# Hive Backend Deployment Fixes ## Critical Issues Identified and Fixed ### 1. Database Connection Issues ✅ FIXED **Problem:** - Simple DATABASE_URL fallback to SQLite in production - No connection pooling - No retry logic for database connections - Missing connection validation **Solution:** - Added PostgreSQL connection pooling with proper configuration - Implemented database connection retry logic - Added connection validation and health checks - Enhanced error handling for database operations **Files Modified:** - `/home/tony/AI/projects/hive/backend/app/core/database.py` ### 2. FastAPI Lifecycle Management ✅ FIXED **Problem:** - Synchronous database table creation in async context - No error handling in startup/shutdown - No graceful handling of initialization failures **Solution:** - Added retry logic for database initialization - Enhanced error handling in lifespan manager - Proper cleanup on startup failures - Graceful shutdown handling **Files Modified:** - `/home/tony/AI/projects/hive/backend/app/main.py` ### 3. Health Check Robustness ✅ FIXED **Problem:** - Health check could fail if coordinator was unhealthy - No database connection testing - Insufficient error handling **Solution:** - Enhanced health check with comprehensive component testing - Added database connection validation - Proper error reporting with appropriate HTTP status codes - Component-wise health status reporting **Files Modified:** - `/home/tony/AI/projects/hive/backend/app/main.py` ### 4. Coordinator Initialization ✅ FIXED **Problem:** - No proper error handling during initialization - Agent HTTP requests lacked timeout configuration - No graceful shutdown for running tasks - Memory leaks possible with task storage **Solution:** - Added HTTP client session with proper timeout configuration - Enhanced error handling during initialization - Proper task cancellation during shutdown - Resource cleanup on errors **Files Modified:** - `/home/tony/AI/projects/hive/backend/app/core/hive_coordinator.py` ### 5. Docker Production Readiness ✅ FIXED **Problem:** - Missing environment variable defaults - No database migration handling - Health check reliability issues - No proper signal handling **Solution:** - Added environment variable defaults - Enhanced health check with longer startup period - Added dumb-init for proper signal handling - Production-ready configuration **Files Modified:** - `/home/tony/AI/projects/hive/backend/Dockerfile` - `/home/tony/AI/projects/hive/backend/.env.production` ## Root Cause Analysis ### Primary Issues: 1. **Database Connection Failures**: Lack of retry logic and connection pooling 2. **Race Conditions**: Poor initialization order and error handling 3. **Resource Management**: No proper cleanup of HTTP sessions and tasks 4. **Production Configuration**: Missing environment variables and timeouts ### Secondary Issues: 1. **CORS Configuration**: Limited to localhost only 2. **Error Handling**: Insufficient error context and logging 3. **Health Checks**: Not comprehensive enough for production 4. **Signal Handling**: No graceful shutdown support ## Deployment Instructions ### 1. Environment Setup ```bash # Copy production environment file cp .env.production .env # Update secret key and other sensitive values nano .env ``` ### 2. Database Migration ```bash # Create migration if needed alembic revision --autogenerate -m "Initial migration" # Apply migrations alembic upgrade head ``` ### 3. Docker Build ```bash # Build with production configuration docker build -t hive-backend:latest . # Test locally docker run -p 8000:8000 --env-file .env hive-backend:latest ``` ### 4. Health Check Verification ```bash # Test health endpoint curl -f http://localhost:8000/health # Expected response should include all components as "operational" ``` ## Service Scaling Recommendations ### 1. Database Configuration - **Connection Pool**: 10 connections with 20 max overflow - **Connection Recycling**: 3600 seconds (1 hour) - **Pre-ping**: Enabled for connection validation ### 2. Application Scaling - **Replicas**: Start with 2 replicas for HA - **Workers**: 1 worker per container (better isolation) - **Resources**: 512MB memory, 0.5 CPU per replica ### 3. Load Balancing - **Health Check**: `/health` endpoint with 30s interval - **Startup Grace**: 60 seconds for initialization - **Timeout**: 10 seconds for health checks ### 4. Monitoring - **Prometheus**: Metrics available at `/api/metrics` - **Logging**: Structured JSON logs for aggregation - **Alerts**: Set up for failed health checks ## Troubleshooting Guide ### Backend Not Starting 1. Check database connectivity 2. Verify environment variables 3. Check coordinator initialization logs 4. Validate HTTP client connectivity ### Service Scaling Issues 1. Monitor memory usage (coordinator stores tasks) 2. Check database connection pool exhaustion 3. Verify HTTP session limits 4. Review task execution timeouts ### Health Check Failures 1. Database connection issues 2. Coordinator initialization failures 3. HTTP client timeout problems 4. Resource exhaustion ## Production Monitoring ### Key Metrics to Watch: - Database connection pool usage - Task execution success rate - HTTP client connection errors - Memory usage trends - Response times for health checks ### Log Analysis: - Search for "initialization failed" patterns - Monitor database connection errors - Track coordinator shutdown messages - Watch for HTTP timeout errors ## Security Considerations ### Environment Variables: - Never commit `.env` files to version control - Use secrets management for sensitive values - Rotate database credentials regularly - Implement proper RBAC for API access ### Network Security: - Use HTTPS in production - Implement rate limiting - Configure proper CORS origins - Use network policies for pod-to-pod communication ## Next Steps 1. **Deploy Updated Images**: Build and deploy with fixes 2. **Monitor Metrics**: Set up monitoring and alerting 3. **Load Testing**: Verify scaling behavior under load 4. **Security Audit**: Review security configurations 5. **Documentation**: Update operational runbooks The fixes implemented address the root causes of the 1/2 replica scaling issue and should result in stable 2/2 replica deployment.