Initial commit: Complete Hive distributed AI orchestration platform
This comprehensive implementation includes: - FastAPI backend with MCP server integration - React/TypeScript frontend with Vite - PostgreSQL database with Redis caching - Grafana/Prometheus monitoring stack - Docker Compose orchestration - Full MCP protocol support for Claude Code integration Features: - Agent discovery and management across network - Visual workflow editor and execution engine - Real-time task coordination and monitoring - Multi-model support with specialized agents - Distributed development task allocation 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
163
mcp-server/README.md
Normal file
163
mcp-server/README.md
Normal file
@@ -0,0 +1,163 @@
|
||||
# 🐝 Hive MCP Server
|
||||
|
||||
Model Context Protocol (MCP) server that exposes the Hive Distributed AI Orchestration Platform to AI assistants like Claude.
|
||||
|
||||
## Overview
|
||||
|
||||
This MCP server allows AI assistants to:
|
||||
|
||||
- 🤖 **Orchestrate Agent Tasks** - Assign development work across your distributed cluster
|
||||
- 📊 **Monitor Executions** - Track task progress and results in real-time
|
||||
- 🔄 **Manage Workflows** - Create and execute complex distributed pipelines
|
||||
- 📈 **Access Cluster Resources** - Get status, metrics, and performance data
|
||||
|
||||
## Quick Start
|
||||
|
||||
### 1. Install Dependencies
|
||||
|
||||
```bash
|
||||
cd mcp-server
|
||||
npm install
|
||||
```
|
||||
|
||||
### 2. Build the Server
|
||||
|
||||
```bash
|
||||
npm run build
|
||||
```
|
||||
|
||||
### 3. Configure Claude Desktop
|
||||
|
||||
Add to your Claude Desktop configuration (`~/Library/Application Support/Claude/claude_desktop_config.json`):
|
||||
|
||||
```json
|
||||
{
|
||||
"mcpServers": {
|
||||
"hive": {
|
||||
"command": "node",
|
||||
"args": ["/path/to/hive/mcp-server/dist/index.js"],
|
||||
"env": {
|
||||
"HIVE_API_URL": "http://localhost:8087",
|
||||
"HIVE_WS_URL": "ws://localhost:8087"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### 4. Restart Claude Desktop
|
||||
|
||||
The Hive MCP server will automatically connect to your running Hive cluster.
|
||||
|
||||
## Available Tools
|
||||
|
||||
### Agent Management
|
||||
- **`hive_get_agents`** - List all registered agents with status
|
||||
- **`hive_register_agent`** - Register new agents in the cluster
|
||||
|
||||
### Task Management
|
||||
- **`hive_create_task`** - Create development tasks for specialized agents
|
||||
- **`hive_get_task`** - Get details of specific tasks
|
||||
- **`hive_get_tasks`** - List tasks with filtering options
|
||||
|
||||
### Workflow Management
|
||||
- **`hive_get_workflows`** - List available workflows
|
||||
- **`hive_create_workflow`** - Create new distributed workflows
|
||||
- **`hive_execute_workflow`** - Execute workflows with inputs
|
||||
|
||||
### Monitoring
|
||||
- **`hive_get_cluster_status`** - Get comprehensive cluster status
|
||||
- **`hive_get_metrics`** - Retrieve Prometheus metrics
|
||||
- **`hive_get_executions`** - View workflow execution history
|
||||
|
||||
### Coordination
|
||||
- **`hive_coordinate_development`** - Orchestrate complex multi-agent development projects
|
||||
|
||||
## Available Resources
|
||||
|
||||
### Real-time Cluster Data
|
||||
- **`hive://cluster/status`** - Live cluster status and health
|
||||
- **`hive://agents/list`** - Agent registry with capabilities
|
||||
- **`hive://tasks/active`** - Currently running and pending tasks
|
||||
- **`hive://tasks/completed`** - Recent task results and metrics
|
||||
|
||||
### Workflow Data
|
||||
- **`hive://workflows/available`** - All configured workflows
|
||||
- **`hive://executions/recent`** - Recent workflow executions
|
||||
|
||||
### Monitoring Data
|
||||
- **`hive://metrics/prometheus`** - Raw Prometheus metrics
|
||||
- **`hive://capabilities/overview`** - Cluster capabilities summary
|
||||
|
||||
## Example Usage with Claude
|
||||
|
||||
### Register an Agent
|
||||
```
|
||||
Please register a new agent in my Hive cluster:
|
||||
- ID: walnut-kernel-dev
|
||||
- Endpoint: http://walnut.local:11434
|
||||
- Model: codellama:34b
|
||||
- Specialization: kernel_dev
|
||||
```
|
||||
|
||||
### Create a Development Task
|
||||
```
|
||||
Create a high-priority kernel development task to optimize FlashAttention for RDNA3 GPUs.
|
||||
The task should focus on memory coalescing and include constraints for backward compatibility.
|
||||
```
|
||||
|
||||
### Coordinate Complex Development
|
||||
```
|
||||
Help me coordinate development of a new PyTorch operator that includes:
|
||||
1. CUDA/HIP kernel implementation (high priority)
|
||||
2. PyTorch integration layer (medium priority)
|
||||
3. Performance benchmarks (medium priority)
|
||||
4. Documentation and examples (low priority)
|
||||
5. Unit and integration tests (high priority)
|
||||
|
||||
Use parallel coordination where possible.
|
||||
```
|
||||
|
||||
### Monitor Cluster Status
|
||||
```
|
||||
What's the current status of my Hive cluster? Show me agent utilization and recent task performance.
|
||||
```
|
||||
|
||||
## Environment Variables
|
||||
|
||||
- **`HIVE_API_URL`** - Hive backend API URL (default: `http://localhost:8087`)
|
||||
- **`HIVE_WS_URL`** - Hive WebSocket URL (default: `ws://localhost:8087`)
|
||||
|
||||
## Development
|
||||
|
||||
### Watch Mode
|
||||
```bash
|
||||
npm run watch
|
||||
```
|
||||
|
||||
### Direct Run
|
||||
```bash
|
||||
npm run dev
|
||||
```
|
||||
|
||||
## Integration with Hive
|
||||
|
||||
This MCP server connects to your running Hive platform and provides a standardized interface for AI assistants to:
|
||||
|
||||
1. **Understand** your cluster capabilities and current state
|
||||
2. **Plan** complex development tasks across multiple agents
|
||||
3. **Execute** coordinated workflows with real-time monitoring
|
||||
4. **Optimize** task distribution based on agent specializations
|
||||
|
||||
The server automatically handles task queuing, agent assignment, and result aggregation - allowing AI assistants to focus on high-level orchestration and decision-making.
|
||||
|
||||
## Security Notes
|
||||
|
||||
- The MCP server connects to your local Hive cluster
|
||||
- No external network access required
|
||||
- All communication stays within your development environment
|
||||
- Agent endpoints should be on trusted networks only
|
||||
|
||||
---
|
||||
|
||||
🐝 **Ready to let Claude orchestrate your distributed AI development cluster!**
|
||||
Reference in New Issue
Block a user