 85bf1341f3
			
		
	
	85bf1341f3
	
	
	
		
			
			Frontend Enhancements: - Complete React TypeScript frontend with modern UI components - Distributed workflows management interface with real-time updates - Socket.IO integration for live agent status monitoring - Agent management dashboard with cluster visualization - Project management interface with metrics and task tracking - Responsive design with proper error handling and loading states Backend Infrastructure: - Distributed coordinator for multi-agent workflow orchestration - Cluster management API with comprehensive agent operations - Enhanced database models for agents and projects - Project service for filesystem-based project discovery - Performance monitoring and metrics collection - Comprehensive API documentation and error handling Documentation: - Complete distributed development guide (README_DISTRIBUTED.md) - Comprehensive development report with architecture insights - System configuration templates and deployment guides The platform now provides a complete web interface for managing the distributed AI cluster with real-time monitoring, workflow orchestration, and agent coordination capabilities. 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
		
			
				
	
	
		
			170 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			170 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
| // https://d3js.org/d3-path/ v3.1.0 Copyright 2015-2022 Mike Bostock
 | ||
| (function (global, factory) {
 | ||
| typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
 | ||
| typeof define === 'function' && define.amd ? define(['exports'], factory) :
 | ||
| (global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.d3 = global.d3 || {}));
 | ||
| })(this, (function (exports) { 'use strict';
 | ||
| 
 | ||
| const pi = Math.PI,
 | ||
|     tau = 2 * pi,
 | ||
|     epsilon = 1e-6,
 | ||
|     tauEpsilon = tau - epsilon;
 | ||
| 
 | ||
| function append(strings) {
 | ||
|   this._ += strings[0];
 | ||
|   for (let i = 1, n = strings.length; i < n; ++i) {
 | ||
|     this._ += arguments[i] + strings[i];
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| function appendRound(digits) {
 | ||
|   let d = Math.floor(digits);
 | ||
|   if (!(d >= 0)) throw new Error(`invalid digits: ${digits}`);
 | ||
|   if (d > 15) return append;
 | ||
|   const k = 10 ** d;
 | ||
|   return function(strings) {
 | ||
|     this._ += strings[0];
 | ||
|     for (let i = 1, n = strings.length; i < n; ++i) {
 | ||
|       this._ += Math.round(arguments[i] * k) / k + strings[i];
 | ||
|     }
 | ||
|   };
 | ||
| }
 | ||
| 
 | ||
| class Path {
 | ||
|   constructor(digits) {
 | ||
|     this._x0 = this._y0 = // start of current subpath
 | ||
|     this._x1 = this._y1 = null; // end of current subpath
 | ||
|     this._ = "";
 | ||
|     this._append = digits == null ? append : appendRound(digits);
 | ||
|   }
 | ||
|   moveTo(x, y) {
 | ||
|     this._append`M${this._x0 = this._x1 = +x},${this._y0 = this._y1 = +y}`;
 | ||
|   }
 | ||
|   closePath() {
 | ||
|     if (this._x1 !== null) {
 | ||
|       this._x1 = this._x0, this._y1 = this._y0;
 | ||
|       this._append`Z`;
 | ||
|     }
 | ||
|   }
 | ||
|   lineTo(x, y) {
 | ||
|     this._append`L${this._x1 = +x},${this._y1 = +y}`;
 | ||
|   }
 | ||
|   quadraticCurveTo(x1, y1, x, y) {
 | ||
|     this._append`Q${+x1},${+y1},${this._x1 = +x},${this._y1 = +y}`;
 | ||
|   }
 | ||
|   bezierCurveTo(x1, y1, x2, y2, x, y) {
 | ||
|     this._append`C${+x1},${+y1},${+x2},${+y2},${this._x1 = +x},${this._y1 = +y}`;
 | ||
|   }
 | ||
|   arcTo(x1, y1, x2, y2, r) {
 | ||
|     x1 = +x1, y1 = +y1, x2 = +x2, y2 = +y2, r = +r;
 | ||
| 
 | ||
|     // Is the radius negative? Error.
 | ||
|     if (r < 0) throw new Error(`negative radius: ${r}`);
 | ||
| 
 | ||
|     let x0 = this._x1,
 | ||
|         y0 = this._y1,
 | ||
|         x21 = x2 - x1,
 | ||
|         y21 = y2 - y1,
 | ||
|         x01 = x0 - x1,
 | ||
|         y01 = y0 - y1,
 | ||
|         l01_2 = x01 * x01 + y01 * y01;
 | ||
| 
 | ||
|     // Is this path empty? Move to (x1,y1).
 | ||
|     if (this._x1 === null) {
 | ||
|       this._append`M${this._x1 = x1},${this._y1 = y1}`;
 | ||
|     }
 | ||
| 
 | ||
|     // Or, is (x1,y1) coincident with (x0,y0)? Do nothing.
 | ||
|     else if (!(l01_2 > epsilon));
 | ||
| 
 | ||
|     // Or, are (x0,y0), (x1,y1) and (x2,y2) collinear?
 | ||
|     // Equivalently, is (x1,y1) coincident with (x2,y2)?
 | ||
|     // Or, is the radius zero? Line to (x1,y1).
 | ||
|     else if (!(Math.abs(y01 * x21 - y21 * x01) > epsilon) || !r) {
 | ||
|       this._append`L${this._x1 = x1},${this._y1 = y1}`;
 | ||
|     }
 | ||
| 
 | ||
|     // Otherwise, draw an arc!
 | ||
|     else {
 | ||
|       let x20 = x2 - x0,
 | ||
|           y20 = y2 - y0,
 | ||
|           l21_2 = x21 * x21 + y21 * y21,
 | ||
|           l20_2 = x20 * x20 + y20 * y20,
 | ||
|           l21 = Math.sqrt(l21_2),
 | ||
|           l01 = Math.sqrt(l01_2),
 | ||
|           l = r * Math.tan((pi - Math.acos((l21_2 + l01_2 - l20_2) / (2 * l21 * l01))) / 2),
 | ||
|           t01 = l / l01,
 | ||
|           t21 = l / l21;
 | ||
| 
 | ||
|       // If the start tangent is not coincident with (x0,y0), line to.
 | ||
|       if (Math.abs(t01 - 1) > epsilon) {
 | ||
|         this._append`L${x1 + t01 * x01},${y1 + t01 * y01}`;
 | ||
|       }
 | ||
| 
 | ||
|       this._append`A${r},${r},0,0,${+(y01 * x20 > x01 * y20)},${this._x1 = x1 + t21 * x21},${this._y1 = y1 + t21 * y21}`;
 | ||
|     }
 | ||
|   }
 | ||
|   arc(x, y, r, a0, a1, ccw) {
 | ||
|     x = +x, y = +y, r = +r, ccw = !!ccw;
 | ||
| 
 | ||
|     // Is the radius negative? Error.
 | ||
|     if (r < 0) throw new Error(`negative radius: ${r}`);
 | ||
| 
 | ||
|     let dx = r * Math.cos(a0),
 | ||
|         dy = r * Math.sin(a0),
 | ||
|         x0 = x + dx,
 | ||
|         y0 = y + dy,
 | ||
|         cw = 1 ^ ccw,
 | ||
|         da = ccw ? a0 - a1 : a1 - a0;
 | ||
| 
 | ||
|     // Is this path empty? Move to (x0,y0).
 | ||
|     if (this._x1 === null) {
 | ||
|       this._append`M${x0},${y0}`;
 | ||
|     }
 | ||
| 
 | ||
|     // Or, is (x0,y0) not coincident with the previous point? Line to (x0,y0).
 | ||
|     else if (Math.abs(this._x1 - x0) > epsilon || Math.abs(this._y1 - y0) > epsilon) {
 | ||
|       this._append`L${x0},${y0}`;
 | ||
|     }
 | ||
| 
 | ||
|     // Is this arc empty? We’re done.
 | ||
|     if (!r) return;
 | ||
| 
 | ||
|     // Does the angle go the wrong way? Flip the direction.
 | ||
|     if (da < 0) da = da % tau + tau;
 | ||
| 
 | ||
|     // Is this a complete circle? Draw two arcs to complete the circle.
 | ||
|     if (da > tauEpsilon) {
 | ||
|       this._append`A${r},${r},0,1,${cw},${x - dx},${y - dy}A${r},${r},0,1,${cw},${this._x1 = x0},${this._y1 = y0}`;
 | ||
|     }
 | ||
| 
 | ||
|     // Is this arc non-empty? Draw an arc!
 | ||
|     else if (da > epsilon) {
 | ||
|       this._append`A${r},${r},0,${+(da >= pi)},${cw},${this._x1 = x + r * Math.cos(a1)},${this._y1 = y + r * Math.sin(a1)}`;
 | ||
|     }
 | ||
|   }
 | ||
|   rect(x, y, w, h) {
 | ||
|     this._append`M${this._x0 = this._x1 = +x},${this._y0 = this._y1 = +y}h${w = +w}v${+h}h${-w}Z`;
 | ||
|   }
 | ||
|   toString() {
 | ||
|     return this._;
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| function path() {
 | ||
|   return new Path;
 | ||
| }
 | ||
| 
 | ||
| // Allow instanceof d3.path
 | ||
| path.prototype = Path.prototype;
 | ||
| 
 | ||
| function pathRound(digits = 3) {
 | ||
|   return new Path(+digits);
 | ||
| }
 | ||
| 
 | ||
| exports.Path = Path;
 | ||
| exports.path = path;
 | ||
| exports.pathRound = pathRound;
 | ||
| 
 | ||
| }));
 |