Files
hive/frontend/node_modules/recharts-scale/umd/RechartsScale.js
anthonyrawlins 85bf1341f3 Add comprehensive frontend UI and distributed infrastructure
Frontend Enhancements:
- Complete React TypeScript frontend with modern UI components
- Distributed workflows management interface with real-time updates
- Socket.IO integration for live agent status monitoring
- Agent management dashboard with cluster visualization
- Project management interface with metrics and task tracking
- Responsive design with proper error handling and loading states

Backend Infrastructure:
- Distributed coordinator for multi-agent workflow orchestration
- Cluster management API with comprehensive agent operations
- Enhanced database models for agents and projects
- Project service for filesystem-based project discovery
- Performance monitoring and metrics collection
- Comprehensive API documentation and error handling

Documentation:
- Complete distributed development guide (README_DISTRIBUTED.md)
- Comprehensive development report with architecture insights
- System configuration templates and deployment guides

The platform now provides a complete web interface for managing the distributed AI cluster
with real-time monitoring, workflow orchestration, and agent coordination capabilities.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-07-10 08:41:59 +10:00

97 lines
81 KiB
JavaScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* ATTENTION: The "eval" devtool has been used (maybe by default in mode: "development").
* This devtool is neither made for production nor for readable output files.
* It uses "eval()" calls to create a separate source file in the browser devtools.
* If you are trying to read the output file, select a different devtool (https://webpack.js.org/configuration/devtool/)
* or disable the default devtool with "devtool: false".
* If you are looking for production-ready output files, see mode: "production" (https://webpack.js.org/configuration/mode/).
*/
/******/ (() => { // webpackBootstrap
/******/ var __webpack_modules__ = ({
/***/ "./src/getNiceTickValues.js":
/*!**********************************!*\
!*** ./src/getNiceTickValues.js ***!
\**********************************/
/***/ ((__unused_webpack_module, exports, __webpack_require__) => {
"use strict";
eval("\n\nObject.defineProperty(exports, \"__esModule\", ({\n value: true\n}));\nexports.getTickValuesFixedDomain = exports.getTickValues = exports.getNiceTickValues = void 0;\n\nvar _decimal = _interopRequireDefault(__webpack_require__(/*! decimal.js-light */ \"./node_modules/decimal.js-light/decimal.js\"));\n\nvar _utils = __webpack_require__(/*! ./util/utils */ \"./src/util/utils.js\");\n\nvar _arithmetic = _interopRequireDefault(__webpack_require__(/*! ./util/arithmetic */ \"./src/util/arithmetic.js\"));\n\nfunction _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }\n\nfunction _toConsumableArray(arr) { return _arrayWithoutHoles(arr) || _iterableToArray(arr) || _unsupportedIterableToArray(arr) || _nonIterableSpread(); }\n\nfunction _nonIterableSpread() { throw new TypeError(\"Invalid attempt to spread non-iterable instance.\\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.\"); }\n\nfunction _iterableToArray(iter) { if (typeof Symbol !== \"undefined\" && Symbol.iterator in Object(iter)) return Array.from(iter); }\n\nfunction _arrayWithoutHoles(arr) { if (Array.isArray(arr)) return _arrayLikeToArray(arr); }\n\nfunction _slicedToArray(arr, i) { return _arrayWithHoles(arr) || _iterableToArrayLimit(arr, i) || _unsupportedIterableToArray(arr, i) || _nonIterableRest(); }\n\nfunction _nonIterableRest() { throw new TypeError(\"Invalid attempt to destructure non-iterable instance.\\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.\"); }\n\nfunction _unsupportedIterableToArray(o, minLen) { if (!o) return; if (typeof o === \"string\") return _arrayLikeToArray(o, minLen); var n = Object.prototype.toString.call(o).slice(8, -1); if (n === \"Object\" && o.constructor) n = o.constructor.name; if (n === \"Map\" || n === \"Set\") return Array.from(o); if (n === \"Arguments\" || /^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n)) return _arrayLikeToArray(o, minLen); }\n\nfunction _arrayLikeToArray(arr, len) { if (len == null || len > arr.length) len = arr.length; for (var i = 0, arr2 = new Array(len); i < len; i++) { arr2[i] = arr[i]; } return arr2; }\n\nfunction _iterableToArrayLimit(arr, i) { if (typeof Symbol === \"undefined\" || !(Symbol.iterator in Object(arr))) return; var _arr = []; var _n = true; var _d = false; var _e = undefined; try { for (var _i = arr[Symbol.iterator](), _s; !(_n = (_s = _i.next()).done); _n = true) { _arr.push(_s.value); if (i && _arr.length === i) break; } } catch (err) { _d = true; _e = err; } finally { try { if (!_n && _i[\"return\"] != null) _i[\"return\"](); } finally { if (_d) throw _e; } } return _arr; }\n\nfunction _arrayWithHoles(arr) { if (Array.isArray(arr)) return arr; }\n\n/**\n * Calculate a interval of a minimum value and a maximum value\n *\n * @param {Number} min The minimum value\n * @param {Number} max The maximum value\n * @return {Array} An interval\n */\nfunction getValidInterval(_ref) {\n var _ref2 = _slicedToArray(_ref, 2),\n min = _ref2[0],\n max = _ref2[1];\n\n var validMin = min,\n validMax = max; // exchange\n\n if (min > max) {\n validMin = max;\n validMax = min;\n }\n\n return [validMin, validMax];\n}\n/**\n * Calculate the step which is easy to understand between ticks, like 10, 20, 25\n *\n * @param {Decimal} roughStep The rough step calculated by deviding the\n * difference by the tickCount\n * @param {Boolean} allowDecimals Allow the ticks to be decimals or not\n * @param {Integer} correctionFactor A correction factor\n * @return {Decimal} The step which is easy to understand between two ticks\n */\n\n\nfunction getFormatStep(roughStep, allowDecimals, correctionFactor) {\n if (roughStep.lte(0)) {\n return new _decimal.default(0);\n }\n\n var digitCount = _arithmetic.default.getDigitCount(roughStep.toNumber()); // The ratio between the rough step and the smallest number which has a bigger\n // order of magnitudes than the rough step\n\n\n var digitCountValue = new _decimal.default(10).pow(digitCount);\n var stepRatio = roughStep.div(digitCountValue); // When an integer and a float multiplied, the accuracy of result may be wrong\n\n var stepRatioScale = digitCount !== 1 ? 0.05 : 0.1;\n var amendStepRatio = new _decimal.default(Math.ceil(stepRatio.div(stepRatioScale).toNumber())).add(correctionFactor).mul(stepRatioScale);\n var formatStep = amendStepRatio.mul(digitCountValue);\n return allowDecimals ? formatStep : new _decimal.default(Math.ceil(formatStep));\n}\n/**\n * calculate the ticks when the minimum value equals to the maximum value\n *\n * @param {Number} value The minimum valuue which is also the maximum value\n * @param {Integer} tickCount The count of ticks\n * @param {Boolean} allowDecimals Allow the ticks to be decimals or not\n * @return {Array} ticks\n */\n\n\nfunction getTickOfSingleValue(value, tickCount, allowDecimals) {\n var step = 1; // calculate the middle value of ticks\n\n var middle = new _decimal.default(value);\n\n if (!middle.isint() && allowDecimals) {\n var absVal = Math.abs(value);\n\n if (absVal < 1) {\n // The step should be a float number when the difference is smaller than 1\n step = new _decimal.default(10).pow(_arithmetic.default.getDigitCount(value) - 1);\n middle = new _decimal.default(Math.floor(middle.div(step).toNumber())).mul(step);\n } else if (absVal > 1) {\n // Return the maximum integer which is smaller than 'value' when 'value' is greater than 1\n middle = new _decimal.default(Math.floor(value));\n }\n } else if (value === 0) {\n middle = new _decimal.default(Math.floor((tickCount - 1) / 2));\n } else if (!allowDecimals) {\n middle = new _decimal.default(Math.floor(value));\n }\n\n var middleIndex = Math.floor((tickCount - 1) / 2);\n var fn = (0, _utils.compose)((0, _utils.map)(function (n) {\n return middle.add(new _decimal.default(n - middleIndex).mul(step)).toNumber();\n }), _utils.range);\n return fn(0, tickCount);\n}\n/**\n * Calculate the step\n *\n * @param {Number} min The minimum value of an interval\n * @param {Number} max The maximum value of an interval\n * @param {Integer} tickCount The count of ticks\n * @param {Boolean} allowDecimals Allow the ticks to be decimals or not\n * @param {Number} correctionFactor A correction factor\n * @return {Object} The step, minimum value of ticks, maximum value of ticks\n */\n\n\nfunction calculateStep(min, max, tickCount, allowDecimals) {\n var correctionFactor = arguments.length > 4 && arguments[4] !== undefined ? arguments[4] : 0;\n\n // dirty hack (for recharts' test)\n if (!Number.isFinite((max - min) / (tickCount - 1))) {\n return {\n step: new _decimal.default(0),\n tickMin: new _decimal.default(0),\n tickMax: new _decimal.default(0)\n };\n } // The step which is easy to understand between two ticks\n\n\n var step = getFormatStep(new _decimal.default(max).sub(min).div(tickCount - 1), allowDecimals, correctionFactor); // A medial value of ticks\n\n var middle; // When 0 is inside the interval, 0 should be a tick\n\n if (min <= 0 && max >= 0) {\n middle = new _decimal.default(0);\n } else {\n // calculate the middle value\n middle = new _decimal.default(min).add(max).div(2); // minus modulo value\n\n middle = middle.sub(new _decimal.default(middle).mod(step));\n }\n\n var belowCount = Math.ceil(middle.sub(min).div(step).toNumber());\n var upCount = Math.ceil(new _decimal.default(max).sub(middle).div(step).toNumber());\n var scaleCount = belowCount + upCount + 1;\n\n if (scaleCount > tickCount) {\n // When more ticks need to cover the interval, step should be bigger.\n return calculateStep(min, max, tickCount, allowDecimals, correctionFactor + 1);\n }\n\n if (scaleCount < tickCount) {\n // When less ticks can cover the interval, we should add some additional ticks\n upCount = max > 0 ? upCount + (tickCount - scaleCount) : upCount;\n belowCount = max > 0 ? belowCount : belowCount + (tickCount - scaleCount);\n }\n\n return {\n step: step,\n tickMin: middle.sub(new _decimal.default(belowCount).mul(step)),\n tickMax: middle.add(new _decimal.default(upCount).mul(step))\n };\n}\n/**\n * Calculate the ticks of an interval, the count of ticks will be guraranteed\n *\n * @param {Number} min, max min: The minimum value, max: The maximum value\n * @param {Integer} tickCount The count of ticks\n * @param {Boolean} allowDecimals Allow the ticks to be decimals or not\n * @return {Array} ticks\n */\n\n\nfunction getNiceTickValuesFn(_ref3) {\n var _ref4 = _slicedToArray(_ref3, 2),\n min = _ref4[0],\n max = _ref4[1];\n\n var tickCount = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : 6;\n var allowDecimals = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : true;\n // More than two ticks should be return\n var count = Math.max(tickCount, 2);\n\n var _getValidInterval = getValidInterval([min, max]),\n _getValidInterval2 = _slicedToArray(_getValidInterval, 2),\n cormin = _getValidInterval2[0],\n cormax = _getValidInterval2[1];\n\n if (cormin === -Infinity || cormax === Infinity) {\n var _values = cormax === Infinity ? [cormin].concat(_toConsumableArray((0, _utils.range)(0, tickCount - 1).map(function () {\n return Infinity;\n }))) : [].concat(_toConsumableArray((0, _utils.range)(0, tickCount - 1).map(function () {\n return -Infinity;\n })), [cormax]);\n\n return min > max ? (0, _utils.reverse)(_values) : _values;\n }\n\n if (cormin === cormax) {\n return getTickOfSingleValue(cormin, tickCount, allowDecimals);\n } // Get the step between two ticks\n\n\n var _calculateStep = calculateStep(cormin, cormax, count, allowDecimals),\n step = _calculateStep.step,\n tickMin = _calculateStep.tickMin,\n tickMax = _calculateStep.tickMax;\n\n var values = _arithmetic.default.rangeStep(tickMin, tickMax.add(new _decimal.default(0.1).mul(step)), step);\n\n return min > max ? (0, _utils.reverse)(values) : values;\n}\n/**\n * Calculate the ticks of an interval, the count of ticks won't be guraranteed\n *\n * @param {Number} min, max min: The minimum value, max: The maximum value\n * @param {Integer} tickCount The count of ticks\n * @param {Boolean} allowDecimals Allow the ticks to be decimals or not\n * @return {Array} ticks\n */\n\n\nfunction getTickValuesFn(_ref5) {\n var _ref6 = _slicedToArray(_ref5, 2),\n min = _ref6[0],\n max = _ref6[1];\n\n var tickCount = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : 6;\n var allowDecimals = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : true;\n // More than two ticks should be return\n var count = Math.max(tickCount, 2);\n\n var _getValidInterval3 = getValidInterval([min, max]),\n _getValidInterval4 = _slicedToArray(_getValidInterval3, 2),\n cormin = _getValidInterval4[0],\n cormax = _getValidInterval4[1];\n\n if (cormin === -Infinity || cormax === Infinity) {\n return [min, max];\n }\n\n if (cormin === cormax) {\n return getTickOfSingleValue(cormin, tickCount, allowDecimals);\n }\n\n var step = getFormatStep(new _decimal.default(cormax).sub(cormin).div(count - 1), allowDecimals, 0);\n var fn = (0, _utils.compose)((0, _utils.map)(function (n) {\n return new _decimal.default(cormin).add(new _decimal.default(n).mul(step)).toNumber();\n }), _utils.range);\n var values = fn(0, count).filter(function (entry) {\n return entry >= cormin && entry <= cormax;\n });\n return min > max ? (0, _utils.reverse)(values) : values;\n}\n/**\n * Calculate the ticks of an interval, the count of ticks won't be guraranteed,\n * but the domain will be guaranteed\n *\n * @param {Number} min, max min: The minimum value, max: The maximum value\n * @param {Integer} tickCount The count of ticks\n * @param {Boolean} allowDecimals Allow the ticks to be decimals or not\n * @return {Array} ticks\n */\n\n\nfunction getTickValuesFixedDomainFn(_ref7, tickCount) {\n var _ref8 = _slicedToArray(_ref7, 2),\n min = _ref8[0],\n max = _ref8[1];\n\n var allowDecimals = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : true;\n\n // More than two ticks should be return\n var _getValidInterval5 = getValidInterval([min, max]),\n _getValidInterval6 = _slicedToArray(_getValidInterval5, 2),\n cormin = _getValidInterval6[0],\n cormax = _getValidInterval6[1];\n\n if (cormin === -Infinity || cormax === Infinity) {\n return [min, max];\n }\n\n if (cormin === cormax) {\n return [cormin];\n }\n\n var count = Math.max(tickCount, 2);\n var step = getFormatStep(new _decimal.default(cormax).sub(cormin).div(count - 1), allowDecimals, 0);\n var values = [].concat(_toConsumableArray(_arithmetic.default.rangeStep(new _decimal.default(cormin), new _decimal.default(cormax).sub(new _decimal.default(0.99).mul(step)), step)), [cormax]);\n return min > max ? (0, _utils.reverse)(values) : values;\n}\n\nvar getNiceTickValues = (0, _utils.memoize)(getNiceTickValuesFn);\nexports.getNiceTickValues = getNiceTickValues;\nvar getTickValues = (0, _utils.memoize)(getTickValuesFn);\nexports.getTickValues = getTickValues;\nvar getTickValuesFixedDomain = (0, _utils.memoize)(getTickValuesFixedDomainFn);\nexports.getTickValuesFixedDomain = getTickValuesFixedDomain;\n\n//# sourceURL=webpack://recharts-scale/./src/getNiceTickValues.js?");
/***/ }),
/***/ "./src/index.js":
/*!**********************!*\
!*** ./src/index.js ***!
\**********************/
/***/ ((__unused_webpack_module, exports, __webpack_require__) => {
"use strict";
eval("\n\nObject.defineProperty(exports, \"__esModule\", ({\n value: true\n}));\nObject.defineProperty(exports, \"getTickValues\", ({\n enumerable: true,\n get: function get() {\n return _getNiceTickValues.getTickValues;\n }\n}));\nObject.defineProperty(exports, \"getNiceTickValues\", ({\n enumerable: true,\n get: function get() {\n return _getNiceTickValues.getNiceTickValues;\n }\n}));\nObject.defineProperty(exports, \"getTickValuesFixedDomain\", ({\n enumerable: true,\n get: function get() {\n return _getNiceTickValues.getTickValuesFixedDomain;\n }\n}));\n\nvar _getNiceTickValues = __webpack_require__(/*! ./getNiceTickValues */ \"./src/getNiceTickValues.js\");\n\n//# sourceURL=webpack://recharts-scale/./src/index.js?");
/***/ }),
/***/ "./src/util/arithmetic.js":
/*!********************************!*\
!*** ./src/util/arithmetic.js ***!
\********************************/
/***/ ((__unused_webpack_module, exports, __webpack_require__) => {
"use strict";
eval("\n\nObject.defineProperty(exports, \"__esModule\", ({\n value: true\n}));\nexports.default = void 0;\n\nvar _decimal = _interopRequireDefault(__webpack_require__(/*! decimal.js-light */ \"./node_modules/decimal.js-light/decimal.js\"));\n\nvar _utils = __webpack_require__(/*! ./utils */ \"./src/util/utils.js\");\n\nfunction _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }\n\n/**\n * @fileOverview 一些公用的运算方法\n * @author xile611\n * @date 2015-09-17\n */\n\n/**\n * 获取数值的位数\n * 其中绝对值属于区间[0.1, 1) 得到的值为0\n * 绝对值属于区间[0.01, 0.1),得到的位数为 -1\n * 绝对值属于区间[0.001, 0.01),得到的位数为 -2\n *\n * @param {Number} value 数值\n * @return {Integer} 位数\n */\nfunction getDigitCount(value) {\n var result;\n\n if (value === 0) {\n result = 1;\n } else {\n result = Math.floor(new _decimal.default(value).abs().log(10).toNumber()) + 1;\n }\n\n return result;\n}\n/**\n * 按照固定的步长获取[start, end)这个区间的数据\n * 并且需要处理js计算精度的问题\n *\n * @param {Decimal} start 起点\n * @param {Decimal} end 终点,不包含该值\n * @param {Decimal} step 步长\n * @return {Array} 若干数值\n */\n\n\nfunction rangeStep(start, end, step) {\n var num = new _decimal.default(start);\n var i = 0;\n var result = []; // magic number to prevent infinite loop\n\n while (num.lt(end) && i < 100000) {\n result.push(num.toNumber());\n num = num.add(step);\n i++;\n }\n\n return result;\n}\n/**\n * 对数值进行线性插值\n *\n * @param {Number} a 定义域的极点\n * @param {Number} b 定义域的极点\n * @param {Number} t [0, 1]内的某个值\n * @return {Number} 定义域内的某个值\n */\n\n\nvar interpolateNumber = (0, _utils.curry)(function (a, b, t) {\n var newA = +a;\n var newB = +b;\n return newA + t * (newB - newA);\n});\n/**\n * 线性插值的逆运算\n *\n * @param {Number} a 定义域的极点\n * @param {Number} b 定义域的极点\n * @param {Number} x 可以认为是插值后的一个输出值\n * @return {Number} 当x在 a ~ b这个范围内时返回值属于[0, 1]\n */\n\nvar uninterpolateNumber = (0, _utils.curry)(function (a, b, x) {\n var diff = b - +a;\n diff = diff || Infinity;\n return (x - a) / diff;\n});\n/**\n * 线性插值的逆运算,并且有截断的操作\n *\n * @param {Number} a 定义域的极点\n * @param {Number} b 定义域的极点\n * @param {Number} x 可以认为是插值后的一个输出值\n * @return {Number} 当x在 a ~ b这个区间内时返回值属于[0, 1]\n * 当x不在 a ~ b这个区间时会截断到 a ~ b 这个区间\n */\n\nvar uninterpolateTruncation = (0, _utils.curry)(function (a, b, x) {\n var diff = b - +a;\n diff = diff || Infinity;\n return Math.max(0, Math.min(1, (x - a) / diff));\n});\nvar _default = {\n rangeStep: rangeStep,\n getDigitCount: getDigitCount,\n interpolateNumber: interpolateNumber,\n uninterpolateNumber: uninterpolateNumber,\n uninterpolateTruncation: uninterpolateTruncation\n};\nexports.default = _default;\n\n//# sourceURL=webpack://recharts-scale/./src/util/arithmetic.js?");
/***/ }),
/***/ "./src/util/utils.js":
/*!***************************!*\
!*** ./src/util/utils.js ***!
\***************************/
/***/ ((__unused_webpack_module, exports) => {
"use strict";
eval("\n\nObject.defineProperty(exports, \"__esModule\", ({\n value: true\n}));\nexports.memoize = exports.reverse = exports.compose = exports.map = exports.range = exports.curry = exports.PLACE_HOLDER = void 0;\n\nfunction _toConsumableArray(arr) { return _arrayWithoutHoles(arr) || _iterableToArray(arr) || _unsupportedIterableToArray(arr) || _nonIterableSpread(); }\n\nfunction _nonIterableSpread() { throw new TypeError(\"Invalid attempt to spread non-iterable instance.\\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.\"); }\n\nfunction _unsupportedIterableToArray(o, minLen) { if (!o) return; if (typeof o === \"string\") return _arrayLikeToArray(o, minLen); var n = Object.prototype.toString.call(o).slice(8, -1); if (n === \"Object\" && o.constructor) n = o.constructor.name; if (n === \"Map\" || n === \"Set\") return Array.from(o); if (n === \"Arguments\" || /^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n)) return _arrayLikeToArray(o, minLen); }\n\nfunction _iterableToArray(iter) { if (typeof Symbol !== \"undefined\" && Symbol.iterator in Object(iter)) return Array.from(iter); }\n\nfunction _arrayWithoutHoles(arr) { if (Array.isArray(arr)) return _arrayLikeToArray(arr); }\n\nfunction _arrayLikeToArray(arr, len) { if (len == null || len > arr.length) len = arr.length; for (var i = 0, arr2 = new Array(len); i < len; i++) { arr2[i] = arr[i]; } return arr2; }\n\nvar identity = function identity(i) {\n return i;\n};\n\nvar PLACE_HOLDER = {\n '@@functional/placeholder': true\n};\nexports.PLACE_HOLDER = PLACE_HOLDER;\n\nvar isPlaceHolder = function isPlaceHolder(val) {\n return val === PLACE_HOLDER;\n};\n\nvar curry0 = function curry0(fn) {\n return function _curried() {\n if (arguments.length === 0 || arguments.length === 1 && isPlaceHolder(arguments.length <= 0 ? undefined : arguments[0])) {\n return _curried;\n }\n\n return fn.apply(void 0, arguments);\n };\n};\n\nvar curryN = function curryN(n, fn) {\n if (n === 1) {\n return fn;\n }\n\n return curry0(function () {\n for (var _len = arguments.length, args = new Array(_len), _key = 0; _key < _len; _key++) {\n args[_key] = arguments[_key];\n }\n\n var argsLength = args.filter(function (arg) {\n return arg !== PLACE_HOLDER;\n }).length;\n\n if (argsLength >= n) {\n return fn.apply(void 0, args);\n }\n\n return curryN(n - argsLength, curry0(function () {\n for (var _len2 = arguments.length, restArgs = new Array(_len2), _key2 = 0; _key2 < _len2; _key2++) {\n restArgs[_key2] = arguments[_key2];\n }\n\n var newArgs = args.map(function (arg) {\n return isPlaceHolder(arg) ? restArgs.shift() : arg;\n });\n return fn.apply(void 0, _toConsumableArray(newArgs).concat(restArgs));\n }));\n });\n};\n\nvar curry = function curry(fn) {\n return curryN(fn.length, fn);\n};\n\nexports.curry = curry;\n\nvar range = function range(begin, end) {\n var arr = [];\n\n for (var i = begin; i < end; ++i) {\n arr[i - begin] = i;\n }\n\n return arr;\n};\n\nexports.range = range;\nvar map = curry(function (fn, arr) {\n if (Array.isArray(arr)) {\n return arr.map(fn);\n }\n\n return Object.keys(arr).map(function (key) {\n return arr[key];\n }).map(fn);\n});\nexports.map = map;\n\nvar compose = function compose() {\n for (var _len3 = arguments.length, args = new Array(_len3), _key3 = 0; _key3 < _len3; _key3++) {\n args[_key3] = arguments[_key3];\n }\n\n if (!args.length) {\n return identity;\n }\n\n var fns = args.reverse(); // first function can receive multiply arguments\n\n var firstFn = fns[0];\n var tailsFn = fns.slice(1);\n return function () {\n return tailsFn.reduce(function (res, fn) {\n return fn(res);\n }, firstFn.apply(void 0, arguments));\n };\n};\n\nexports.compose = compose;\n\nvar reverse = function reverse(arr) {\n if (Array.isArray(arr)) {\n return arr.reverse();\n } // can be string\n\n\n return arr.split('').reverse.join('');\n};\n\nexports.reverse = reverse;\n\nvar memoize = function memoize(fn) {\n var lastArgs = null;\n var lastResult = null;\n return function () {\n for (var _len4 = arguments.length, args = new Array(_len4), _key4 = 0; _key4 < _len4; _key4++) {\n args[_key4] = arguments[_key4];\n }\n\n if (lastArgs && args.every(function (val, i) {\n return val === lastArgs[i];\n })) {\n return lastResult;\n }\n\n lastArgs = args;\n lastResult = fn.apply(void 0, args);\n return lastResult;\n };\n};\n\nexports.memoize = memoize;\n\n//# sourceURL=webpack://recharts-scale/./src/util/utils.js?");
/***/ }),
/***/ "./node_modules/decimal.js-light/decimal.js":
/*!**************************************************!*\
!*** ./node_modules/decimal.js-light/decimal.js ***!
\**************************************************/
/***/ (function(module, exports, __webpack_require__) {
eval("var __WEBPACK_AMD_DEFINE_RESULT__;/*! decimal.js-light v2.5.1 https://github.com/MikeMcl/decimal.js-light/LICENCE */\r\n;(function (globalScope) {\r\n 'use strict';\r\n\r\n\r\n /*\r\n * decimal.js-light v2.5.1\r\n * An arbitrary-precision Decimal type for JavaScript.\r\n * https://github.com/MikeMcl/decimal.js-light\r\n * Copyright (c) 2020 Michael Mclaughlin <M8ch88l@gmail.com>\r\n * MIT Expat Licence\r\n */\r\n\r\n\r\n // ----------------------------------- EDITABLE DEFAULTS ------------------------------------ //\r\n\r\n\r\n // The limit on the value of `precision`, and on the value of the first argument to\r\n // `toDecimalPlaces`, `toExponential`, `toFixed`, `toPrecision` and `toSignificantDigits`.\r\n var MAX_DIGITS = 1e9, // 0 to 1e9\r\n\r\n\r\n // The initial configuration properties of the Decimal constructor.\r\n Decimal = {\r\n\r\n // These values must be integers within the stated ranges (inclusive).\r\n // Most of these values can be changed during run-time using `Decimal.config`.\r\n\r\n // The maximum number of significant digits of the result of a calculation or base conversion.\r\n // E.g. `Decimal.config({ precision: 20 });`\r\n precision: 20, // 1 to MAX_DIGITS\r\n\r\n // The rounding mode used by default by `toInteger`, `toDecimalPlaces`, `toExponential`,\r\n // `toFixed`, `toPrecision` and `toSignificantDigits`.\r\n //\r\n // ROUND_UP 0 Away from zero.\r\n // ROUND_DOWN 1 Towards zero.\r\n // ROUND_CEIL 2 Towards +Infinity.\r\n // ROUND_FLOOR 3 Towards -Infinity.\r\n // ROUND_HALF_UP 4 Towards nearest neighbour. If equidistant, up.\r\n // ROUND_HALF_DOWN 5 Towards nearest neighbour. If equidistant, down.\r\n // ROUND_HALF_EVEN 6 Towards nearest neighbour. If equidistant, towards even neighbour.\r\n // ROUND_HALF_CEIL 7 Towards nearest neighbour. If equidistant, towards +Infinity.\r\n // ROUND_HALF_FLOOR 8 Towards nearest neighbour. If equidistant, towards -Infinity.\r\n //\r\n // E.g.\r\n // `Decimal.rounding = 4;`\r\n // `Decimal.rounding = Decimal.ROUND_HALF_UP;`\r\n rounding: 4, // 0 to 8\r\n\r\n // The exponent value at and beneath which `toString` returns exponential notation.\r\n // JavaScript numbers: -7\r\n toExpNeg: -7, // 0 to -MAX_E\r\n\r\n // The exponent value at and above which `toString` returns exponential notation.\r\n // JavaScript numbers: 21\r\n toExpPos: 21, // 0 to MAX_E\r\n\r\n // The natural logarithm of 10.\r\n // 115 digits\r\n LN10: '2.302585092994045684017991454684364207601101488628772976033327900967572609677352480235997205089598298341967784042286'\r\n },\r\n\r\n\r\n // ----------------------------------- END OF EDITABLE DEFAULTS ------------------------------- //\r\n\r\n\r\n external = true,\r\n\r\n decimalError = '[DecimalError] ',\r\n invalidArgument = decimalError + 'Invalid argument: ',\r\n exponentOutOfRange = decimalError + 'Exponent out of range: ',\r\n\r\n mathfloor = Math.floor,\r\n mathpow = Math.pow,\r\n\r\n isDecimal = /^(\\d+(\\.\\d*)?|\\.\\d+)(e[+-]?\\d+)?$/i,\r\n\r\n ONE,\r\n BASE = 1e7,\r\n LOG_BASE = 7,\r\n MAX_SAFE_INTEGER = 9007199254740991,\r\n MAX_E = mathfloor(MAX_SAFE_INTEGER / LOG_BASE), // 1286742750677284\r\n\r\n // Decimal.prototype object\r\n P = {};\r\n\r\n\r\n // Decimal prototype methods\r\n\r\n\r\n /*\r\n * absoluteValue abs\r\n * comparedTo cmp\r\n * decimalPlaces dp\r\n * dividedBy div\r\n * dividedToIntegerBy idiv\r\n * equals eq\r\n * exponent\r\n * greaterThan gt\r\n * greaterThanOrEqualTo gte\r\n * isInteger isint\r\n * isNegative isneg\r\n * isPositive ispos\r\n * isZero\r\n * lessThan lt\r\n * lessThanOrEqualTo lte\r\n * logarithm log\r\n * minus sub\r\n * modulo mod\r\n * naturalExponential exp\r\n * naturalLogarithm ln\r\n * negated neg\r\n * plus add\r\n * precision sd\r\n * squareRoot sqrt\r\n * times mul\r\n * toDecimalPlaces todp\r\n * toExponential\r\n * toFixed\r\n * toInteger toint\r\n * toNumber\r\n * toPower pow\r\n * toPrecision\r\n * toSignificantDigits tosd\r\n * toString\r\n * valueOf val\r\n */\r\n\r\n\r\n /*\r\n * Return a new Decimal whose value is the absolute value of this Decimal.\r\n *\r\n */\r\n P.absoluteValue = P.abs = function () {\r\n var x = new this.constructor(this);\r\n if (x.s) x.s = 1;\r\n return x;\r\n };\r\n\r\n\r\n /*\r\n * Return\r\n * 1 if the value of this Decimal is greater than the value of `y`,\r\n * -1 if the value of this Decimal is less than the value of `y`,\r\n * 0 if they have the same value\r\n *\r\n */\r\n P.comparedTo = P.cmp = function (y) {\r\n var i, j, xdL, ydL,\r\n x = this;\r\n\r\n y = new x.constructor(y);\r\n\r\n // Signs differ?\r\n if (x.s !== y.s) return x.s || -y.s;\r\n\r\n // Compare exponents.\r\n if (x.e !== y.e) return x.e > y.e ^ x.s < 0 ? 1 : -1;\r\n\r\n xdL = x.d.length;\r\n ydL = y.d.length;\r\n\r\n // Compare digit by digit.\r\n for (i = 0, j = xdL < ydL ? xdL : ydL; i < j; ++i) {\r\n if (x.d[i] !== y.d[i]) return x.d[i] > y.d[i] ^ x.s < 0 ? 1 : -1;\r\n }\r\n\r\n // Compare lengths.\r\n return xdL === ydL ? 0 : xdL > ydL ^ x.s < 0 ? 1 : -1;\r\n };\r\n\r\n\r\n /*\r\n * Return the number of decimal places of the value of this Decimal.\r\n *\r\n */\r\n P.decimalPlaces = P.dp = function () {\r\n var x = this,\r\n w = x.d.length - 1,\r\n dp = (w - x.e) * LOG_BASE;\r\n\r\n // Subtract the number of trailing zeros of the last word.\r\n w = x.d[w];\r\n if (w) for (; w % 10 == 0; w /= 10) dp--;\r\n\r\n return dp < 0 ? 0 : dp;\r\n };\r\n\r\n\r\n /*\r\n * Return a new Decimal whose value is the value of this Decimal divided by `y`, truncated to\r\n * `precision` significant digits.\r\n *\r\n */\r\n P.dividedBy = P.div = function (y) {\r\n return divide(this, new this.constructor(y));\r\n };\r\n\r\n\r\n /*\r\n * Return a new Decimal whose value is the integer part of dividing the value of this Decimal\r\n * by the value of `y`, truncated to `precision` significant digits.\r\n *\r\n */\r\n P.dividedToIntegerBy = P.idiv = function (y) {\r\n var x = this,\r\n Ctor = x.constructor;\r\n return round(divide(x, new Ctor(y), 0, 1), Ctor.precision);\r\n };\r\n\r\n\r\n /*\r\n * Return true if the value of this Decimal is equal to the value of `y`, otherwise return false.\r\n *\r\n */\r\n P.equals = P.eq = function (y) {\r\n return !this.cmp(y);\r\n };\r\n\r\n\r\n /*\r\n * Return the (base 10) exponent value of this Decimal (this.e is the base 10000000 exponent).\r\n *\r\n */\r\n P.exponent = function () {\r\n return getBase10Exponent(this);\r\n };\r\n\r\n\r\n /*\r\n * Return true if the value of this Decimal is greater than the value of `y`, otherwise return\r\n * false.\r\n *\r\n */\r\n P.greaterThan = P.gt = function (y) {\r\n return this.cmp(y) > 0;\r\n };\r\n\r\n\r\n /*\r\n * Return true if the value of this Decimal is greater than or equal to the value of `y`,\r\n * otherwise return false.\r\n *\r\n */\r\n P.greaterThanOrEqualTo = P.gte = function (y) {\r\n return this.cmp(y) >= 0;\r\n };\r\n\r\n\r\n /*\r\n * Return true if the value of this Decimal is an integer, otherwise return false.\r\n *\r\n */\r\n P.isInteger = P.isint = function () {\r\n return this.e > this.d.length - 2;\r\n };\r\n\r\n\r\n /*\r\n * Return true if the value of this Decimal is negative, otherwise return false.\r\n *\r\n */\r\n P.isNegative = P.isneg = function () {\r\n return this.s < 0;\r\n };\r\n\r\n\r\n /*\r\n * Return true if the value of this Decimal is positive, otherwise return false.\r\n *\r\n */\r\n P.isPositive = P.ispos = function () {\r\n return this.s > 0;\r\n };\r\n\r\n\r\n /*\r\n * Return true if the value of this Decimal is 0, otherwise return false.\r\n *\r\n */\r\n P.isZero = function () {\r\n return this.s === 0;\r\n };\r\n\r\n\r\n /*\r\n * Return true if the value of this Decimal is less than `y`, otherwise return false.\r\n *\r\n */\r\n P.lessThan = P.lt = function (y) {\r\n return this.cmp(y) < 0;\r\n };\r\n\r\n\r\n /*\r\n * Return true if the value of this Decimal is less than or equal to `y`, otherwise return false.\r\n *\r\n */\r\n P.lessThanOrEqualTo = P.lte = function (y) {\r\n return this.cmp(y) < 1;\r\n };\r\n\r\n\r\n /*\r\n * Return the logarithm of the value of this Decimal to the specified base, truncated to\r\n * `precision` significant digits.\r\n *\r\n * If no base is specified, return log[10](x).\r\n *\r\n * log[base](x) = ln(x) / ln(base)\r\n *\r\n * The maximum error of the result is 1 ulp (unit in the last place).\r\n *\r\n * [base] {number|string|Decimal} The base of the logarithm.\r\n *\r\n */\r\n P.logarithm = P.log = function (base) {\r\n var r,\r\n x = this,\r\n Ctor = x.constructor,\r\n pr = Ctor.precision,\r\n wpr = pr + 5;\r\n\r\n // Default base is 10.\r\n if (base === void 0) {\r\n base = new Ctor(10);\r\n } else {\r\n base = new Ctor(base);\r\n\r\n // log[-b](x) = NaN\r\n // log[0](x) = NaN\r\n // log[1](x) = NaN\r\n if (base.s < 1 || base.eq(ONE)) throw Error(decimalError + 'NaN');\r\n }\r\n\r\n // log[b](-x) = NaN\r\n // log[b](0) = -Infinity\r\n if (x.s < 1) throw Error(decimalError + (x.s ? 'NaN' : '-Infinity'));\r\n\r\n // log[b](1) = 0\r\n if (x.eq(ONE)) return new Ctor(0);\r\n\r\n external = false;\r\n r = divide(ln(x, wpr), ln(base, wpr), wpr);\r\n external = true;\r\n\r\n return round(r, pr);\r\n };\r\n\r\n\r\n /*\r\n * Return a new Decimal whose value is the value of this Decimal minus `y`, truncated to\r\n * `precision` significant digits.\r\n *\r\n */\r\n P.minus = P.sub = function (y) {\r\n var x = this;\r\n y = new x.constructor(y);\r\n return x.s == y.s ? subtract(x, y) : add(x, (y.s = -y.s, y));\r\n };\r\n\r\n\r\n /*\r\n * Return a new Decimal whose value is the value of this Decimal modulo `y`, truncated to\r\n * `precision` significant digits.\r\n *\r\n */\r\n P.modulo = P.mod = function (y) {\r\n var q,\r\n x = this,\r\n Ctor = x.constructor,\r\n pr = Ctor.precision;\r\n\r\n y = new Ctor(y);\r\n\r\n // x % 0 = NaN\r\n if (!y.s) throw Error(decimalError + 'NaN');\r\n\r\n // Return x if x is 0.\r\n if (!x.s) return round(new Ctor(x), pr);\r\n\r\n // Prevent rounding of intermediate calculations.\r\n external = false;\r\n q = divide(x, y, 0, 1).times(y);\r\n external = true;\r\n\r\n return x.minus(q);\r\n };\r\n\r\n\r\n /*\r\n * Return a new Decimal whose value is the natural exponential of the value of this Decimal,\r\n * i.e. the base e raised to the power the value of this Decimal, truncated to `precision`\r\n * significant digits.\r\n *\r\n */\r\n P.naturalExponential = P.exp = function () {\r\n return exp(this);\r\n };\r\n\r\n\r\n /*\r\n * Return a new Decimal whose value is the natural logarithm of the value of this Decimal,\r\n * truncated to `precision` significant digits.\r\n *\r\n */\r\n P.naturalLogarithm = P.ln = function () {\r\n return ln(this);\r\n };\r\n\r\n\r\n /*\r\n * Return a new Decimal whose value is the value of this Decimal negated, i.e. as if multiplied by\r\n * -1.\r\n *\r\n */\r\n P.negated = P.neg = function () {\r\n var x = new this.constructor(this);\r\n x.s = -x.s || 0;\r\n return x;\r\n };\r\n\r\n\r\n /*\r\n * Return a new Decimal whose value is the value of this Decimal plus `y`, truncated to\r\n * `precision` significant digits.\r\n *\r\n */\r\n P.plus = P.add = function (y) {\r\n var x = this;\r\n y = new x.constructor(y);\r\n return x.s == y.s ? add(x, y) : subtract(x, (y.s = -y.s, y));\r\n };\r\n\r\n\r\n /*\r\n * Return the number of significant digits of the value of this Decimal.\r\n *\r\n * [z] {boolean|number} Whether to count integer-part trailing zeros: true, false, 1 or 0.\r\n *\r\n */\r\n P.precision = P.sd = function (z) {\r\n var e, sd, w,\r\n x = this;\r\n\r\n if (z !== void 0 && z !== !!z && z !== 1 && z !== 0) throw Error(invalidArgument + z);\r\n\r\n e = getBase10Exponent(x) + 1;\r\n w = x.d.length - 1;\r\n sd = w * LOG_BASE + 1;\r\n w = x.d[w];\r\n\r\n // If non-zero...\r\n if (w) {\r\n\r\n // Subtract the number of trailing zeros of the last word.\r\n for (; w % 10 == 0; w /= 10) sd--;\r\n\r\n // Add the number of digits of the first word.\r\n for (w = x.d[0]; w >= 10; w /= 10) sd++;\r\n }\r\n\r\n return z && e > sd ? e : sd;\r\n };\r\n\r\n\r\n /*\r\n * Return a new Decimal whose value is the square root of this Decimal, truncated to `precision`\r\n * significant digits.\r\n *\r\n */\r\n P.squareRoot = P.sqrt = function () {\r\n var e, n, pr, r, s, t, wpr,\r\n x = this,\r\n Ctor = x.constructor;\r\n\r\n // Negative or zero?\r\n if (x.s < 1) {\r\n if (!x.s) return new Ctor(0);\r\n\r\n // sqrt(-x) = NaN\r\n throw Error(decimalError + 'NaN');\r\n }\r\n\r\n e = getBase10Exponent(x);\r\n external = false;\r\n\r\n // Initial estimate.\r\n s = Math.sqrt(+x);\r\n\r\n // Math.sqrt underflow/overflow?\r\n // Pass x to Math.sqrt as integer, then adjust the exponent of the result.\r\n if (s == 0 || s == 1 / 0) {\r\n n = digitsToString(x.d);\r\n if ((n.length + e) % 2 == 0) n += '0';\r\n s = Math.sqrt(n);\r\n e = mathfloor((e + 1) / 2) - (e < 0 || e % 2);\r\n\r\n if (s == 1 / 0) {\r\n n = '5e' + e;\r\n } else {\r\n n = s.toExponential();\r\n n = n.slice(0, n.indexOf('e') + 1) + e;\r\n }\r\n\r\n r = new Ctor(n);\r\n } else {\r\n r = new Ctor(s.toString());\r\n }\r\n\r\n pr = Ctor.precision;\r\n s = wpr = pr + 3;\r\n\r\n // Newton-Raphson iteration.\r\n for (;;) {\r\n t = r;\r\n r = t.plus(divide(x, t, wpr + 2)).times(0.5);\r\n\r\n if (digitsToString(t.d).slice(0, wpr) === (n = digitsToString(r.d)).slice(0, wpr)) {\r\n n = n.slice(wpr - 3, wpr + 1);\r\n\r\n // The 4th rounding digit may be in error by -1 so if the 4 rounding digits are 9999 or\r\n // 4999, i.e. approaching a rounding boundary, continue the iteration.\r\n if (s == wpr && n == '4999') {\r\n\r\n // On the first iteration only, check to see if rounding up gives the exact result as the\r\n // nines may infinitely repeat.\r\n round(t, pr + 1, 0);\r\n\r\n if (t.times(t).eq(x)) {\r\n r = t;\r\n break;\r\n }\r\n } else if (n != '9999') {\r\n break;\r\n }\r\n\r\n wpr += 4;\r\n }\r\n }\r\n\r\n external = true;\r\n\r\n return round(r, pr);\r\n };\r\n\r\n\r\n /*\r\n * Return a new Decimal whose value is the value of this Decimal times `y`, truncated to\r\n * `precision` significant digits.\r\n *\r\n */\r\n P.times = P.mul = function (y) {\r\n var carry, e, i, k, r, rL, t, xdL, ydL,\r\n x = this,\r\n Ctor = x.constructor,\r\n xd = x.d,\r\n yd = (y = new Ctor(y)).d;\r\n\r\n // Return 0 if either is 0.\r\n if (!x.s || !y.s) return new Ctor(0);\r\n\r\n y.s *= x.s;\r\n e = x.e + y.e;\r\n xdL = xd.length;\r\n ydL = yd.length;\r\n\r\n // Ensure xd points to the longer array.\r\n if (xdL < ydL) {\r\n r = xd;\r\n xd = yd;\r\n yd = r;\r\n rL = xdL;\r\n xdL = ydL;\r\n ydL = rL;\r\n }\r\n\r\n // Initialise the result array with zeros.\r\n r = [];\r\n rL = xdL + ydL;\r\n for (i = rL; i--;) r.push(0);\r\n\r\n // Multiply!\r\n for (i = ydL; --i >= 0;) {\r\n carry = 0;\r\n for (k = xdL + i; k > i;) {\r\n t = r[k] + yd[i] * xd[k - i - 1] + carry;\r\n r[k--] = t % BASE | 0;\r\n carry = t / BASE | 0;\r\n }\r\n\r\n r[k] = (r[k] + carry) % BASE | 0;\r\n }\r\n\r\n // Remove trailing zeros.\r\n for (; !r[--rL];) r.pop();\r\n\r\n if (carry) ++e;\r\n else r.shift();\r\n\r\n y.d = r;\r\n y.e = e;\r\n\r\n return external ? round(y, Ctor.precision) : y;\r\n };\r\n\r\n\r\n /*\r\n * Return a new Decimal whose value is the value of this Decimal rounded to a maximum of `dp`\r\n * decimal places using rounding mode `rm` or `rounding` if `rm` is omitted.\r\n *\r\n * If `dp` is omitted, return a new Decimal whose value is the value of this Decimal.\r\n *\r\n * [dp] {number} Decimal places. Integer, 0 to MAX_DIGITS inclusive.\r\n * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.\r\n *\r\n */\r\n P.toDecimalPlaces = P.todp = function (dp, rm) {\r\n var x = this,\r\n Ctor = x.constructor;\r\n\r\n x = new Ctor(x);\r\n if (dp === void 0) return x;\r\n\r\n checkInt32(dp, 0, MAX_DIGITS);\r\n\r\n if (rm === void 0) rm = Ctor.rounding;\r\n else checkInt32(rm, 0, 8);\r\n\r\n return round(x, dp + getBase10Exponent(x) + 1, rm);\r\n };\r\n\r\n\r\n /*\r\n * Return a string representing the value of this Decimal in exponential notation rounded to\r\n * `dp` fixed decimal places using rounding mode `rounding`.\r\n *\r\n * [dp] {number} Decimal places. Integer, 0 to MAX_DIGITS inclusive.\r\n * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.\r\n *\r\n */\r\n P.toExponential = function (dp, rm) {\r\n var str,\r\n x = this,\r\n Ctor = x.constructor;\r\n\r\n if (dp === void 0) {\r\n str = toString(x, true);\r\n } else {\r\n checkInt32(dp, 0, MAX_DIGITS);\r\n\r\n if (rm === void 0) rm = Ctor.rounding;\r\n else checkInt32(rm, 0, 8);\r\n\r\n x = round(new Ctor(x), dp + 1, rm);\r\n str = toString(x, true, dp + 1);\r\n }\r\n\r\n return str;\r\n };\r\n\r\n\r\n /*\r\n * Return a string representing the value of this Decimal in normal (fixed-point) notation to\r\n * `dp` fixed decimal places and rounded using rounding mode `rm` or `rounding` if `rm` is\r\n * omitted.\r\n *\r\n * As with JavaScript numbers, (-0).toFixed(0) is '0', but e.g. (-0.00001).toFixed(0) is '-0'.\r\n *\r\n * [dp] {number} Decimal places. Integer, 0 to MAX_DIGITS inclusive.\r\n * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.\r\n *\r\n * (-0).toFixed(0) is '0', but (-0.1).toFixed(0) is '-0'.\r\n * (-0).toFixed(1) is '0.0', but (-0.01).toFixed(1) is '-0.0'.\r\n * (-0).toFixed(3) is '0.000'.\r\n * (-0.5).toFixed(0) is '-0'.\r\n *\r\n */\r\n P.toFixed = function (dp, rm) {\r\n var str, y,\r\n x = this,\r\n Ctor = x.constructor;\r\n\r\n if (dp === void 0) return toString(x);\r\n\r\n checkInt32(dp, 0, MAX_DIGITS);\r\n\r\n if (rm === void 0) rm = Ctor.rounding;\r\n else checkInt32(rm, 0, 8);\r\n\r\n y = round(new Ctor(x), dp + getBase10Exponent(x) + 1, rm);\r\n str = toString(y.abs(), false, dp + getBase10Exponent(y) + 1);\r\n\r\n // To determine whether to add the minus sign look at the value before it was rounded,\r\n // i.e. look at `x` rather than `y`.\r\n return x.isneg() && !x.isZero() ? '-' + str : str;\r\n };\r\n\r\n\r\n /*\r\n * Return a new Decimal whose value is the value of this Decimal rounded to a whole number using\r\n * rounding mode `rounding`.\r\n *\r\n */\r\n P.toInteger = P.toint = function () {\r\n var x = this,\r\n Ctor = x.constructor;\r\n return round(new Ctor(x), getBase10Exponent(x) + 1, Ctor.rounding);\r\n };\r\n\r\n\r\n /*\r\n * Return the value of this Decimal converted to a number primitive.\r\n *\r\n */\r\n P.toNumber = function () {\r\n return +this;\r\n };\r\n\r\n\r\n /*\r\n * Return a new Decimal whose value is the value of this Decimal raised to the power `y`,\r\n * truncated to `precision` significant digits.\r\n *\r\n * For non-integer or very large exponents pow(x, y) is calculated using\r\n *\r\n * x^y = exp(y*ln(x))\r\n *\r\n * The maximum error is 1 ulp (unit in last place).\r\n *\r\n * y {number|string|Decimal} The power to which to raise this Decimal.\r\n *\r\n */\r\n P.toPower = P.pow = function (y) {\r\n var e, k, pr, r, sign, yIsInt,\r\n x = this,\r\n Ctor = x.constructor,\r\n guard = 12,\r\n yn = +(y = new Ctor(y));\r\n\r\n // pow(x, 0) = 1\r\n if (!y.s) return new Ctor(ONE);\r\n\r\n x = new Ctor(x);\r\n\r\n // pow(0, y > 0) = 0\r\n // pow(0, y < 0) = Infinity\r\n if (!x.s) {\r\n if (y.s < 1) throw Error(decimalError + 'Infinity');\r\n return x;\r\n }\r\n\r\n // pow(1, y) = 1\r\n if (x.eq(ONE)) return x;\r\n\r\n pr = Ctor.precision;\r\n\r\n // pow(x, 1) = x\r\n if (y.eq(ONE)) return round(x, pr);\r\n\r\n e = y.e;\r\n k = y.d.length - 1;\r\n yIsInt = e >= k;\r\n sign = x.s;\r\n\r\n if (!yIsInt) {\r\n\r\n // pow(x < 0, y non-integer) = NaN\r\n if (sign < 0) throw Error(decimalError + 'NaN');\r\n\r\n // If y is a small integer use the 'exponentiation by squaring' algorithm.\r\n } else if ((k = yn < 0 ? -yn : yn) <= MAX_SAFE_INTEGER) {\r\n r = new Ctor(ONE);\r\n\r\n // Max k of 9007199254740991 takes 53 loop iterations.\r\n // Maximum digits array length; leaves [28, 34] guard digits.\r\n e = Math.ceil(pr / LOG_BASE + 4);\r\n\r\n external = false;\r\n\r\n for (;;) {\r\n if (k % 2) {\r\n r = r.times(x);\r\n truncate(r.d, e);\r\n }\r\n\r\n k = mathfloor(k / 2);\r\n if (k === 0) break;\r\n\r\n x = x.times(x);\r\n truncate(x.d, e);\r\n }\r\n\r\n external = true;\r\n\r\n return y.s < 0 ? new Ctor(ONE).div(r) : round(r, pr);\r\n }\r\n\r\n // Result is negative if x is negative and the last digit of integer y is odd.\r\n sign = sign < 0 && y.d[Math.max(e, k)] & 1 ? -1 : 1;\r\n\r\n x.s = 1;\r\n external = false;\r\n r = y.times(ln(x, pr + guard));\r\n external = true;\r\n r = exp(r);\r\n r.s = sign;\r\n\r\n return r;\r\n };\r\n\r\n\r\n /*\r\n * Return a string representing the value of this Decimal rounded to `sd` significant digits\r\n * using rounding mode `rounding`.\r\n *\r\n * Return exponential notation if `sd` is less than the number of digits necessary to represent\r\n * the integer part of the value in normal notation.\r\n *\r\n * [sd] {number} Significant digits. Integer, 1 to MAX_DIGITS inclusive.\r\n * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.\r\n *\r\n */\r\n P.toPrecision = function (sd, rm) {\r\n var e, str,\r\n x = this,\r\n Ctor = x.constructor;\r\n\r\n if (sd === void 0) {\r\n e = getBase10Exponent(x);\r\n str = toString(x, e <= Ctor.toExpNeg || e >= Ctor.toExpPos);\r\n } else {\r\n checkInt32(sd, 1, MAX_DIGITS);\r\n\r\n if (rm === void 0) rm = Ctor.rounding;\r\n else checkInt32(rm, 0, 8);\r\n\r\n x = round(new Ctor(x), sd, rm);\r\n e = getBase10Exponent(x);\r\n str = toString(x, sd <= e || e <= Ctor.toExpNeg, sd);\r\n }\r\n\r\n return str;\r\n };\r\n\r\n\r\n /*\r\n * Return a new Decimal whose value is the value of this Decimal rounded to a maximum of `sd`\r\n * significant digits using rounding mode `rm`, or to `precision` and `rounding` respectively if\r\n * omitted.\r\n *\r\n * [sd] {number} Significant digits. Integer, 1 to MAX_DIGITS inclusive.\r\n * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.\r\n *\r\n */\r\n P.toSignificantDigits = P.tosd = function (sd, rm) {\r\n var x = this,\r\n Ctor = x.constructor;\r\n\r\n if (sd === void 0) {\r\n sd = Ctor.precision;\r\n rm = Ctor.rounding;\r\n } else {\r\n checkInt32(sd, 1, MAX_DIGITS);\r\n\r\n if (rm === void 0) rm = Ctor.rounding;\r\n else checkInt32(rm, 0, 8);\r\n }\r\n\r\n return round(new Ctor(x), sd, rm);\r\n };\r\n\r\n\r\n /*\r\n * Return a string representing the value of this Decimal.\r\n *\r\n * Return exponential notation if this Decimal has a positive exponent equal to or greater than\r\n * `toExpPos`, or a negative exponent equal to or less than `toExpNeg`.\r\n *\r\n */\r\n P.toString = P.valueOf = P.val = P.toJSON = function () {\r\n var x = this,\r\n e = getBase10Exponent(x),\r\n Ctor = x.constructor;\r\n\r\n return toString(x, e <= Ctor.toExpNeg || e >= Ctor.toExpPos);\r\n };\r\n\r\n\r\n // Helper functions for Decimal.prototype (P) and/or Decimal methods, and their callers.\r\n\r\n\r\n /*\r\n * add P.minus, P.plus\r\n * checkInt32 P.todp, P.toExponential, P.toFixed, P.toPrecision, P.tosd\r\n * digitsToString P.log, P.sqrt, P.pow, toString, exp, ln\r\n * divide P.div, P.idiv, P.log, P.mod, P.sqrt, exp, ln\r\n * exp P.exp, P.pow\r\n * getBase10Exponent P.exponent, P.sd, P.toint, P.sqrt, P.todp, P.toFixed, P.toPrecision,\r\n * P.toString, divide, round, toString, exp, ln\r\n * getLn10 P.log, ln\r\n * getZeroString digitsToString, toString\r\n * ln P.log, P.ln, P.pow, exp\r\n * parseDecimal Decimal\r\n * round P.abs, P.idiv, P.log, P.minus, P.mod, P.neg, P.plus, P.toint, P.sqrt,\r\n * P.times, P.todp, P.toExponential, P.toFixed, P.pow, P.toPrecision, P.tosd,\r\n * divide, getLn10, exp, ln\r\n * subtract P.minus, P.plus\r\n * toString P.toExponential, P.toFixed, P.toPrecision, P.toString, P.valueOf\r\n * truncate P.pow\r\n *\r\n * Throws: P.log, P.mod, P.sd, P.sqrt, P.pow, checkInt32, divide, round,\r\n * getLn10, exp, ln, parseDecimal, Decimal, config\r\n */\r\n\r\n\r\n function add(x, y) {\r\n var carry, d, e, i, k, len, xd, yd,\r\n Ctor = x.constructor,\r\n pr = Ctor.precision;\r\n\r\n // If either is zero...\r\n if (!x.s || !y.s) {\r\n\r\n // Return x if y is zero.\r\n // Return y if y is non-zero.\r\n if (!y.s) y = new Ctor(x);\r\n return external ? round(y, pr) : y;\r\n }\r\n\r\n xd = x.d;\r\n yd = y.d;\r\n\r\n // x and y are finite, non-zero numbers with the same sign.\r\n\r\n k = x.e;\r\n e = y.e;\r\n xd = xd.slice();\r\n i = k - e;\r\n\r\n // If base 1e7 exponents differ...\r\n if (i) {\r\n if (i < 0) {\r\n d = xd;\r\n i = -i;\r\n len = yd.length;\r\n } else {\r\n d = yd;\r\n e = k;\r\n len = xd.length;\r\n }\r\n\r\n // Limit number of zeros prepended to max(ceil(pr / LOG_BASE), len) + 1.\r\n k = Math.ceil(pr / LOG_BASE);\r\n len = k > len ? k + 1 : len + 1;\r\n\r\n if (i > len) {\r\n i = len;\r\n d.length = 1;\r\n }\r\n\r\n // Prepend zeros to equalise exponents. Note: Faster to use reverse then do unshifts.\r\n d.reverse();\r\n for (; i--;) d.push(0);\r\n d.reverse();\r\n }\r\n\r\n len = xd.length;\r\n i = yd.length;\r\n\r\n // If yd is longer than xd, swap xd and yd so xd points to the longer array.\r\n if (len - i < 0) {\r\n i = len;\r\n d = yd;\r\n yd = xd;\r\n xd = d;\r\n }\r\n\r\n // Only start adding at yd.length - 1 as the further digits of xd can be left as they are.\r\n for (carry = 0; i;) {\r\n carry = (xd[--i] = xd[i] + yd[i] + carry) / BASE | 0;\r\n xd[i] %= BASE;\r\n }\r\n\r\n if (carry) {\r\n xd.unshift(carry);\r\n ++e;\r\n }\r\n\r\n // Remove trailing zeros.\r\n // No need to check for zero, as +x + +y != 0 && -x + -y != 0\r\n for (len = xd.length; xd[--len] == 0;) xd.pop();\r\n\r\n y.d = xd;\r\n y.e = e;\r\n\r\n return external ? round(y, pr) : y;\r\n }\r\n\r\n\r\n function checkInt32(i, min, max) {\r\n if (i !== ~~i || i < min || i > max) {\r\n throw Error(invalidArgument + i);\r\n }\r\n }\r\n\r\n\r\n function digitsToString(d) {\r\n var i, k, ws,\r\n indexOfLastWord = d.length - 1,\r\n str = '',\r\n w = d[0];\r\n\r\n if (indexOfLastWord > 0) {\r\n str += w;\r\n for (i = 1; i < indexOfLastWord; i++) {\r\n ws = d[i] + '';\r\n k = LOG_BASE - ws.length;\r\n if (k) str += getZeroString(k);\r\n str += ws;\r\n }\r\n\r\n w = d[i];\r\n ws = w + '';\r\n k = LOG_BASE - ws.length;\r\n if (k) str += getZeroString(k);\r\n } else if (w === 0) {\r\n return '0';\r\n }\r\n\r\n // Remove trailing zeros of last w.\r\n for (; w % 10 === 0;) w /= 10;\r\n\r\n return str + w;\r\n }\r\n\r\n\r\n var divide = (function () {\r\n\r\n // Assumes non-zero x and k, and hence non-zero result.\r\n function multiplyInteger(x, k) {\r\n var temp,\r\n carry = 0,\r\n i = x.length;\r\n\r\n for (x = x.slice(); i--;) {\r\n temp = x[i] * k + carry;\r\n x[i] = temp % BASE | 0;\r\n carry = temp / BASE | 0;\r\n }\r\n\r\n if (carry) x.unshift(carry);\r\n\r\n return x;\r\n }\r\n\r\n function compare(a, b, aL, bL) {\r\n var i, r;\r\n\r\n if (aL != bL) {\r\n r = aL > bL ? 1 : -1;\r\n } else {\r\n for (i = r = 0; i < aL; i++) {\r\n if (a[i] != b[i]) {\r\n r = a[i] > b[i] ? 1 : -1;\r\n break;\r\n }\r\n }\r\n }\r\n\r\n return r;\r\n }\r\n\r\n function subtract(a, b, aL) {\r\n var i = 0;\r\n\r\n // Subtract b from a.\r\n for (; aL--;) {\r\n a[aL] -= i;\r\n i = a[aL] < b[aL] ? 1 : 0;\r\n a[aL] = i * BASE + a[aL] - b[aL];\r\n }\r\n\r\n // Remove leading zeros.\r\n for (; !a[0] && a.length > 1;) a.shift();\r\n }\r\n\r\n return function (x, y, pr, dp) {\r\n var cmp, e, i, k, prod, prodL, q, qd, rem, remL, rem0, sd, t, xi, xL, yd0, yL, yz,\r\n Ctor = x.constructor,\r\n sign = x.s == y.s ? 1 : -1,\r\n xd = x.d,\r\n yd = y.d;\r\n\r\n // Either 0?\r\n if (!x.s) return new Ctor(x);\r\n if (!y.s) throw Error(decimalError + 'Division by zero');\r\n\r\n e = x.e - y.e;\r\n yL = yd.length;\r\n xL = xd.length;\r\n q = new Ctor(sign);\r\n qd = q.d = [];\r\n\r\n // Result exponent may be one less than e.\r\n for (i = 0; yd[i] == (xd[i] || 0); ) ++i;\r\n if (yd[i] > (xd[i] || 0)) --e;\r\n\r\n if (pr == null) {\r\n sd = pr = Ctor.precision;\r\n } else if (dp) {\r\n sd = pr + (getBase10Exponent(x) - getBase10Exponent(y)) + 1;\r\n } else {\r\n sd = pr;\r\n }\r\n\r\n if (sd < 0) return new Ctor(0);\r\n\r\n // Convert precision in number of base 10 digits to base 1e7 digits.\r\n sd = sd / LOG_BASE + 2 | 0;\r\n i = 0;\r\n\r\n // divisor < 1e7\r\n if (yL == 1) {\r\n k = 0;\r\n yd = yd[0];\r\n sd++;\r\n\r\n // k is the carry.\r\n for (; (i < xL || k) && sd--; i++) {\r\n t = k * BASE + (xd[i] || 0);\r\n qd[i] = t / yd | 0;\r\n k = t % yd | 0;\r\n }\r\n\r\n // divisor >= 1e7\r\n } else {\r\n\r\n // Normalise xd and yd so highest order digit of yd is >= BASE/2\r\n k = BASE / (yd[0] + 1) | 0;\r\n\r\n if (k > 1) {\r\n yd = multiplyInteger(yd, k);\r\n xd = multiplyInteger(xd, k);\r\n yL = yd.length;\r\n xL = xd.length;\r\n }\r\n\r\n xi = yL;\r\n rem = xd.slice(0, yL);\r\n remL = rem.length;\r\n\r\n // Add zeros to make remainder as long as divisor.\r\n for (; remL < yL;) rem[remL++] = 0;\r\n\r\n yz = yd.slice();\r\n yz.unshift(0);\r\n yd0 = yd[0];\r\n\r\n if (yd[1] >= BASE / 2) ++yd0;\r\n\r\n do {\r\n k = 0;\r\n\r\n // Compare divisor and remainder.\r\n cmp = compare(yd, rem, yL, remL);\r\n\r\n // If divisor < remainder.\r\n if (cmp < 0) {\r\n\r\n // Calculate trial digit, k.\r\n rem0 = rem[0];\r\n if (yL != remL) rem0 = rem0 * BASE + (rem[1] || 0);\r\n\r\n // k will be how many times the divisor goes into the current remainder.\r\n k = rem0 / yd0 | 0;\r\n\r\n // Algorithm:\r\n // 1. product = divisor * trial digit (k)\r\n // 2. if product > remainder: product -= divisor, k--\r\n // 3. remainder -= product\r\n // 4. if product was < remainder at 2:\r\n // 5. compare new remainder and divisor\r\n // 6. If remainder > divisor: remainder -= divisor, k++\r\n\r\n if (k > 1) {\r\n if (k >= BASE) k = BASE - 1;\r\n\r\n // product = divisor * trial digit.\r\n prod = multiplyInteger(yd, k);\r\n prodL = prod.length;\r\n remL = rem.length;\r\n\r\n // Compare product and remainder.\r\n cmp = compare(prod, rem, prodL, remL);\r\n\r\n // product > remainder.\r\n if (cmp == 1) {\r\n k--;\r\n\r\n // Subtract divisor from product.\r\n subtract(prod, yL < prodL ? yz : yd, prodL);\r\n }\r\n } else {\r\n\r\n // cmp is -1.\r\n // If k is 0, there is no need to compare yd and rem again below, so change cmp to 1\r\n // to avoid it. If k is 1 there is a need to compare yd and rem again below.\r\n if (k == 0) cmp = k = 1;\r\n prod = yd.slice();\r\n }\r\n\r\n prodL = prod.length;\r\n if (prodL < remL) prod.unshift(0);\r\n\r\n // Subtract product from remainder.\r\n subtract(rem, prod, remL);\r\n\r\n // If product was < previous remainder.\r\n if (cmp == -1) {\r\n remL = rem.length;\r\n\r\n // Compare divisor and new remainder.\r\n cmp = compare(yd, rem, yL, remL);\r\n\r\n // If divisor < new remainder, subtract divisor from remainder.\r\n if (cmp < 1) {\r\n k++;\r\n\r\n // Subtract divisor from remainder.\r\n subtract(rem, yL < remL ? yz : yd, remL);\r\n }\r\n }\r\n\r\n remL = rem.length;\r\n } else if (cmp === 0) {\r\n k++;\r\n rem = [0];\r\n } // if cmp === 1, k will be 0\r\n\r\n // Add the next digit, k, to the result array.\r\n qd[i++] = k;\r\n\r\n // Update the remainder.\r\n if (cmp && rem[0]) {\r\n rem[remL++] = xd[xi] || 0;\r\n } else {\r\n rem = [xd[xi]];\r\n remL = 1;\r\n }\r\n\r\n } while ((xi++ < xL || rem[0] !== void 0) && sd--);\r\n }\r\n\r\n // Leading zero?\r\n if (!qd[0]) qd.shift();\r\n\r\n q.e = e;\r\n\r\n return round(q, dp ? pr + getBase10Exponent(q) + 1 : pr);\r\n };\r\n })();\r\n\r\n\r\n /*\r\n * Return a new Decimal whose value is the natural exponential of `x` truncated to `sd`\r\n * significant digits.\r\n *\r\n * Taylor/Maclaurin series.\r\n *\r\n * exp(x) = x^0/0! + x^1/1! + x^2/2! + x^3/3! + ...\r\n *\r\n * Argument reduction:\r\n * Repeat x = x / 32, k += 5, until |x| < 0.1\r\n * exp(x) = exp(x / 2^k)^(2^k)\r\n *\r\n * Previously, the argument was initially reduced by\r\n * exp(x) = exp(r) * 10^k where r = x - k * ln10, k = floor(x / ln10)\r\n * to first put r in the range [0, ln10], before dividing by 32 until |x| < 0.1, but this was\r\n * found to be slower than just dividing repeatedly by 32 as above.\r\n *\r\n * (Math object integer min/max: Math.exp(709) = 8.2e+307, Math.exp(-745) = 5e-324)\r\n *\r\n * exp(x) is non-terminating for any finite, non-zero x.\r\n *\r\n */\r\n function exp(x, sd) {\r\n var denominator, guard, pow, sum, t, wpr,\r\n i = 0,\r\n k = 0,\r\n Ctor = x.constructor,\r\n pr = Ctor.precision;\r\n\r\n if (getBase10Exponent(x) > 16) throw Error(exponentOutOfRange + getBase10Exponent(x));\r\n\r\n // exp(0) = 1\r\n if (!x.s) return new Ctor(ONE);\r\n\r\n if (sd == null) {\r\n external = false;\r\n wpr = pr;\r\n } else {\r\n wpr = sd;\r\n }\r\n\r\n t = new Ctor(0.03125);\r\n\r\n while (x.abs().gte(0.1)) {\r\n x = x.times(t); // x = x / 2^5\r\n k += 5;\r\n }\r\n\r\n // Estimate the precision increase necessary to ensure the first 4 rounding digits are correct.\r\n guard = Math.log(mathpow(2, k)) / Math.LN10 * 2 + 5 | 0;\r\n wpr += guard;\r\n denominator = pow = sum = new Ctor(ONE);\r\n Ctor.precision = wpr;\r\n\r\n for (;;) {\r\n pow = round(pow.times(x), wpr);\r\n denominator = denominator.times(++i);\r\n t = sum.plus(divide(pow, denominator, wpr));\r\n\r\n if (digitsToString(t.d).slice(0, wpr) === digitsToString(sum.d).slice(0, wpr)) {\r\n while (k--) sum = round(sum.times(sum), wpr);\r\n Ctor.precision = pr;\r\n return sd == null ? (external = true, round(sum, pr)) : sum;\r\n }\r\n\r\n sum = t;\r\n }\r\n }\r\n\r\n\r\n // Calculate the base 10 exponent from the base 1e7 exponent.\r\n function getBase10Exponent(x) {\r\n var e = x.e * LOG_BASE,\r\n w = x.d[0];\r\n\r\n // Add the number of digits of the first word of the digits array.\r\n for (; w >= 10; w /= 10) e++;\r\n return e;\r\n }\r\n\r\n\r\n function getLn10(Ctor, sd, pr) {\r\n\r\n if (sd > Ctor.LN10.sd()) {\r\n\r\n\r\n // Reset global state in case the exception is caught.\r\n external = true;\r\n if (pr) Ctor.precision = pr;\r\n throw Error(decimalError + 'LN10 precision limit exceeded');\r\n }\r\n\r\n return round(new Ctor(Ctor.LN10), sd);\r\n }\r\n\r\n\r\n function getZeroString(k) {\r\n var zs = '';\r\n for (; k--;) zs += '0';\r\n return zs;\r\n }\r\n\r\n\r\n /*\r\n * Return a new Decimal whose value is the natural logarithm of `x` truncated to `sd` significant\r\n * digits.\r\n *\r\n * ln(n) is non-terminating (n != 1)\r\n *\r\n */\r\n function ln(y, sd) {\r\n var c, c0, denominator, e, numerator, sum, t, wpr, x2,\r\n n = 1,\r\n guard = 10,\r\n x = y,\r\n xd = x.d,\r\n Ctor = x.constructor,\r\n pr = Ctor.precision;\r\n\r\n // ln(-x) = NaN\r\n // ln(0) = -Infinity\r\n if (x.s < 1) throw Error(decimalError + (x.s ? 'NaN' : '-Infinity'));\r\n\r\n // ln(1) = 0\r\n if (x.eq(ONE)) return new Ctor(0);\r\n\r\n if (sd == null) {\r\n external = false;\r\n wpr = pr;\r\n } else {\r\n wpr = sd;\r\n }\r\n\r\n if (x.eq(10)) {\r\n if (sd == null) external = true;\r\n return getLn10(Ctor, wpr);\r\n }\r\n\r\n wpr += guard;\r\n Ctor.precision = wpr;\r\n c = digitsToString(xd);\r\n c0 = c.charAt(0);\r\n e = getBase10Exponent(x);\r\n\r\n if (Math.abs(e) < 1.5e15) {\r\n\r\n // Argument reduction.\r\n // The series converges faster the closer the argument is to 1, so using\r\n // ln(a^b) = b * ln(a), ln(a) = ln(a^b) / b\r\n // multiply the argument by itself until the leading digits of the significand are 7, 8, 9,\r\n // 10, 11, 12 or 13, recording the number of multiplications so the sum of the series can\r\n // later be divided by this number, then separate out the power of 10 using\r\n // ln(a*10^b) = ln(a) + b*ln(10).\r\n\r\n // max n is 21 (gives 0.9, 1.0 or 1.1) (9e15 / 21 = 4.2e14).\r\n //while (c0 < 9 && c0 != 1 || c0 == 1 && c.charAt(1) > 1) {\r\n // max n is 6 (gives 0.7 - 1.3)\r\n while (c0 < 7 && c0 != 1 || c0 == 1 && c.charAt(1) > 3) {\r\n x = x.times(y);\r\n c = digitsToString(x.d);\r\n c0 = c.charAt(0);\r\n n++;\r\n }\r\n\r\n e = getBase10Exponent(x);\r\n\r\n if (c0 > 1) {\r\n x = new Ctor('0.' + c);\r\n e++;\r\n } else {\r\n x = new Ctor(c0 + '.' + c.slice(1));\r\n }\r\n } else {\r\n\r\n // The argument reduction method above may result in overflow if the argument y is a massive\r\n // number with exponent >= 1500000000000000 (9e15 / 6 = 1.5e15), so instead recall this\r\n // function using ln(x*10^e) = ln(x) + e*ln(10).\r\n t = getLn10(Ctor, wpr + 2, pr).times(e + '');\r\n x = ln(new Ctor(c0 + '.' + c.slice(1)), wpr - guard).plus(t);\r\n\r\n Ctor.precision = pr;\r\n return sd == null ? (external = true, round(x, pr)) : x;\r\n }\r\n\r\n // x is reduced to a value near 1.\r\n\r\n // Taylor series.\r\n // ln(y) = ln((1 + x)/(1 - x)) = 2(x + x^3/3 + x^5/5 + x^7/7 + ...)\r\n // where x = (y - 1)/(y + 1) (|x| < 1)\r\n sum = numerator = x = divide(x.minus(ONE), x.plus(ONE), wpr);\r\n x2 = round(x.times(x), wpr);\r\n denominator = 3;\r\n\r\n for (;;) {\r\n numerator = round(numerator.times(x2), wpr);\r\n t = sum.plus(divide(numerator, new Ctor(denominator), wpr));\r\n\r\n if (digitsToString(t.d).slice(0, wpr) === digitsToString(sum.d).slice(0, wpr)) {\r\n sum = sum.times(2);\r\n\r\n // Reverse the argument reduction.\r\n if (e !== 0) sum = sum.plus(getLn10(Ctor, wpr + 2, pr).times(e + ''));\r\n sum = divide(sum, new Ctor(n), wpr);\r\n\r\n Ctor.precision = pr;\r\n return sd == null ? (external = true, round(sum, pr)) : sum;\r\n }\r\n\r\n sum = t;\r\n denominator += 2;\r\n }\r\n }\r\n\r\n\r\n /*\r\n * Parse the value of a new Decimal `x` from string `str`.\r\n */\r\n function parseDecimal(x, str) {\r\n var e, i, len;\r\n\r\n // Decimal point?\r\n if ((e = str.indexOf('.')) > -1) str = str.replace('.', '');\r\n\r\n // Exponential form?\r\n if ((i = str.search(/e/i)) > 0) {\r\n\r\n // Determine exponent.\r\n if (e < 0) e = i;\r\n e += +str.slice(i + 1);\r\n str = str.substring(0, i);\r\n } else if (e < 0) {\r\n\r\n // Integer.\r\n e = str.length;\r\n }\r\n\r\n // Determine leading zeros.\r\n for (i = 0; str.charCodeAt(i) === 48;) ++i;\r\n\r\n // Determine trailing zeros.\r\n for (len = str.length; str.charCodeAt(len - 1) === 48;) --len;\r\n str = str.slice(i, len);\r\n\r\n if (str) {\r\n len -= i;\r\n e = e - i - 1;\r\n x.e = mathfloor(e / LOG_BASE);\r\n x.d = [];\r\n\r\n // Transform base\r\n\r\n // e is the base 10 exponent.\r\n // i is where to slice str to get the first word of the digits array.\r\n i = (e + 1) % LOG_BASE;\r\n if (e < 0) i += LOG_BASE;\r\n\r\n if (i < len) {\r\n if (i) x.d.push(+str.slice(0, i));\r\n for (len -= LOG_BASE; i < len;) x.d.push(+str.slice(i, i += LOG_BASE));\r\n str = str.slice(i);\r\n i = LOG_BASE - str.length;\r\n } else {\r\n i -= len;\r\n }\r\n\r\n for (; i--;) str += '0';\r\n x.d.push(+str);\r\n\r\n if (external && (x.e > MAX_E || x.e < -MAX_E)) throw Error(exponentOutOfRange + e);\r\n } else {\r\n\r\n // Zero.\r\n x.s = 0;\r\n x.e = 0;\r\n x.d = [0];\r\n }\r\n\r\n return x;\r\n }\r\n\r\n\r\n /*\r\n * Round `x` to `sd` significant digits, using rounding mode `rm` if present (truncate otherwise).\r\n */\r\n function round(x, sd, rm) {\r\n var i, j, k, n, rd, doRound, w, xdi,\r\n xd = x.d;\r\n\r\n // rd: the rounding digit, i.e. the digit after the digit that may be rounded up.\r\n // w: the word of xd which contains the rounding digit, a base 1e7 number.\r\n // xdi: the index of w within xd.\r\n // n: the number of digits of w.\r\n // i: what would be the index of rd within w if all the numbers were 7 digits long (i.e. if\r\n // they had leading zeros)\r\n // j: if > 0, the actual index of rd within w (if < 0, rd is a leading zero).\r\n\r\n // Get the length of the first word of the digits array xd.\r\n for (n = 1, k = xd[0]; k >= 10; k /= 10) n++;\r\n i = sd - n;\r\n\r\n // Is the rounding digit in the first word of xd?\r\n if (i < 0) {\r\n i += LOG_BASE;\r\n j = sd;\r\n w = xd[xdi = 0];\r\n } else {\r\n xdi = Math.ceil((i + 1) / LOG_BASE);\r\n k = xd.length;\r\n if (xdi >= k) return x;\r\n w = k = xd[xdi];\r\n\r\n // Get the number of digits of w.\r\n for (n = 1; k >= 10; k /= 10) n++;\r\n\r\n // Get the index of rd within w.\r\n i %= LOG_BASE;\r\n\r\n // Get the index of rd within w, adjusted for leading zeros.\r\n // The number of leading zeros of w is given by LOG_BASE - n.\r\n j = i - LOG_BASE + n;\r\n }\r\n\r\n if (rm !== void 0) {\r\n k = mathpow(10, n - j - 1);\r\n\r\n // Get the rounding digit at index j of w.\r\n rd = w / k % 10 | 0;\r\n\r\n // Are there any non-zero digits after the rounding digit?\r\n doRound = sd < 0 || xd[xdi + 1] !== void 0 || w % k;\r\n\r\n // The expression `w % mathpow(10, n - j - 1)` returns all the digits of w to the right of the\r\n // digit at (left-to-right) index j, e.g. if w is 908714 and j is 2, the expression will give\r\n // 714.\r\n\r\n doRound = rm < 4\r\n ? (rd || doRound) && (rm == 0 || rm == (x.s < 0 ? 3 : 2))\r\n : rd > 5 || rd == 5 && (rm == 4 || doRound || rm == 6 &&\r\n\r\n // Check whether the digit to the left of the rounding digit is odd.\r\n ((i > 0 ? j > 0 ? w / mathpow(10, n - j) : 0 : xd[xdi - 1]) % 10) & 1 ||\r\n rm == (x.s < 0 ? 8 : 7));\r\n }\r\n\r\n if (sd < 1 || !xd[0]) {\r\n if (doRound) {\r\n k = getBase10Exponent(x);\r\n xd.length = 1;\r\n\r\n // Convert sd to decimal places.\r\n sd = sd - k - 1;\r\n\r\n // 1, 0.1, 0.01, 0.001, 0.0001 etc.\r\n xd[0] = mathpow(10, (LOG_BASE - sd % LOG_BASE) % LOG_BASE);\r\n x.e = mathfloor(-sd / LOG_BASE) || 0;\r\n } else {\r\n xd.length = 1;\r\n\r\n // Zero.\r\n xd[0] = x.e = x.s = 0;\r\n }\r\n\r\n return x;\r\n }\r\n\r\n // Remove excess digits.\r\n if (i == 0) {\r\n xd.length = xdi;\r\n k = 1;\r\n xdi--;\r\n } else {\r\n xd.length = xdi + 1;\r\n k = mathpow(10, LOG_BASE - i);\r\n\r\n // E.g. 56700 becomes 56000 if 7 is the rounding digit.\r\n // j > 0 means i > number of leading zeros of w.\r\n xd[xdi] = j > 0 ? (w / mathpow(10, n - j) % mathpow(10, j) | 0) * k : 0;\r\n }\r\n\r\n if (doRound) {\r\n for (;;) {\r\n\r\n // Is the digit to be rounded up in the first word of xd?\r\n if (xdi == 0) {\r\n if ((xd[0] += k) == BASE) {\r\n xd[0] = 1;\r\n ++x.e;\r\n }\r\n\r\n break;\r\n } else {\r\n xd[xdi] += k;\r\n if (xd[xdi] != BASE) break;\r\n xd[xdi--] = 0;\r\n k = 1;\r\n }\r\n }\r\n }\r\n\r\n // Remove trailing zeros.\r\n for (i = xd.length; xd[--i] === 0;) xd.pop();\r\n\r\n if (external && (x.e > MAX_E || x.e < -MAX_E)) {\r\n throw Error(exponentOutOfRange + getBase10Exponent(x));\r\n }\r\n\r\n return x;\r\n }\r\n\r\n\r\n function subtract(x, y) {\r\n var d, e, i, j, k, len, xd, xe, xLTy, yd,\r\n Ctor = x.constructor,\r\n pr = Ctor.precision;\r\n\r\n // Return y negated if x is zero.\r\n // Return x if y is zero and x is non-zero.\r\n if (!x.s || !y.s) {\r\n if (y.s) y.s = -y.s;\r\n else y = new Ctor(x);\r\n return external ? round(y, pr) : y;\r\n }\r\n\r\n xd = x.d;\r\n yd = y.d;\r\n\r\n // x and y are non-zero numbers with the same sign.\r\n\r\n e = y.e;\r\n xe = x.e;\r\n xd = xd.slice();\r\n k = xe - e;\r\n\r\n // If exponents differ...\r\n if (k) {\r\n xLTy = k < 0;\r\n\r\n if (xLTy) {\r\n d = xd;\r\n k = -k;\r\n len = yd.length;\r\n } else {\r\n d = yd;\r\n e = xe;\r\n len = xd.length;\r\n }\r\n\r\n // Numbers with massively different exponents would result in a very high number of zeros\r\n // needing to be prepended, but this can be avoided while still ensuring correct rounding by\r\n // limiting the number of zeros to `Math.ceil(pr / LOG_BASE) + 2`.\r\n i = Math.max(Math.ceil(pr / LOG_BASE), len) + 2;\r\n\r\n if (k > i) {\r\n k = i;\r\n d.length = 1;\r\n }\r\n\r\n // Prepend zeros to equalise exponents.\r\n d.reverse();\r\n for (i = k; i--;) d.push(0);\r\n d.reverse();\r\n\r\n // Base 1e7 exponents equal.\r\n } else {\r\n\r\n // Check digits to determine which is the bigger number.\r\n\r\n i = xd.length;\r\n len = yd.length;\r\n xLTy = i < len;\r\n if (xLTy) len = i;\r\n\r\n for (i = 0; i < len; i++) {\r\n if (xd[i] != yd[i]) {\r\n xLTy = xd[i] < yd[i];\r\n break;\r\n }\r\n }\r\n\r\n k = 0;\r\n }\r\n\r\n if (xLTy) {\r\n d = xd;\r\n xd = yd;\r\n yd = d;\r\n y.s = -y.s;\r\n }\r\n\r\n len = xd.length;\r\n\r\n // Append zeros to xd if shorter.\r\n // Don't add zeros to yd if shorter as subtraction only needs to start at yd length.\r\n for (i = yd.length - len; i > 0; --i) xd[len++] = 0;\r\n\r\n // Subtract yd from xd.\r\n for (i = yd.length; i > k;) {\r\n if (xd[--i] < yd[i]) {\r\n for (j = i; j && xd[--j] === 0;) xd[j] = BASE - 1;\r\n --xd[j];\r\n xd[i] += BASE;\r\n }\r\n\r\n xd[i] -= yd[i];\r\n }\r\n\r\n // Remove trailing zeros.\r\n for (; xd[--len] === 0;) xd.pop();\r\n\r\n // Remove leading zeros and adjust exponent accordingly.\r\n for (; xd[0] === 0; xd.shift()) --e;\r\n\r\n // Zero?\r\n if (!xd[0]) return new Ctor(0);\r\n\r\n y.d = xd;\r\n y.e = e;\r\n\r\n //return external && xd.length >= pr / LOG_BASE ? round(y, pr) : y;\r\n return external ? round(y, pr) : y;\r\n }\r\n\r\n\r\n function toString(x, isExp, sd) {\r\n var k,\r\n e = getBase10Exponent(x),\r\n str = digitsToString(x.d),\r\n len = str.length;\r\n\r\n if (isExp) {\r\n if (sd && (k = sd - len) > 0) {\r\n str = str.charAt(0) + '.' + str.slice(1) + getZeroString(k);\r\n } else if (len > 1) {\r\n str = str.charAt(0) + '.' + str.slice(1);\r\n }\r\n\r\n str = str + (e < 0 ? 'e' : 'e+') + e;\r\n } else if (e < 0) {\r\n str = '0.' + getZeroString(-e - 1) + str;\r\n if (sd && (k = sd - len) > 0) str += getZeroString(k);\r\n } else if (e >= len) {\r\n str += getZeroString(e + 1 - len);\r\n if (sd && (k = sd - e - 1) > 0) str = str + '.' + getZeroString(k);\r\n } else {\r\n if ((k = e + 1) < len) str = str.slice(0, k) + '.' + str.slice(k);\r\n if (sd && (k = sd - len) > 0) {\r\n if (e + 1 === len) str += '.';\r\n str += getZeroString(k);\r\n }\r\n }\r\n\r\n return x.s < 0 ? '-' + str : str;\r\n }\r\n\r\n\r\n // Does not strip trailing zeros.\r\n function truncate(arr, len) {\r\n if (arr.length > len) {\r\n arr.length = len;\r\n return true;\r\n }\r\n }\r\n\r\n\r\n // Decimal methods\r\n\r\n\r\n /*\r\n * clone\r\n * config/set\r\n */\r\n\r\n\r\n /*\r\n * Create and return a Decimal constructor with the same configuration properties as this Decimal\r\n * constructor.\r\n *\r\n */\r\n function clone(obj) {\r\n var i, p, ps;\r\n\r\n /*\r\n * The Decimal constructor and exported function.\r\n * Return a new Decimal instance.\r\n *\r\n * value {number|string|Decimal} A numeric value.\r\n *\r\n */\r\n function Decimal(value) {\r\n var x = this;\r\n\r\n // Decimal called without new.\r\n if (!(x instanceof Decimal)) return new Decimal(value);\r\n\r\n // Retain a reference to this Decimal constructor, and shadow Decimal.prototype.constructor\r\n // which points to Object.\r\n x.constructor = Decimal;\r\n\r\n // Duplicate.\r\n if (value instanceof Decimal) {\r\n x.s = value.s;\r\n x.e = value.e;\r\n x.d = (value = value.d) ? value.slice() : value;\r\n return;\r\n }\r\n\r\n if (typeof value === 'number') {\r\n\r\n // Reject Infinity/NaN.\r\n if (value * 0 !== 0) {\r\n throw Error(invalidArgument + value);\r\n }\r\n\r\n if (value > 0) {\r\n x.s = 1;\r\n } else if (value < 0) {\r\n value = -value;\r\n x.s = -1;\r\n } else {\r\n x.s = 0;\r\n x.e = 0;\r\n x.d = [0];\r\n return;\r\n }\r\n\r\n // Fast path for small integers.\r\n if (value === ~~value && value < 1e7) {\r\n x.e = 0;\r\n x.d = [value];\r\n return;\r\n }\r\n\r\n return parseDecimal(x, value.toString());\r\n } else if (typeof value !== 'string') {\r\n throw Error(invalidArgument + value);\r\n }\r\n\r\n // Minus sign?\r\n if (value.charCodeAt(0) === 45) {\r\n value = value.slice(1);\r\n x.s = -1;\r\n } else {\r\n x.s = 1;\r\n }\r\n\r\n if (isDecimal.test(value)) parseDecimal(x, value);\r\n else throw Error(invalidArgument + value);\r\n }\r\n\r\n Decimal.prototype = P;\r\n\r\n Decimal.ROUND_UP = 0;\r\n Decimal.ROUND_DOWN = 1;\r\n Decimal.ROUND_CEIL = 2;\r\n Decimal.ROUND_FLOOR = 3;\r\n Decimal.ROUND_HALF_UP = 4;\r\n Decimal.ROUND_HALF_DOWN = 5;\r\n Decimal.ROUND_HALF_EVEN = 6;\r\n Decimal.ROUND_HALF_CEIL = 7;\r\n Decimal.ROUND_HALF_FLOOR = 8;\r\n\r\n Decimal.clone = clone;\r\n Decimal.config = Decimal.set = config;\r\n\r\n if (obj === void 0) obj = {};\r\n if (obj) {\r\n ps = ['precision', 'rounding', 'toExpNeg', 'toExpPos', 'LN10'];\r\n for (i = 0; i < ps.length;) if (!obj.hasOwnProperty(p = ps[i++])) obj[p] = this[p];\r\n }\r\n\r\n Decimal.config(obj);\r\n\r\n return Decimal;\r\n }\r\n\r\n\r\n /*\r\n * Configure global settings for a Decimal constructor.\r\n *\r\n * `obj` is an object with one or more of the following properties,\r\n *\r\n * precision {number}\r\n * rounding {number}\r\n * toExpNeg {number}\r\n * toExpPos {number}\r\n *\r\n * E.g. Decimal.config({ precision: 20, rounding: 4 })\r\n *\r\n */\r\n function config(obj) {\r\n if (!obj || typeof obj !== 'object') {\r\n throw Error(decimalError + 'Object expected');\r\n }\r\n var i, p, v,\r\n ps = [\r\n 'precision', 1, MAX_DIGITS,\r\n 'rounding', 0, 8,\r\n 'toExpNeg', -1 / 0, 0,\r\n 'toExpPos', 0, 1 / 0\r\n ];\r\n\r\n for (i = 0; i < ps.length; i += 3) {\r\n if ((v = obj[p = ps[i]]) !== void 0) {\r\n if (mathfloor(v) === v && v >= ps[i + 1] && v <= ps[i + 2]) this[p] = v;\r\n else throw Error(invalidArgument + p + ': ' + v);\r\n }\r\n }\r\n\r\n if ((v = obj[p = 'LN10']) !== void 0) {\r\n if (v == Math.LN10) this[p] = new this(v);\r\n else throw Error(invalidArgument + p + ': ' + v);\r\n }\r\n\r\n return this;\r\n }\r\n\r\n\r\n // Create and configure initial Decimal constructor.\r\n Decimal = clone(Decimal);\r\n\r\n Decimal['default'] = Decimal.Decimal = Decimal;\r\n\r\n // Internal constant.\r\n ONE = new Decimal(1);\r\n\r\n\r\n // Export.\r\n\r\n\r\n // AMD.\r\n if (true) {\r\n !(__WEBPACK_AMD_DEFINE_RESULT__ = (function () {\r\n return Decimal;\r\n }).call(exports, __webpack_require__, exports, module),\n\t\t__WEBPACK_AMD_DEFINE_RESULT__ !== undefined && (module.exports = __WEBPACK_AMD_DEFINE_RESULT__));\r\n\r\n // Node and other environments that support module.exports.\r\n } else {}\r\n})(this);\r\n\n\n//# sourceURL=webpack://recharts-scale/./node_modules/decimal.js-light/decimal.js?");
/***/ })
/******/ });
/************************************************************************/
/******/ // The module cache
/******/ var __webpack_module_cache__ = {};
/******/
/******/ // The require function
/******/ function __webpack_require__(moduleId) {
/******/ // Check if module is in cache
/******/ if(__webpack_module_cache__[moduleId]) {
/******/ return __webpack_module_cache__[moduleId].exports;
/******/ }
/******/ // Create a new module (and put it into the cache)
/******/ var module = __webpack_module_cache__[moduleId] = {
/******/ // no module.id needed
/******/ // no module.loaded needed
/******/ exports: {}
/******/ };
/******/
/******/ // Execute the module function
/******/ __webpack_modules__[moduleId].call(module.exports, module, module.exports, __webpack_require__);
/******/
/******/ // Return the exports of the module
/******/ return module.exports;
/******/ }
/******/
/************************************************************************/
/******/ // startup
/******/ // Load entry module
/******/ __webpack_require__("./src/index.js");
/******/ // This entry module used 'exports' so it can't be inlined
/******/ })()
;