Frontend Enhancements: - Complete React TypeScript frontend with modern UI components - Distributed workflows management interface with real-time updates - Socket.IO integration for live agent status monitoring - Agent management dashboard with cluster visualization - Project management interface with metrics and task tracking - Responsive design with proper error handling and loading states Backend Infrastructure: - Distributed coordinator for multi-agent workflow orchestration - Cluster management API with comprehensive agent operations - Enhanced database models for agents and projects - Project service for filesystem-based project discovery - Performance monitoring and metrics collection - Comprehensive API documentation and error handling Documentation: - Complete distributed development guide (README_DISTRIBUTED.md) - Comprehensive development report with architecture insights - System configuration templates and deployment guides The platform now provides a complete web interface for managing the distributed AI cluster with real-time monitoring, workflow orchestration, and agent coordination capabilities. 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
52 lines
1.9 KiB
JavaScript
52 lines
1.9 KiB
JavaScript
import { noop } from '../utils/noop.mjs';
|
|
|
|
/*
|
|
Bezier function generator
|
|
This has been modified from Gaëtan Renaudeau's BezierEasing
|
|
https://github.com/gre/bezier-easing/blob/master/src/index.js
|
|
https://github.com/gre/bezier-easing/blob/master/LICENSE
|
|
|
|
I've removed the newtonRaphsonIterate algo because in benchmarking it
|
|
wasn't noticiably faster than binarySubdivision, indeed removing it
|
|
usually improved times, depending on the curve.
|
|
I also removed the lookup table, as for the added bundle size and loop we're
|
|
only cutting ~4 or so subdivision iterations. I bumped the max iterations up
|
|
to 12 to compensate and this still tended to be faster for no perceivable
|
|
loss in accuracy.
|
|
Usage
|
|
const easeOut = cubicBezier(.17,.67,.83,.67);
|
|
const x = easeOut(0.5); // returns 0.627...
|
|
*/
|
|
// Returns x(t) given t, x1, and x2, or y(t) given t, y1, and y2.
|
|
const calcBezier = (t, a1, a2) => (((1.0 - 3.0 * a2 + 3.0 * a1) * t + (3.0 * a2 - 6.0 * a1)) * t + 3.0 * a1) *
|
|
t;
|
|
const subdivisionPrecision = 0.0000001;
|
|
const subdivisionMaxIterations = 12;
|
|
function binarySubdivide(x, lowerBound, upperBound, mX1, mX2) {
|
|
let currentX;
|
|
let currentT;
|
|
let i = 0;
|
|
do {
|
|
currentT = lowerBound + (upperBound - lowerBound) / 2.0;
|
|
currentX = calcBezier(currentT, mX1, mX2) - x;
|
|
if (currentX > 0.0) {
|
|
upperBound = currentT;
|
|
}
|
|
else {
|
|
lowerBound = currentT;
|
|
}
|
|
} while (Math.abs(currentX) > subdivisionPrecision &&
|
|
++i < subdivisionMaxIterations);
|
|
return currentT;
|
|
}
|
|
function cubicBezier(mX1, mY1, mX2, mY2) {
|
|
// If this is a linear gradient, return linear easing
|
|
if (mX1 === mY1 && mX2 === mY2)
|
|
return noop;
|
|
const getTForX = (aX) => binarySubdivide(aX, 0, 1, mX1, mX2);
|
|
// If animation is at start/end, return t without easing
|
|
return (t) => t === 0 || t === 1 ? t : calcBezier(getTForX(t), mY1, mY2);
|
|
}
|
|
|
|
export { cubicBezier };
|