Files
hive/backend/app/models/project.py
anthonyrawlins 85bf1341f3 Add comprehensive frontend UI and distributed infrastructure
Frontend Enhancements:
- Complete React TypeScript frontend with modern UI components
- Distributed workflows management interface with real-time updates
- Socket.IO integration for live agent status monitoring
- Agent management dashboard with cluster visualization
- Project management interface with metrics and task tracking
- Responsive design with proper error handling and loading states

Backend Infrastructure:
- Distributed coordinator for multi-agent workflow orchestration
- Cluster management API with comprehensive agent operations
- Enhanced database models for agents and projects
- Project service for filesystem-based project discovery
- Performance monitoring and metrics collection
- Comprehensive API documentation and error handling

Documentation:
- Complete distributed development guide (README_DISTRIBUTED.md)
- Comprehensive development report with architecture insights
- System configuration templates and deployment guides

The platform now provides a complete web interface for managing the distributed AI cluster
with real-time monitoring, workflow orchestration, and agent coordination capabilities.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-07-10 08:41:59 +10:00

25 lines
891 B
Python

from sqlalchemy import Column, Integer, String, DateTime, Text
from sqlalchemy.sql import func
from ..core.database import Base
class Project(Base):
__tablename__ = "projects"
id = Column(Integer, primary_key=True, index=True)
name = Column(String, unique=True, index=True, nullable=False)
description = Column(Text, nullable=True)
status = Column(String, default="active") # e.g., active, completed, archived
created_at = Column(DateTime(timezone=True), server_default=func.now())
updated_at = Column(DateTime(timezone=True), onupdate=func.now())
# You might also need Pydantic models for request/response validation
# from pydantic import BaseModel
# class ProjectCreate(BaseModel):
# name: str
# description: str | None = None
# class ProjectMetrics(BaseModel):
# total_tasks: int
# completed_tasks: int
# # Add other metrics as needed