Database query result caching
|
||||
|
||||
**Concurrency Management**:
|
||||
- AsyncIO for I/O-bound operations
|
||||
- Connection pools for database and HTTP clients
|
||||
- Semaphores for limiting concurrent agent requests
|
||||
- Queue-based task processing
|
||||
|
||||
### 📊 Monitoring & Observability
|
||||
|
||||
**Key Metrics**:
|
||||
```yaml
|
||||
# Application Metrics
|
||||
- hive_active_agents_total
|
||||
- hive_task_queue_length
|
||||
- hive_workflow_executions_total
|
||||
- hive_api_request_duration_seconds
|
||||
- hive_websocket_connections_active
|
||||
|
||||
# Infrastructure Metrics
|
||||
- hive_database_connections_active
|
||||
- hive_redis_memory_usage_bytes
|
||||
- hive_container_cpu_usage_percent
|
||||
- hive_container_memory_usage_bytes
|
||||
|
||||
# Business Metrics
|
||||
- hive_workflows_created_daily
|
||||
- hive_execution_success_rate
|
||||
- hive_agent_utilization_percent
|
||||
- hive_average_task_completion_time
|
||||
```
|
||||
|
||||
**Alerting Rules**:
|
||||
```yaml
|
||||
groups:
|
||||
- name: hive.rules
|
||||
rules:
|
||||
- alert: HighErrorRate
|
||||
expr: rate(hive_api_errors_total[5m]) > 0.1
|
||||
for: 2m
|
||||
labels:
|
||||
severity: warning
|
||||
annotations:
|
||||
summary: "High error rate detected"
|
||||
|
||||
- alert: AgentDown
|
||||
expr: hive_agent_health_status == 0
|
||||
for: 1m
|
||||
labels:
|
||||
severity: critical
|
||||
annotations:
|
||||
summary: "Agent {{ $labels.agent_id }} is down"
|
||||
```
|
||||
|
||||
This architecture provides a solid foundation for the unified Hive platform, combining the best practices from our existing distributed AI projects while ensuring scalability, maintainability, and observability.
|
||||
Reference in New Issue
Block a user