The light version of decimal.js, an arbitrary-precision Decimal type for JavaScript.
See the README on GitHub for a quick-start introduction.
      In all examples below, var and semicolons are not shown, and if a commented-out
      value is in quotes it means toString has been called on the preceding expression.
    
      When the library is loaded, it defines a single function object,
      Decimal, the constructor of Decimal instances.
    
If necessary, multiple Decimal constructors can be created, each with their own independent configuration, e.g. precision and range, which applies to all Decimal instances created from it.
      
        A new Decimal constructor is created by calling the clone
        method of an already existing Decimal constructor.
      
    
Decimal(value) ⇒ Decimal
    value: number|string|Decimal9007199254740991.
      e or E defines a power-of-ten exponent.
      Returns a new Decimal object instance.
Throws on an invalid value.
x = new Decimal(9)                       // '9'
y = new Decimal(x)                       // '9'
new Decimal('5032485723458348569331745.33434346346912144534543')
new Decimal('4.321e+4')                  // '43210'
new Decimal('-735.0918e-430')            // '-7.350918e-428'
new Decimal('5.6700000')                 // '5.67'
new Decimal('.5')                        // '0.5'
new Decimal(0.046875)                    // '0.046875'
new Decimal('0.046875000000')            // '0.046875'
new Decimal(4.6875e-2)                   // '0.046875'
new Decimal('468.75e-4')                 // '0.046875'
    The methods of a Decimal constructor.
.clone([object]) ⇒ Decimal constructor
    object: object
      Returns a new independent Decimal constructor with configuration settings as described by
      object (see config), or with the same
      settings as this Decimal constructor if object is omitted.
    
Decimal.config({ precision: 5 })
D9 = Decimal.clone({ precision: 9 })
a = new Decimal(1)
b = new D9(1)
a.div(3)                           // 0.33333
b.div(3)                           // 0.333333333
// D9 = Decimal.clone({ precision: 9 }) is equivalent to:
D9 = Decimal.clone()
D9.config({ precision: 9 })
    It is not inefficient in terms of memory usage to use multiple Decimal constructors as functions are shared between them.
.set(object) ⇒ Decimal constructor
    object: object
      Configures the 'global' settings for this particular Decimal constructor, i.e.
      the settings which apply to operations performed on the Decimal instances created by it.
    
Returns this Decimal constructor.
      The configuration object, object, can contain some or all of the properties
      described in detail at Properties and shown in the
      example below.
    
      The values of the configuration object properties are checked for validity and then stored as
      equivalently-named properties of this Decimal constructor.
    
Throws on an invalid object or configuration property value.
// Defaults
Decimal.config({
    precision: 20,
    rounding: 4,
    toExpNeg: -7,
    toExpPos: 21,
    LN10: new Decimal('2.30258509299404568401799145468436...')
})
Decimal.set({ rounding: Decimal.ROUND_CEIL })
    The properties of a Decimal constructor can also be set by direct assignment, but that will by-pass the validity checking that this method performs - which is not a problem if the user knows that the checks are unnecessary.
The properties of a Decimal constructor.
      The values of the configuration properties precision,
      rounding, toExpNeg
      and toExpPos are set using the
      config method.
    
      As simple object properties they can be set directly without using
      config, and it is fine to do so, but the values assigned
      will not then be checked for validity. For example:
    
Decimal.config({ precision: 0 })
// '[DecimalError] Invalid argument: precision: 0'
Decimal.precision = 0
// No error is thrown and the results of calculations are unreliable
    
      number: integer, 1 to 1e+9 inclusive
      Default value: 20
    
The maximum number of significant digits of the result of an operation.
      All functions which return a Decimal will return the value to precision
      significant digits except Decimal,
      absoluteValue,
      negated, toInteger, and
      toDecimalPlaces.
    
Decimal.config({ precision: 5 })
Decimal.precision                  // 5
    
      number: integer, 0 to 8 inclusive
      Default value: 4 (ROUND_HALF_UP)
    
      The default rounding mode used by toInteger,
      toDecimalPlaces,
      toExponential,
      toFixed,
      toPrecision and
      toSignificantDigits.
    
The rounding modes are available as enumerated properties of the constructor.
Decimal.config({ rounding: Decimal.ROUND_UP })
Decimal.config({ rounding: 0 })    // equivalent
Decimal.rounding                   // 0
    
      number: integer, -9e15 to 0 inclusive
      Default value: -7
    
      The negative exponent value at and below which toString
      returns exponential notation.
    
Decimal.config({ toExpNeg: -7 })
Decimal.toExpNeg                   // -7
new Decimal(0.00000123)            // '0.00000123'       e is -6
new Decimal(0.000000123)           // '1.23e-7'
// Always return exponential notation:
Decimal.config({ toExpNeg: 0 })
    
      JavaScript numbers use exponential notation for negative exponents of -7 and
      below.
    
      Regardless of the value of toExpNeg, the
      toFixed method will always return a value in normal
      notation and the toExponential method will always
      return a value in exponential form.
    
      number: integer, 0 to 9e15 inclusive
      Default value: 20
    
      The positive exponent value at and above which toString
      returns exponential notation.
    
Decimal.config({ toExpPos: 2 })
Decimal.toExpPos                   // 2
new Decimal(12.3)                  // '12.3'        e is 1
new Decimal(123)                   // '1.23e+2'
// Always return exponential notation:
Decimal.config({ toExpPos: 0 })
    
      JavaScript numbers use exponential notation for positive exponents of 20 and
      above.
    
      Regardless of the value of toExpPos, the
      toFixed method will always return a value in normal
      notation and the toExponential method will always
      return a value in exponential form.
    
      string|Decimal: the natural logarithm of 10
      The default value has 115 digits
    
      The maximum precision of the naturalExponential,
      naturalLogarithm, logarithm,
      and toPower methods is determined by the precision of the
      value of LN10.
    
      The default value of LN10 enables a maximum precision of about 100
      digits. To increase this, assign a new value to LN10 using a string or Decimal
      value with about 15 digits more than the maximum precision required.
    
      An error will be thrown if the LN10 value does not have sufficient precision to
      enable an operation to be performed.
    
Decimal.config({ LN10: '2.3025850929940456840179914546843642076011014886287729760333279009' })
Decimal.LN10.toFixed(5)             // ''2.30259'
    
      The library's enumerated rounding modes are stored as properties of the Decimal constructor.
      
They are not referenced internally by the library itself.
    
Rounding modes 0 to 6 (inclusive) are the same as those of Java's BigDecimal class.
| Property | Value | Description | 
|---|---|---|
| ROUND_UP | 0 | Rounds away from zero | 
| ROUND_DOWN | 1 | Rounds towards zero | 
| ROUND_CEIL | 2 | Rounds towards Infinity | 
| ROUND_FLOOR | 3 | Rounds towards -Infinity | 
| ROUND_HALF_UP | 4 | Rounds towards nearest neighbour. If equidistant, rounds away from zero | 
| ROUND_HALF_DOWN | 5 | Rounds towards nearest neighbour. If equidistant, rounds towards zero | 
| ROUND_HALF_EVEN | 6 | Rounds towards nearest neighbour. If equidistant, rounds towards even neighbour | 
| ROUND_HALF_CEIL | 7 | Rounds towards nearest neighbour. If equidistant, rounds towards Infinity | 
| ROUND_HALF_FLOOR | 8 | Rounds towards nearest neighbour. If equidistant, rounds towards -Infinity | 
Decimal.config({ rounding: Decimal.ROUND_CEIL })
Decimal.config({ rounding: 2 })    // equivalent
Decimal.rounding                   // 2
    The methods inherited by a Decimal instance from its constructor's prototype object.
A Decimal instance is immutable in the sense that it is not changed by its methods.
Methods that return a Decimal can be chained:
x = new Decimal(2).times('999.999999999999999').dividedBy(4).toFixed(2)
    Methods do not round their arguments before execution.
Many method names have a shorter alias. (Internally, the library always uses the shorter method names.)
.abs() ⇒ DecimalReturns a new Decimal whose value is the absolute value, i.e. the magnitude, of the value of this Decimal.
      The return value is not affected by the value of the
      precision setting.
    
x = new Decimal(-0.8) y = x.absoluteValue() // '0.8' z = y.abs() // '0.8'
.cmp(x) ⇒ numberx: number|string|Decimal
| Returns | |
|---|---|
| 1 | if the value of this Decimal is greater than the value of x | 
| -1 | if the value of this Decimal is less than the value of x | 
| 0 | if this Decimal and xhave the same value | 
x = new Decimal(4) y = new Decimal(5) x.comparedTo(y) // -1 x.comparedTo(x.plus(1)) // 0
.dp() ⇒ numberReturns the number of decimal places, i.e. the number of digits after the decimal point, of the value of this Decimal.
x = new Decimal(1.234) x.decimalPlaces() // '3' y = new Decimal(987.654321) y.dp() // '6'
.div(x) ⇒ Decimalx: number|string|Decimal
      Returns a new Decimal whose value is the value of this Decimal divided by x,
      truncated to precision significant digits.
    
x = new Decimal(355) y = new Decimal(113) x.dividedBy(y) // '3.14159292035398230088' x.div(5) // '71'
.idiv(x) ⇒ Decimal
    x: number|string|Decimal
      Return a new Decimal whose value is the integer part of dividing this Decimal by
      x, truncated to precision significant
      digits.
    
x = new Decimal(5) y = new Decimal(3) x.dividedToIntegerBy(y) // '1' x.idiv(0.7) // '7'
.eq(x) ⇒ booleanx: number|string|Decimal
      Returns true if the value of this Decimal equals the value of x,
      otherwise returns false.
    
Note: This method uses the cmp method internally.
0 === 1e-324                     // true
x = new Decimal(0)
x.equals('1e-324')               // false
    .exponent() ⇒ numberReturns the exponent value of this Decimal.
x = new Decimal(1234.567) x.exponent() // 3
.gt(x) ⇒ booleanx: number|string|Decimal
      Returns true if the value of this Decimal is greater than the value of
      x, otherwise returns false.
    
Note: This method uses the cmp method internally.
0.1 > (0.3 - 0.2) // true x = new Decimal(0.1) x.greaterThan(Decimal(0.3).minus(0.2)) // false new Decimal(0).gt(x) // false
.gte(x) ⇒ boolean
    x: number|string|Decimal
      Returns true if the value of this Decimal is greater than or equal to the value
      of x, otherwise returns false.
    
Note: This method uses the cmp method internally.
(0.3 - 0.2) >= 0.1 // false x = new Decimal(0.3).minus(0.2) x.greaterThanOrEqualTo(0.1) // true new Decimal(1).gte(x) // true
.isint() ⇒ boolean
      Returns true if the value of this Decimal is a whole number, otherwise returns
      false.
    
x = new Decimal(1) x.isInteger() // true y = new Decimal(123.456) y.isint() // false
.isneg() ⇒ boolean
      Returns true if the value of this Decimal is negative, otherwise returns
      false.
    
x = new Decimal(0) x.isNegative() // false y = new Decimal(2) y.isneg // false
Note: n < 0 can be used if n <= -Number.MIN_VALUE.
.ispos() ⇒ boolean
      Returns true if the value of this Decimal is positive, otherwise returns
      false.
    
x = new Decimal(0) x.isPositive() // false y = new Decimal(-2) y.ispos // false
Note: n < 0 can be used if n <= -Number.MIN_VALUE.
.isZero() ⇒ boolean
      Returns true if the value of this Decimal is zero or minus zero, otherwise
      returns false.
    
x = new Decimal(0) x.isZero() // true
Note: n == 0 can be used if n >= Number.MIN_VALUE.
.lt(x) ⇒ booleanx: number|string|Decimal
      Returns true if the value of this Decimal is less than the value of
      x, otherwise returns false.
    
Note: This method uses the cmp method internally.
(0.3 - 0.2) < 0.1 // true x = new Decimal(0.3).minus(0.2) x.lessThan(0.1) // false new Decimal(0).lt(x) // true
.lte(x) ⇒ booleanx: number|string|Decimal
      Returns true if the value of this Decimal is less than or equal to the value of
      x, otherwise returns false.
    
Note: This method uses the cmp method internally.
0.1 <= (0.3 - 0.2) // false x = new Decimal(0.1) x.lessThanOrEqualTo(Decimal(0.3).minus(0.2)) // true new Decimal(-1).lte(x) // true
.log(x) ⇒ Decimalx: number|string|Decimal
      Returns a new Decimal whose value is the base x logarithm of the value of this
      Decimal, truncated to precision significant digits.
    
      If x is omitted, the base 10 logarithm of the value of this Decimal will be
      returned.
    
x = new Decimal(1000) x.logarithm() // '3' y = new Decimal(256) y.log(2) // '8'
The maximum error will be 1 ulp (unit in the last place).
Logarithms to base 2 or 10 will always be correct.
The performance of this method degrades exponentially with increasing digits.
.minus(x) ⇒ Decimalx: number|string|Decimal
      Returns a new Decimal whose value is the value of this Decimal minus x, truncated
      to precision significant digits.
    
0.3 - 0.1 // 0.19999999999999998 x = new Decimal(0.3) x.minus(0.1) // '0.2'
.mod(x) ⇒ Decimalx: number|string|Decimal
      Returns a new Decimal whose value is the value of this Decimal modulo x,
      truncated to precision significant digits.
    
1 % 0.9 // 0.09999999999999998 x = new Decimal(1) y = x.modulo(0.9) // '0.1'
.exp() ⇒ Decimal
      Returns a new Decimal whose value is the base e (Euler's number, the base of the
      natural logarithm) exponential of the value of this Decimal, truncated to
      precision significant digits.
    
      The naturalLogarithm function is the inverse of this function.
    
x = new Decimal(1) x.naturalExponential() // '2.7182818284590452354' y = new Decimal(2) y.exp() // '7.3890560989306502272'
The maximum error will be 1 ulp (unit in the last place).
The performance of this method degrades exponentially with increasing digits.
.ln() ⇒ Decimal
      Returns a new Decimal whose value is the natural logarithm of the value of this Decimal,
      truncated to precision significant digits.
    
      The natural logarithm is the inverse of the naturalExponential
      function.
    
x = new Decimal(10)
x.naturalLogarithm()                     // '2.3026'
y = new Decimal('1.23e+30')
y.ln()                                   // '69.28'
    
      The mathematical result of the natural logarithm function is non-terminating, unless its
      argument is 1.
    
The time-taken by this method increases exponentially with increasing digits.
See LN10 to configure the maximum precision available.
.neg() ⇒ Decimal
      Returns a new Decimal whose value is the value of this Decimal negated, i.e. multiplied by
      -1.
    
      The return value is not affected by the value of the
      precision setting.
    
x = new Decimal(1.8) x.negated() // '-1.8' y = new Decimal(-1.3) y.neg() // '1.3'
.plus(x) ⇒ Decimalx: number|string|Decimal
      Returns a new Decimal whose value is the value of this Decimal plus x, truncated
      to precision significant digits.
    
0.1 + 0.2 // 0.30000000000000004 x = new Decimal(0.1) y = x.plus(0.2) // '0.3' new Decimal(0.7).plus(x).plus(y) // '1.1'
.sd([include_zeros]) ⇒ numberReturns the number of significant digits of the value of this Decimal.
      If include_zeros is true or 1 then any trailing zeros
      of the integer part of a number are counted as significant digits, otherwise they are not.
    
x = new Decimal(1.234) x.precision() // '4' y = new Decimal(987000) y.sd() // '3' y.sd(true) // '6'
.sqrt() ⇒ Decimal
      Returns a new Decimal whose value is the square root of this Decimal, truncated to
      precision significant digits.
    
      This method is much faster than using the toPower method with
      an exponent of 0.5.
    
x = new Decimal(16) x.squareRoot() // '4' y = new Decimal(3) y.sqrt() // '1.73205080756887729353' y.sqrt().eq( y.pow(0.5) ) // true
.times(x) ⇒ Decimalx: number|string|Decimal
      Returns a new Decimal whose value is the value of this Decimal times x,
      truncated to precision significant digits.
    
0.6 * 3                                  // 1.7999999999999998
x = new Decimal(0.6)
y = x.times(3)                           // '1.8'
new Decimal('7e+500').times(y)           // '1.26e+501'
    .todp([dp [, rm]]) ⇒ Decimal
    
      dp: number: integer, 0 to 1e+9 inclusive
      rm: number: integer, 0 to 8 inclusive.
    
      Returns a new Decimal whose value is the value of this Decimal rounded to a maximum of
      dp decimal places using rounding mode rm.
    
      If dp is omitted, the return value will have the same value as this Decimal.
    
      If rm is omitted, rounding mode rounding
      is used.
    
Throws on an invalid dp or rm value.
x = new Decimal(12.24567) x.toDecimalPlaces(0) // '12' x.toDecimalPlaces(1, 0) // '12.3' y = new Decimal(9876.54321) y.todp(3) // '9876.543' y.todp(1, 0) // '9876.6' y.todp(1, Decimal.ROUND_DOWN) // '9876.5'
.toExponential([dp [, rm]]) ⇒ string
    
      dp: number: integer, 0 to 1e+9 inclusive
      rm: number: integer, 0 to 8 inclusive
    
      Returns a string representing the value of this Decimal in exponential notation rounded
      using rounding mode rm to dp decimal places, i.e with one digit
      before the decimal point and dp digits after it.
    
      If the value of this Decimal in exponential notation has fewer than dp fraction
      digits, the return value will be appended with zeros accordingly.
    
      If dp is omitted, the number of digits after the decimal point defaults to the
      minimum number of digits necessary to represent the value exactly.
    
      If rm is omitted, rounding mode rounding is
      used.
    
Throws on an invalid dp or rm value.
x = 45.6 b = new Decimal(x) x.toExponential() // '4.56e+1' y.toExponential() // '4.56e+1' x.toExponential(0) // '5e+1' y.toExponential(0) // '5e+1' x.toExponential(1) // '4.6e+1' y.toExponential(1) // '4.6e+1' y.toExponential(1, 1) // '4.5e+1' (ROUND_DOWN) x.toExponential(3) // '4.560e+1' y.toExponential(3) // '4.560e+1'
.toFixed([dp [, rm]]) ⇒ string
    
      dp: number: integer, 0 to 1e+9 inclusive
      rm: number: integer, 0 to 8 inclusive
    
      Returns a string representing the value of this Decimal in normal (fixed-point) notation
      rounded to dp decimal places using rounding mode rm.
    
      If the value of this Decimal in normal notation has fewer than dp fraction
      digits, the return value will be appended with zeros accordingly.
    
      Unlike Number.prototype.toFixed, which returns exponential notation if a number
      is greater or equal to 1021, this method will always return normal
      notation.
    
      If dp is omitted, the return value will be unrounded and in normal notation. This
      is unlike Number.prototype.toFixed, which returns the value to zero decimal
      places, but is useful when because of the current
      toExpNeg or
      toExpNeg values,
      toString returns exponential notation.
    
      If rm is omitted, rounding mode rounding is
      used.
    
Throws on an invalid dp or rm value.
x = 3.456 b = new Decimal(x) x.toFixed() // '3' y.toFixed() // '3.456' y.toFixed(0) // '3' x.toFixed(2) // '3.46' y.toFixed(2) // '3.46' y.toFixed(2, 1) // '3.45' (ROUND_DOWN) x.toFixed(5) // '3.45600' y.toFixed(5) // '3.45600'
.toint() ⇒ Decimal
      Returns a new Decimal whose value is the value of this Decimal rounded to a whole number using
      rounding mode rounding.
    
      To emulate Math.round, set rounding to
      7, i.e. ROUND_HALF_CEIL.
    
Decimal.config({ rounding: 4 })
x = 1234.5
x.toInteger()                            // '1235'
Decimal.rounding = Decimal.ROUND_DOWN
x.toint()                                // '1234'
x                                        // '1234.5'
.toJSON() ⇒ stringAs toString.
.toNumber() ⇒ numberReturns the value of this Decimal converted to a primitive number.
Type coercion with, for example, JavaScript's unary plus operator will also work, except that a Decimal with the value minus zero will convert to positive zero.
x = new Decimal(456.789)
x.toNumber()                   // 456.789
+x                             // 456.789
y = new Decimal('45987349857634085409857349856430985')
y.toNumber()                   // 4.598734985763409e+34
    .pow(x) ⇒ Decimalx: number|string|Decimal: integer or non-integer
      Returns a new Decimal whose value is the value of this Decimal raised to the power
      x, truncated to precision significant
      digits.
    
      The performance of this method degrades exponentially with increasing digits.
      For non-integer exponents in particular, the performance of this method may not be adequate.
    
The maximum error will be 1 ulp (unit in the last place). 
Math.pow(0.7, 2)               // 0.48999999999999994
x = new Decimal(0.7)
x.toPower(2)                   // '0.49'
new Decimal(3).pow(-2)         // '0.11111111111111111111'
new Decimal(1217652.23).pow('98765.489305603941')
// '4.8227010515242461181e+601039'
    .toPrecision([sd [, rm]]) ⇒ string
    
      sd: number: integer, 1 to 1e+9 inclusive
      rm: number: integer, 0 to 8 inclusive
    
      Returns a string representing the value of this Decimal rounded to sd significant
      digits using rounding mode rm.
    
      If sd is less than the number of digits necessary to represent the integer part
      of the value in normal (fixed-point) notation, then exponential notation is used.
    
      If sd is omitted, the return value is the same as
      toString.
    
      If rm is omitted, rounding mode rounding is
      used.
    
Throws on an invalid sd or rm value.
x = 45.6 b = new Decimal(x) x.toPrecision() // '45.6' y.toPrecision() // '45.6' x.toPrecision(1) // '5e+1' y.toPrecision(1) // '5e+1' y.toPrecision(2, 0) // '4.6e+1' (ROUND_UP) y.toPrecision(2, 1) // '4.5e+1' (ROUND_DOWN) x.toPrecision(5) // '45.600' y.toPrecision(5) // '45.600'
.tosd([sd [, rm]]) ⇒ Decimal
    
      sd: number: integer, 1 to 1e+9 inclusive.
      rm: number: integer, 0 to 8 inclusive.
    
      Returns a new Decimal whose value is the value of this Decimal rounded to a maximum of
      sd significant digits using rounding mode rm.
    
      If sd is omitted, the return value will be rounded to
      precision significant digits.
    
      If rm is omitted, rounding mode rounding
      will be used.
    
Throws on an invalid sd or rm value.
Decimal.config({ precision: 5, rounding: 4 })
x = new Decimal(9876.54321)
x.toSignificantDigits()                          // '9876.5'
x.toSignificantDigits(6)                         // '9876.54'
x.toSignificantDigits(6, Decimal.ROUND_UP)       // '9876.55'
x.tosd(2)                                        // '9900'
x.tosd(2, 1)                                     // '9800'
x                                                // '9876.54321'
    .toString() ⇒ stringReturns a string representing the value of this Decimal.
      If this Decimal has a positive exponent that is equal to or greater than
      toExpPos, or a negative exponent equal to or less than
      toExpNeg, then exponential notation will be returned.
    
x = new Decimal(750000)
x.toString()                             // '750000'
Decimal.config({ toExpPos: 5 })
x.toString()                             // '7.5e+5'
Decimal.config({ precision: 4 });
y = new Decimal('1.23456789')
y.toString()                             // '1.23456789'
    .val() ⇒ stringAs toString.
      The value of a Decimal is stored in a normalised base 10000000 floating point
      format.
    
A Decimal instance is an object with three properties:
| Property | Description | Type | Value | 
|---|---|---|---|
| d | digits | number [] | Array of integers, each 0-1e7 | 
| e | exponent* | number | Integer, -1286742750677284to1286742750677284inclusive | 
| s | sign | number | -1,0, or1 | 
      *This is the exponent in base 10000000. To get the base 10 exponent, use the
      exponent method.
    
The properties are best considered to be read-only.
As with JavaScript numbers, the original exponent and fractional trailing zeros of a number are not preserved.
x = new Decimal(0.123)                   // '0.123'
x.toExponential()                        // '1.23e-1'
x.d                                      // [ 1230000 ]
x.e                                      // -1
x.s                                      // 1
y = new Number(-123.4567000e+2)          // '-12345.67'
y.toExponential()                        // '-1.234567e+4'
z = new Decimal('-123.4567000e+2')       // '-12345.67'
z.toExponential()                        // '-1.234567e+4'
z.d                                      // [ 12345, 6700000 ]
z.e                                      // 4
z.s                                      // -1
    
      The errors that are thrown are generic Error objects whose message
      property begins with "[DecimalError]".
    
To determine if an exception is a Decimal Error:
try {
    // ...
} catch (e) {
    if ( e instanceof Error && /DecimalError/.test(e.message) ) {
        // ...
    }
}
    Some arbitrary-precision libraries retain trailing fractional zeros as they can indicate the precision of a value. This can be useful but the results of arithmetic operations can be misleading.
x = new BigDecimal("1.0")
y = new BigDecimal("1.1000")
z = x.add(y)                      // 2.1000
x = new BigDecimal("1.20")
y = new BigDecimal("3.45000")
z = x.multiply(y)                 // 4.1400000
    To specify the precision of a value is to specify that the value lies within a certain range.
      In the first example, x has a value of 1.0. The trailing zero shows
      the precision of the value, implying that it is in the range 0.95 to
      1.05. Similarly, the precision indicated by the trailing zeros of y
      indicates that the value is in the range 1.09995 to 1.10005.
    
      If we  add the two lowest values in the ranges we have, 0.95 + 1.09995 = 2.04995,
      and if we add the two highest values we have, 1.05 + 1.10005 = 2.15005, so the
      range of the result of the addition implied by the precision of its operands is
      2.04995 to 2.15005.
    
      The result given by BigDecimal of 2.1000 however, indicates that the value is in
      the range 2.09995 to 2.10005 and therefore the precision implied by
      its trailing zeros may be misleading.
    
      In the second example, the true range is 4.122744 to 4.157256 yet
      the BigDecimal answer of 4.1400000 indicates a range of 4.13999995
      to  4.14000005. Again, the precision implied by the trailing zeros may be
      misleading.
    
      This library, like binary floating point and most calculators, does not retain trailing
      fractional zeros. Instead, the toExponential, toFixed and
      toPrecision methods enable trailing zeros to be added if and when required.