Files
hive/frontend/node_modules/@vitest/utils/dist/diff.js
anthonyrawlins e89f2f4b7b Add comprehensive development roadmap via GitHub Issues
Created 10 detailed GitHub issues covering:
- Project activation and management UI (#1-2)
- Worker node coordination and visualization (#3-4)
- Automated GitHub repository scanning (#5)
- Intelligent model-to-issue matching (#6)
- Multi-model task execution system (#7)
- N8N workflow integration (#8)
- Hive-Bzzz P2P bridge (#9)
- Peer assistance protocol (#10)

Each issue includes detailed specifications, acceptance criteria,
technical implementation notes, and dependency mapping.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-07-12 19:41:01 +10:00

2186 lines
77 KiB
JavaScript

import { plugins, format } from '@vitest/pretty-format';
import c from 'tinyrainbow';
import { g as getDefaultExportFromCjs, s as stringify } from './chunk-_commonjsHelpers.js';
import { deepClone, getOwnProperties, getType as getType$1 } from './helpers.js';
import 'loupe';
/**
* Diff Match and Patch
* Copyright 2018 The diff-match-patch Authors.
* https://github.com/google/diff-match-patch
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @fileoverview Computes the difference between two texts to create a patch.
* Applies the patch onto another text, allowing for errors.
* @author fraser@google.com (Neil Fraser)
*/
/**
* CHANGES by pedrottimark to diff_match_patch_uncompressed.ts file:
*
* 1. Delete anything not needed to use diff_cleanupSemantic method
* 2. Convert from prototype properties to var declarations
* 3. Convert Diff to class from constructor and prototype
* 4. Add type annotations for arguments and return values
* 5. Add exports
*/
/**
* The data structure representing a diff is an array of tuples:
* [[DIFF_DELETE, 'Hello'], [DIFF_INSERT, 'Goodbye'], [DIFF_EQUAL, ' world.']]
* which means: delete 'Hello', add 'Goodbye' and keep ' world.'
*/
const DIFF_DELETE = -1;
const DIFF_INSERT = 1;
const DIFF_EQUAL = 0;
/**
* Class representing one diff tuple.
* Attempts to look like a two-element array (which is what this used to be).
* @param {number} op Operation, one of: DIFF_DELETE, DIFF_INSERT, DIFF_EQUAL.
* @param {string} text Text to be deleted, inserted, or retained.
* @constructor
*/
class Diff {
0;
1;
constructor(op, text) {
this[0] = op;
this[1] = text;
}
}
/**
* Determine the common prefix of two strings.
* @param {string} text1 First string.
* @param {string} text2 Second string.
* @return {number} The number of characters common to the start of each
* string.
*/
function diff_commonPrefix(text1, text2) {
// Quick check for common null cases.
if (!text1 || !text2 || text1.charAt(0) !== text2.charAt(0)) {
return 0;
}
// Binary search.
// Performance analysis: https://neil.fraser.name/news/2007/10/09/
let pointermin = 0;
let pointermax = Math.min(text1.length, text2.length);
let pointermid = pointermax;
let pointerstart = 0;
while (pointermin < pointermid) {
if (text1.substring(pointerstart, pointermid) === text2.substring(pointerstart, pointermid)) {
pointermin = pointermid;
pointerstart = pointermin;
} else {
pointermax = pointermid;
}
pointermid = Math.floor((pointermax - pointermin) / 2 + pointermin);
}
return pointermid;
}
/**
* Determine the common suffix of two strings.
* @param {string} text1 First string.
* @param {string} text2 Second string.
* @return {number} The number of characters common to the end of each string.
*/
function diff_commonSuffix(text1, text2) {
// Quick check for common null cases.
if (!text1 || !text2 || text1.charAt(text1.length - 1) !== text2.charAt(text2.length - 1)) {
return 0;
}
// Binary search.
// Performance analysis: https://neil.fraser.name/news/2007/10/09/
let pointermin = 0;
let pointermax = Math.min(text1.length, text2.length);
let pointermid = pointermax;
let pointerend = 0;
while (pointermin < pointermid) {
if (text1.substring(text1.length - pointermid, text1.length - pointerend) === text2.substring(text2.length - pointermid, text2.length - pointerend)) {
pointermin = pointermid;
pointerend = pointermin;
} else {
pointermax = pointermid;
}
pointermid = Math.floor((pointermax - pointermin) / 2 + pointermin);
}
return pointermid;
}
/**
* Determine if the suffix of one string is the prefix of another.
* @param {string} text1 First string.
* @param {string} text2 Second string.
* @return {number} The number of characters common to the end of the first
* string and the start of the second string.
* @private
*/
function diff_commonOverlap_(text1, text2) {
// Cache the text lengths to prevent multiple calls.
const text1_length = text1.length;
const text2_length = text2.length;
// Eliminate the null case.
if (text1_length === 0 || text2_length === 0) {
return 0;
}
// Truncate the longer string.
if (text1_length > text2_length) {
text1 = text1.substring(text1_length - text2_length);
} else if (text1_length < text2_length) {
text2 = text2.substring(0, text1_length);
}
const text_length = Math.min(text1_length, text2_length);
// Quick check for the worst case.
if (text1 === text2) {
return text_length;
}
// Start by looking for a single character match
// and increase length until no match is found.
// Performance analysis: https://neil.fraser.name/news/2010/11/04/
let best = 0;
let length = 1;
while (true) {
const pattern = text1.substring(text_length - length);
const found = text2.indexOf(pattern);
if (found === -1) {
return best;
}
length += found;
if (found === 0 || text1.substring(text_length - length) === text2.substring(0, length)) {
best = length;
length++;
}
}
}
/**
* Reduce the number of edits by eliminating semantically trivial equalities.
* @param {!Array.<!diff_match_patch.Diff>} diffs Array of diff tuples.
*/
function diff_cleanupSemantic(diffs) {
let changes = false;
const equalities = [];
let equalitiesLength = 0;
/** @type {?string} */
let lastEquality = null;
// Always equal to diffs[equalities[equalitiesLength - 1]][1]
let pointer = 0;
// Number of characters that changed prior to the equality.
let length_insertions1 = 0;
let length_deletions1 = 0;
// Number of characters that changed after the equality.
let length_insertions2 = 0;
let length_deletions2 = 0;
while (pointer < diffs.length) {
if (diffs[pointer][0] === DIFF_EQUAL) {
// Equality found.
equalities[equalitiesLength++] = pointer;
length_insertions1 = length_insertions2;
length_deletions1 = length_deletions2;
length_insertions2 = 0;
length_deletions2 = 0;
lastEquality = diffs[pointer][1];
} else {
// An insertion or deletion.
if (diffs[pointer][0] === DIFF_INSERT) {
length_insertions2 += diffs[pointer][1].length;
} else {
length_deletions2 += diffs[pointer][1].length;
}
// Eliminate an equality that is smaller or equal to the edits on both
// sides of it.
if (lastEquality && lastEquality.length <= Math.max(length_insertions1, length_deletions1) && lastEquality.length <= Math.max(length_insertions2, length_deletions2)) {
// Duplicate record.
diffs.splice(equalities[equalitiesLength - 1], 0, new Diff(DIFF_DELETE, lastEquality));
// Change second copy to insert.
diffs[equalities[equalitiesLength - 1] + 1][0] = DIFF_INSERT;
// Throw away the equality we just deleted.
equalitiesLength--;
// Throw away the previous equality (it needs to be reevaluated).
equalitiesLength--;
pointer = equalitiesLength > 0 ? equalities[equalitiesLength - 1] : -1;
length_insertions1 = 0;
length_deletions1 = 0;
length_insertions2 = 0;
length_deletions2 = 0;
lastEquality = null;
changes = true;
}
}
pointer++;
}
// Normalize the diff.
if (changes) {
diff_cleanupMerge(diffs);
}
diff_cleanupSemanticLossless(diffs);
// Find any overlaps between deletions and insertions.
// e.g: <del>abcxxx</del><ins>xxxdef</ins>
// -> <del>abc</del>xxx<ins>def</ins>
// e.g: <del>xxxabc</del><ins>defxxx</ins>
// -> <ins>def</ins>xxx<del>abc</del>
// Only extract an overlap if it is as big as the edit ahead or behind it.
pointer = 1;
while (pointer < diffs.length) {
if (diffs[pointer - 1][0] === DIFF_DELETE && diffs[pointer][0] === DIFF_INSERT) {
const deletion = diffs[pointer - 1][1];
const insertion = diffs[pointer][1];
const overlap_length1 = diff_commonOverlap_(deletion, insertion);
const overlap_length2 = diff_commonOverlap_(insertion, deletion);
if (overlap_length1 >= overlap_length2) {
if (overlap_length1 >= deletion.length / 2 || overlap_length1 >= insertion.length / 2) {
// Overlap found. Insert an equality and trim the surrounding edits.
diffs.splice(pointer, 0, new Diff(DIFF_EQUAL, insertion.substring(0, overlap_length1)));
diffs[pointer - 1][1] = deletion.substring(0, deletion.length - overlap_length1);
diffs[pointer + 1][1] = insertion.substring(overlap_length1);
pointer++;
}
} else {
if (overlap_length2 >= deletion.length / 2 || overlap_length2 >= insertion.length / 2) {
// Reverse overlap found.
// Insert an equality and swap and trim the surrounding edits.
diffs.splice(pointer, 0, new Diff(DIFF_EQUAL, deletion.substring(0, overlap_length2)));
diffs[pointer - 1][0] = DIFF_INSERT;
diffs[pointer - 1][1] = insertion.substring(0, insertion.length - overlap_length2);
diffs[pointer + 1][0] = DIFF_DELETE;
diffs[pointer + 1][1] = deletion.substring(overlap_length2);
pointer++;
}
}
pointer++;
}
pointer++;
}
}
// Define some regex patterns for matching boundaries.
const nonAlphaNumericRegex_ = /[^a-z0-9]/i;
const whitespaceRegex_ = /\s/;
const linebreakRegex_ = /[\r\n]/;
const blanklineEndRegex_ = /\n\r?\n$/;
const blanklineStartRegex_ = /^\r?\n\r?\n/;
/**
* Look for single edits surrounded on both sides by equalities
* which can be shifted sideways to align the edit to a word boundary.
* e.g: The c<ins>at c</ins>ame. -> The <ins>cat </ins>came.
* @param {!Array.<!diff_match_patch.Diff>} diffs Array of diff tuples.
*/
function diff_cleanupSemanticLossless(diffs) {
let pointer = 1;
// Intentionally ignore the first and last element (don't need checking).
while (pointer < diffs.length - 1) {
if (diffs[pointer - 1][0] === DIFF_EQUAL && diffs[pointer + 1][0] === DIFF_EQUAL) {
// This is a single edit surrounded by equalities.
let equality1 = diffs[pointer - 1][1];
let edit = diffs[pointer][1];
let equality2 = diffs[pointer + 1][1];
// First, shift the edit as far left as possible.
const commonOffset = diff_commonSuffix(equality1, edit);
if (commonOffset) {
const commonString = edit.substring(edit.length - commonOffset);
equality1 = equality1.substring(0, equality1.length - commonOffset);
edit = commonString + edit.substring(0, edit.length - commonOffset);
equality2 = commonString + equality2;
}
// Second, step character by character right, looking for the best fit.
let bestEquality1 = equality1;
let bestEdit = edit;
let bestEquality2 = equality2;
let bestScore = diff_cleanupSemanticScore_(equality1, edit) + diff_cleanupSemanticScore_(edit, equality2);
while (edit.charAt(0) === equality2.charAt(0)) {
equality1 += edit.charAt(0);
edit = edit.substring(1) + equality2.charAt(0);
equality2 = equality2.substring(1);
const score = diff_cleanupSemanticScore_(equality1, edit) + diff_cleanupSemanticScore_(edit, equality2);
// The >= encourages trailing rather than leading whitespace on edits.
if (score >= bestScore) {
bestScore = score;
bestEquality1 = equality1;
bestEdit = edit;
bestEquality2 = equality2;
}
}
if (diffs[pointer - 1][1] !== bestEquality1) {
// We have an improvement, save it back to the diff.
if (bestEquality1) {
diffs[pointer - 1][1] = bestEquality1;
} else {
diffs.splice(pointer - 1, 1);
pointer--;
}
diffs[pointer][1] = bestEdit;
if (bestEquality2) {
diffs[pointer + 1][1] = bestEquality2;
} else {
diffs.splice(pointer + 1, 1);
pointer--;
}
}
}
pointer++;
}
}
/**
* Reorder and merge like edit sections. Merge equalities.
* Any edit section can move as long as it doesn't cross an equality.
* @param {!Array.<!diff_match_patch.Diff>} diffs Array of diff tuples.
*/
function diff_cleanupMerge(diffs) {
// Add a dummy entry at the end.
diffs.push(new Diff(DIFF_EQUAL, ""));
let pointer = 0;
let count_delete = 0;
let count_insert = 0;
let text_delete = "";
let text_insert = "";
let commonlength;
while (pointer < diffs.length) {
switch (diffs[pointer][0]) {
case DIFF_INSERT:
count_insert++;
text_insert += diffs[pointer][1];
pointer++;
break;
case DIFF_DELETE:
count_delete++;
text_delete += diffs[pointer][1];
pointer++;
break;
case DIFF_EQUAL:
// Upon reaching an equality, check for prior redundancies.
if (count_delete + count_insert > 1) {
if (count_delete !== 0 && count_insert !== 0) {
// Factor out any common prefixes.
commonlength = diff_commonPrefix(text_insert, text_delete);
if (commonlength !== 0) {
if (pointer - count_delete - count_insert > 0 && diffs[pointer - count_delete - count_insert - 1][0] === DIFF_EQUAL) {
diffs[pointer - count_delete - count_insert - 1][1] += text_insert.substring(0, commonlength);
} else {
diffs.splice(0, 0, new Diff(DIFF_EQUAL, text_insert.substring(0, commonlength)));
pointer++;
}
text_insert = text_insert.substring(commonlength);
text_delete = text_delete.substring(commonlength);
}
// Factor out any common suffixes.
commonlength = diff_commonSuffix(text_insert, text_delete);
if (commonlength !== 0) {
diffs[pointer][1] = text_insert.substring(text_insert.length - commonlength) + diffs[pointer][1];
text_insert = text_insert.substring(0, text_insert.length - commonlength);
text_delete = text_delete.substring(0, text_delete.length - commonlength);
}
}
// Delete the offending records and add the merged ones.
pointer -= count_delete + count_insert;
diffs.splice(pointer, count_delete + count_insert);
if (text_delete.length) {
diffs.splice(pointer, 0, new Diff(DIFF_DELETE, text_delete));
pointer++;
}
if (text_insert.length) {
diffs.splice(pointer, 0, new Diff(DIFF_INSERT, text_insert));
pointer++;
}
pointer++;
} else if (pointer !== 0 && diffs[pointer - 1][0] === DIFF_EQUAL) {
// Merge this equality with the previous one.
diffs[pointer - 1][1] += diffs[pointer][1];
diffs.splice(pointer, 1);
} else {
pointer++;
}
count_insert = 0;
count_delete = 0;
text_delete = "";
text_insert = "";
break;
}
}
if (diffs[diffs.length - 1][1] === "") {
diffs.pop();
}
// Second pass: look for single edits surrounded on both sides by equalities
// which can be shifted sideways to eliminate an equality.
// e.g: A<ins>BA</ins>C -> <ins>AB</ins>AC
let changes = false;
pointer = 1;
// Intentionally ignore the first and last element (don't need checking).
while (pointer < diffs.length - 1) {
if (diffs[pointer - 1][0] === DIFF_EQUAL && diffs[pointer + 1][0] === DIFF_EQUAL) {
// This is a single edit surrounded by equalities.
if (diffs[pointer][1].substring(diffs[pointer][1].length - diffs[pointer - 1][1].length) === diffs[pointer - 1][1]) {
// Shift the edit over the previous equality.
diffs[pointer][1] = diffs[pointer - 1][1] + diffs[pointer][1].substring(0, diffs[pointer][1].length - diffs[pointer - 1][1].length);
diffs[pointer + 1][1] = diffs[pointer - 1][1] + diffs[pointer + 1][1];
diffs.splice(pointer - 1, 1);
changes = true;
} else if (diffs[pointer][1].substring(0, diffs[pointer + 1][1].length) === diffs[pointer + 1][1]) {
// Shift the edit over the next equality.
diffs[pointer - 1][1] += diffs[pointer + 1][1];
diffs[pointer][1] = diffs[pointer][1].substring(diffs[pointer + 1][1].length) + diffs[pointer + 1][1];
diffs.splice(pointer + 1, 1);
changes = true;
}
}
pointer++;
}
// If shifts were made, the diff needs reordering and another shift sweep.
if (changes) {
diff_cleanupMerge(diffs);
}
}
/**
* Given two strings, compute a score representing whether the internal
* boundary falls on logical boundaries.
* Scores range from 6 (best) to 0 (worst).
* Closure, but does not reference any external variables.
* @param {string} one First string.
* @param {string} two Second string.
* @return {number} The score.
* @private
*/
function diff_cleanupSemanticScore_(one, two) {
if (!one || !two) {
// Edges are the best.
return 6;
}
// Each port of this function behaves slightly differently due to
// subtle differences in each language's definition of things like
// 'whitespace'. Since this function's purpose is largely cosmetic,
// the choice has been made to use each language's native features
// rather than force total conformity.
const char1 = one.charAt(one.length - 1);
const char2 = two.charAt(0);
const nonAlphaNumeric1 = char1.match(nonAlphaNumericRegex_);
const nonAlphaNumeric2 = char2.match(nonAlphaNumericRegex_);
const whitespace1 = nonAlphaNumeric1 && char1.match(whitespaceRegex_);
const whitespace2 = nonAlphaNumeric2 && char2.match(whitespaceRegex_);
const lineBreak1 = whitespace1 && char1.match(linebreakRegex_);
const lineBreak2 = whitespace2 && char2.match(linebreakRegex_);
const blankLine1 = lineBreak1 && one.match(blanklineEndRegex_);
const blankLine2 = lineBreak2 && two.match(blanklineStartRegex_);
if (blankLine1 || blankLine2) {
// Five points for blank lines.
return 5;
} else if (lineBreak1 || lineBreak2) {
// Four points for line breaks.
return 4;
} else if (nonAlphaNumeric1 && !whitespace1 && whitespace2) {
// Three points for end of sentences.
return 3;
} else if (whitespace1 || whitespace2) {
// Two points for whitespace.
return 2;
} else if (nonAlphaNumeric1 || nonAlphaNumeric2) {
// One point for non-alphanumeric.
return 1;
}
return 0;
}
/**
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
const NO_DIFF_MESSAGE = "Compared values have no visual difference.";
const SIMILAR_MESSAGE = "Compared values serialize to the same structure.\n" + "Printing internal object structure without calling `toJSON` instead.";
var build = {};
var hasRequiredBuild;
function requireBuild () {
if (hasRequiredBuild) return build;
hasRequiredBuild = 1;
Object.defineProperty(build, '__esModule', {
value: true
});
build.default = diffSequence;
/**
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*
*/
// This diff-sequences package implements the linear space variation in
// An O(ND) Difference Algorithm and Its Variations by Eugene W. Myers
// Relationship in notation between Myers paper and this package:
// A is a
// N is aLength, aEnd - aStart, and so on
// x is aIndex, aFirst, aLast, and so on
// B is b
// M is bLength, bEnd - bStart, and so on
// y is bIndex, bFirst, bLast, and so on
// Δ = N - M is negative of baDeltaLength = bLength - aLength
// D is d
// k is kF
// k + Δ is kF = kR - baDeltaLength
// V is aIndexesF or aIndexesR (see comment below about Indexes type)
// index intervals [1, N] and [1, M] are [0, aLength) and [0, bLength)
// starting point in forward direction (0, 0) is (-1, -1)
// starting point in reverse direction (N + 1, M + 1) is (aLength, bLength)
// The “edit graph” for sequences a and b corresponds to items:
// in a on the horizontal axis
// in b on the vertical axis
//
// Given a-coordinate of a point in a diagonal, you can compute b-coordinate.
//
// Forward diagonals kF:
// zero diagonal intersects top left corner
// positive diagonals intersect top edge
// negative diagonals insersect left edge
//
// Reverse diagonals kR:
// zero diagonal intersects bottom right corner
// positive diagonals intersect right edge
// negative diagonals intersect bottom edge
// The graph contains a directed acyclic graph of edges:
// horizontal: delete an item from a
// vertical: insert an item from b
// diagonal: common item in a and b
//
// The algorithm solves dual problems in the graph analogy:
// Find longest common subsequence: path with maximum number of diagonal edges
// Find shortest edit script: path with minimum number of non-diagonal edges
// Input callback function compares items at indexes in the sequences.
// Output callback function receives the number of adjacent items
// and starting indexes of each common subsequence.
// Either original functions or wrapped to swap indexes if graph is transposed.
// Indexes in sequence a of last point of forward or reverse paths in graph.
// Myers algorithm indexes by diagonal k which for negative is bad deopt in V8.
// This package indexes by iF and iR which are greater than or equal to zero.
// and also updates the index arrays in place to cut memory in half.
// kF = 2 * iF - d
// kR = d - 2 * iR
// Division of index intervals in sequences a and b at the middle change.
// Invariant: intervals do not have common items at the start or end.
const pkg = 'diff-sequences'; // for error messages
const NOT_YET_SET = 0; // small int instead of undefined to avoid deopt in V8
// Return the number of common items that follow in forward direction.
// The length of what Myers paper calls a “snake” in a forward path.
const countCommonItemsF = (aIndex, aEnd, bIndex, bEnd, isCommon) => {
let nCommon = 0;
while (aIndex < aEnd && bIndex < bEnd && isCommon(aIndex, bIndex)) {
aIndex += 1;
bIndex += 1;
nCommon += 1;
}
return nCommon;
};
// Return the number of common items that precede in reverse direction.
// The length of what Myers paper calls a “snake” in a reverse path.
const countCommonItemsR = (aStart, aIndex, bStart, bIndex, isCommon) => {
let nCommon = 0;
while (aStart <= aIndex && bStart <= bIndex && isCommon(aIndex, bIndex)) {
aIndex -= 1;
bIndex -= 1;
nCommon += 1;
}
return nCommon;
};
// A simple function to extend forward paths from (d - 1) to d changes
// when forward and reverse paths cannot yet overlap.
const extendPathsF = (
d,
aEnd,
bEnd,
bF,
isCommon,
aIndexesF,
iMaxF // return the value because optimization might decrease it
) => {
// Unroll the first iteration.
let iF = 0;
let kF = -d; // kF = 2 * iF - d
let aFirst = aIndexesF[iF]; // in first iteration always insert
let aIndexPrev1 = aFirst; // prev value of [iF - 1] in next iteration
aIndexesF[iF] += countCommonItemsF(
aFirst + 1,
aEnd,
bF + aFirst - kF + 1,
bEnd,
isCommon
);
// Optimization: skip diagonals in which paths cannot ever overlap.
const nF = d < iMaxF ? d : iMaxF;
// The diagonals kF are odd when d is odd and even when d is even.
for (iF += 1, kF += 2; iF <= nF; iF += 1, kF += 2) {
// To get first point of path segment, move one change in forward direction
// from last point of previous path segment in an adjacent diagonal.
// In last possible iteration when iF === d and kF === d always delete.
if (iF !== d && aIndexPrev1 < aIndexesF[iF]) {
aFirst = aIndexesF[iF]; // vertical to insert from b
} else {
aFirst = aIndexPrev1 + 1; // horizontal to delete from a
if (aEnd <= aFirst) {
// Optimization: delete moved past right of graph.
return iF - 1;
}
}
// To get last point of path segment, move along diagonal of common items.
aIndexPrev1 = aIndexesF[iF];
aIndexesF[iF] =
aFirst +
countCommonItemsF(aFirst + 1, aEnd, bF + aFirst - kF + 1, bEnd, isCommon);
}
return iMaxF;
};
// A simple function to extend reverse paths from (d - 1) to d changes
// when reverse and forward paths cannot yet overlap.
const extendPathsR = (
d,
aStart,
bStart,
bR,
isCommon,
aIndexesR,
iMaxR // return the value because optimization might decrease it
) => {
// Unroll the first iteration.
let iR = 0;
let kR = d; // kR = d - 2 * iR
let aFirst = aIndexesR[iR]; // in first iteration always insert
let aIndexPrev1 = aFirst; // prev value of [iR - 1] in next iteration
aIndexesR[iR] -= countCommonItemsR(
aStart,
aFirst - 1,
bStart,
bR + aFirst - kR - 1,
isCommon
);
// Optimization: skip diagonals in which paths cannot ever overlap.
const nR = d < iMaxR ? d : iMaxR;
// The diagonals kR are odd when d is odd and even when d is even.
for (iR += 1, kR -= 2; iR <= nR; iR += 1, kR -= 2) {
// To get first point of path segment, move one change in reverse direction
// from last point of previous path segment in an adjacent diagonal.
// In last possible iteration when iR === d and kR === -d always delete.
if (iR !== d && aIndexesR[iR] < aIndexPrev1) {
aFirst = aIndexesR[iR]; // vertical to insert from b
} else {
aFirst = aIndexPrev1 - 1; // horizontal to delete from a
if (aFirst < aStart) {
// Optimization: delete moved past left of graph.
return iR - 1;
}
}
// To get last point of path segment, move along diagonal of common items.
aIndexPrev1 = aIndexesR[iR];
aIndexesR[iR] =
aFirst -
countCommonItemsR(
aStart,
aFirst - 1,
bStart,
bR + aFirst - kR - 1,
isCommon
);
}
return iMaxR;
};
// A complete function to extend forward paths from (d - 1) to d changes.
// Return true if a path overlaps reverse path of (d - 1) changes in its diagonal.
const extendOverlappablePathsF = (
d,
aStart,
aEnd,
bStart,
bEnd,
isCommon,
aIndexesF,
iMaxF,
aIndexesR,
iMaxR,
division // update prop values if return true
) => {
const bF = bStart - aStart; // bIndex = bF + aIndex - kF
const aLength = aEnd - aStart;
const bLength = bEnd - bStart;
const baDeltaLength = bLength - aLength; // kF = kR - baDeltaLength
// Range of diagonals in which forward and reverse paths might overlap.
const kMinOverlapF = -baDeltaLength - (d - 1); // -(d - 1) <= kR
const kMaxOverlapF = -baDeltaLength + (d - 1); // kR <= (d - 1)
let aIndexPrev1 = NOT_YET_SET; // prev value of [iF - 1] in next iteration
// Optimization: skip diagonals in which paths cannot ever overlap.
const nF = d < iMaxF ? d : iMaxF;
// The diagonals kF = 2 * iF - d are odd when d is odd and even when d is even.
for (let iF = 0, kF = -d; iF <= nF; iF += 1, kF += 2) {
// To get first point of path segment, move one change in forward direction
// from last point of previous path segment in an adjacent diagonal.
// In first iteration when iF === 0 and kF === -d always insert.
// In last possible iteration when iF === d and kF === d always delete.
const insert = iF === 0 || (iF !== d && aIndexPrev1 < aIndexesF[iF]);
const aLastPrev = insert ? aIndexesF[iF] : aIndexPrev1;
const aFirst = insert
? aLastPrev // vertical to insert from b
: aLastPrev + 1; // horizontal to delete from a
// To get last point of path segment, move along diagonal of common items.
const bFirst = bF + aFirst - kF;
const nCommonF = countCommonItemsF(
aFirst + 1,
aEnd,
bFirst + 1,
bEnd,
isCommon
);
const aLast = aFirst + nCommonF;
aIndexPrev1 = aIndexesF[iF];
aIndexesF[iF] = aLast;
if (kMinOverlapF <= kF && kF <= kMaxOverlapF) {
// Solve for iR of reverse path with (d - 1) changes in diagonal kF:
// kR = kF + baDeltaLength
// kR = (d - 1) - 2 * iR
const iR = (d - 1 - (kF + baDeltaLength)) / 2;
// If this forward path overlaps the reverse path in this diagonal,
// then this is the middle change of the index intervals.
if (iR <= iMaxR && aIndexesR[iR] - 1 <= aLast) {
// Unlike the Myers algorithm which finds only the middle “snake”
// this package can find two common subsequences per division.
// Last point of previous path segment is on an adjacent diagonal.
const bLastPrev = bF + aLastPrev - (insert ? kF + 1 : kF - 1);
// Because of invariant that intervals preceding the middle change
// cannot have common items at the end,
// move in reverse direction along a diagonal of common items.
const nCommonR = countCommonItemsR(
aStart,
aLastPrev,
bStart,
bLastPrev,
isCommon
);
const aIndexPrevFirst = aLastPrev - nCommonR;
const bIndexPrevFirst = bLastPrev - nCommonR;
const aEndPreceding = aIndexPrevFirst + 1;
const bEndPreceding = bIndexPrevFirst + 1;
division.nChangePreceding = d - 1;
if (d - 1 === aEndPreceding + bEndPreceding - aStart - bStart) {
// Optimization: number of preceding changes in forward direction
// is equal to number of items in preceding interval,
// therefore it cannot contain any common items.
division.aEndPreceding = aStart;
division.bEndPreceding = bStart;
} else {
division.aEndPreceding = aEndPreceding;
division.bEndPreceding = bEndPreceding;
}
division.nCommonPreceding = nCommonR;
if (nCommonR !== 0) {
division.aCommonPreceding = aEndPreceding;
division.bCommonPreceding = bEndPreceding;
}
division.nCommonFollowing = nCommonF;
if (nCommonF !== 0) {
division.aCommonFollowing = aFirst + 1;
division.bCommonFollowing = bFirst + 1;
}
const aStartFollowing = aLast + 1;
const bStartFollowing = bFirst + nCommonF + 1;
division.nChangeFollowing = d - 1;
if (d - 1 === aEnd + bEnd - aStartFollowing - bStartFollowing) {
// Optimization: number of changes in reverse direction
// is equal to number of items in following interval,
// therefore it cannot contain any common items.
division.aStartFollowing = aEnd;
division.bStartFollowing = bEnd;
} else {
division.aStartFollowing = aStartFollowing;
division.bStartFollowing = bStartFollowing;
}
return true;
}
}
}
return false;
};
// A complete function to extend reverse paths from (d - 1) to d changes.
// Return true if a path overlaps forward path of d changes in its diagonal.
const extendOverlappablePathsR = (
d,
aStart,
aEnd,
bStart,
bEnd,
isCommon,
aIndexesF,
iMaxF,
aIndexesR,
iMaxR,
division // update prop values if return true
) => {
const bR = bEnd - aEnd; // bIndex = bR + aIndex - kR
const aLength = aEnd - aStart;
const bLength = bEnd - bStart;
const baDeltaLength = bLength - aLength; // kR = kF + baDeltaLength
// Range of diagonals in which forward and reverse paths might overlap.
const kMinOverlapR = baDeltaLength - d; // -d <= kF
const kMaxOverlapR = baDeltaLength + d; // kF <= d
let aIndexPrev1 = NOT_YET_SET; // prev value of [iR - 1] in next iteration
// Optimization: skip diagonals in which paths cannot ever overlap.
const nR = d < iMaxR ? d : iMaxR;
// The diagonals kR = d - 2 * iR are odd when d is odd and even when d is even.
for (let iR = 0, kR = d; iR <= nR; iR += 1, kR -= 2) {
// To get first point of path segment, move one change in reverse direction
// from last point of previous path segment in an adjacent diagonal.
// In first iteration when iR === 0 and kR === d always insert.
// In last possible iteration when iR === d and kR === -d always delete.
const insert = iR === 0 || (iR !== d && aIndexesR[iR] < aIndexPrev1);
const aLastPrev = insert ? aIndexesR[iR] : aIndexPrev1;
const aFirst = insert
? aLastPrev // vertical to insert from b
: aLastPrev - 1; // horizontal to delete from a
// To get last point of path segment, move along diagonal of common items.
const bFirst = bR + aFirst - kR;
const nCommonR = countCommonItemsR(
aStart,
aFirst - 1,
bStart,
bFirst - 1,
isCommon
);
const aLast = aFirst - nCommonR;
aIndexPrev1 = aIndexesR[iR];
aIndexesR[iR] = aLast;
if (kMinOverlapR <= kR && kR <= kMaxOverlapR) {
// Solve for iF of forward path with d changes in diagonal kR:
// kF = kR - baDeltaLength
// kF = 2 * iF - d
const iF = (d + (kR - baDeltaLength)) / 2;
// If this reverse path overlaps the forward path in this diagonal,
// then this is a middle change of the index intervals.
if (iF <= iMaxF && aLast - 1 <= aIndexesF[iF]) {
const bLast = bFirst - nCommonR;
division.nChangePreceding = d;
if (d === aLast + bLast - aStart - bStart) {
// Optimization: number of changes in reverse direction
// is equal to number of items in preceding interval,
// therefore it cannot contain any common items.
division.aEndPreceding = aStart;
division.bEndPreceding = bStart;
} else {
division.aEndPreceding = aLast;
division.bEndPreceding = bLast;
}
division.nCommonPreceding = nCommonR;
if (nCommonR !== 0) {
// The last point of reverse path segment is start of common subsequence.
division.aCommonPreceding = aLast;
division.bCommonPreceding = bLast;
}
division.nChangeFollowing = d - 1;
if (d === 1) {
// There is no previous path segment.
division.nCommonFollowing = 0;
division.aStartFollowing = aEnd;
division.bStartFollowing = bEnd;
} else {
// Unlike the Myers algorithm which finds only the middle “snake”
// this package can find two common subsequences per division.
// Last point of previous path segment is on an adjacent diagonal.
const bLastPrev = bR + aLastPrev - (insert ? kR - 1 : kR + 1);
// Because of invariant that intervals following the middle change
// cannot have common items at the start,
// move in forward direction along a diagonal of common items.
const nCommonF = countCommonItemsF(
aLastPrev,
aEnd,
bLastPrev,
bEnd,
isCommon
);
division.nCommonFollowing = nCommonF;
if (nCommonF !== 0) {
// The last point of reverse path segment is start of common subsequence.
division.aCommonFollowing = aLastPrev;
division.bCommonFollowing = bLastPrev;
}
const aStartFollowing = aLastPrev + nCommonF; // aFirstPrev
const bStartFollowing = bLastPrev + nCommonF; // bFirstPrev
if (d - 1 === aEnd + bEnd - aStartFollowing - bStartFollowing) {
// Optimization: number of changes in forward direction
// is equal to number of items in following interval,
// therefore it cannot contain any common items.
division.aStartFollowing = aEnd;
division.bStartFollowing = bEnd;
} else {
division.aStartFollowing = aStartFollowing;
division.bStartFollowing = bStartFollowing;
}
}
return true;
}
}
}
return false;
};
// Given index intervals and input function to compare items at indexes,
// divide at the middle change.
//
// DO NOT CALL if start === end, because interval cannot contain common items
// and because this function will throw the “no overlap” error.
const divide = (
nChange,
aStart,
aEnd,
bStart,
bEnd,
isCommon,
aIndexesF,
aIndexesR,
division // output
) => {
const bF = bStart - aStart; // bIndex = bF + aIndex - kF
const bR = bEnd - aEnd; // bIndex = bR + aIndex - kR
const aLength = aEnd - aStart;
const bLength = bEnd - bStart;
// Because graph has square or portrait orientation,
// length difference is minimum number of items to insert from b.
// Corresponding forward and reverse diagonals in graph
// depend on length difference of the sequences:
// kF = kR - baDeltaLength
// kR = kF + baDeltaLength
const baDeltaLength = bLength - aLength;
// Optimization: max diagonal in graph intersects corner of shorter side.
let iMaxF = aLength;
let iMaxR = aLength;
// Initialize no changes yet in forward or reverse direction:
aIndexesF[0] = aStart - 1; // at open start of interval, outside closed start
aIndexesR[0] = aEnd; // at open end of interval
if (baDeltaLength % 2 === 0) {
// The number of changes in paths is 2 * d if length difference is even.
const dMin = (nChange || baDeltaLength) / 2;
const dMax = (aLength + bLength) / 2;
for (let d = 1; d <= dMax; d += 1) {
iMaxF = extendPathsF(d, aEnd, bEnd, bF, isCommon, aIndexesF, iMaxF);
if (d < dMin) {
iMaxR = extendPathsR(d, aStart, bStart, bR, isCommon, aIndexesR, iMaxR);
} else if (
// If a reverse path overlaps a forward path in the same diagonal,
// return a division of the index intervals at the middle change.
extendOverlappablePathsR(
d,
aStart,
aEnd,
bStart,
bEnd,
isCommon,
aIndexesF,
iMaxF,
aIndexesR,
iMaxR,
division
)
) {
return;
}
}
} else {
// The number of changes in paths is 2 * d - 1 if length difference is odd.
const dMin = ((nChange || baDeltaLength) + 1) / 2;
const dMax = (aLength + bLength + 1) / 2;
// Unroll first half iteration so loop extends the relevant pairs of paths.
// Because of invariant that intervals have no common items at start or end,
// and limitation not to call divide with empty intervals,
// therefore it cannot be called if a forward path with one change
// would overlap a reverse path with no changes, even if dMin === 1.
let d = 1;
iMaxF = extendPathsF(d, aEnd, bEnd, bF, isCommon, aIndexesF, iMaxF);
for (d += 1; d <= dMax; d += 1) {
iMaxR = extendPathsR(
d - 1,
aStart,
bStart,
bR,
isCommon,
aIndexesR,
iMaxR
);
if (d < dMin) {
iMaxF = extendPathsF(d, aEnd, bEnd, bF, isCommon, aIndexesF, iMaxF);
} else if (
// If a forward path overlaps a reverse path in the same diagonal,
// return a division of the index intervals at the middle change.
extendOverlappablePathsF(
d,
aStart,
aEnd,
bStart,
bEnd,
isCommon,
aIndexesF,
iMaxF,
aIndexesR,
iMaxR,
division
)
) {
return;
}
}
}
/* istanbul ignore next */
throw new Error(
`${pkg}: no overlap aStart=${aStart} aEnd=${aEnd} bStart=${bStart} bEnd=${bEnd}`
);
};
// Given index intervals and input function to compare items at indexes,
// return by output function the number of adjacent items and starting indexes
// of each common subsequence. Divide and conquer with only linear space.
//
// The index intervals are half open [start, end) like array slice method.
// DO NOT CALL if start === end, because interval cannot contain common items
// and because divide function will throw the “no overlap” error.
const findSubsequences = (
nChange,
aStart,
aEnd,
bStart,
bEnd,
transposed,
callbacks,
aIndexesF,
aIndexesR,
division // temporary memory, not input nor output
) => {
if (bEnd - bStart < aEnd - aStart) {
// Transpose graph so it has portrait instead of landscape orientation.
// Always compare shorter to longer sequence for consistency and optimization.
transposed = !transposed;
if (transposed && callbacks.length === 1) {
// Lazily wrap callback functions to swap args if graph is transposed.
const {foundSubsequence, isCommon} = callbacks[0];
callbacks[1] = {
foundSubsequence: (nCommon, bCommon, aCommon) => {
foundSubsequence(nCommon, aCommon, bCommon);
},
isCommon: (bIndex, aIndex) => isCommon(aIndex, bIndex)
};
}
const tStart = aStart;
const tEnd = aEnd;
aStart = bStart;
aEnd = bEnd;
bStart = tStart;
bEnd = tEnd;
}
const {foundSubsequence, isCommon} = callbacks[transposed ? 1 : 0];
// Divide the index intervals at the middle change.
divide(
nChange,
aStart,
aEnd,
bStart,
bEnd,
isCommon,
aIndexesF,
aIndexesR,
division
);
const {
nChangePreceding,
aEndPreceding,
bEndPreceding,
nCommonPreceding,
aCommonPreceding,
bCommonPreceding,
nCommonFollowing,
aCommonFollowing,
bCommonFollowing,
nChangeFollowing,
aStartFollowing,
bStartFollowing
} = division;
// Unless either index interval is empty, they might contain common items.
if (aStart < aEndPreceding && bStart < bEndPreceding) {
// Recursely find and return common subsequences preceding the division.
findSubsequences(
nChangePreceding,
aStart,
aEndPreceding,
bStart,
bEndPreceding,
transposed,
callbacks,
aIndexesF,
aIndexesR,
division
);
}
// Return common subsequences that are adjacent to the middle change.
if (nCommonPreceding !== 0) {
foundSubsequence(nCommonPreceding, aCommonPreceding, bCommonPreceding);
}
if (nCommonFollowing !== 0) {
foundSubsequence(nCommonFollowing, aCommonFollowing, bCommonFollowing);
}
// Unless either index interval is empty, they might contain common items.
if (aStartFollowing < aEnd && bStartFollowing < bEnd) {
// Recursely find and return common subsequences following the division.
findSubsequences(
nChangeFollowing,
aStartFollowing,
aEnd,
bStartFollowing,
bEnd,
transposed,
callbacks,
aIndexesF,
aIndexesR,
division
);
}
};
const validateLength = (name, arg) => {
if (typeof arg !== 'number') {
throw new TypeError(`${pkg}: ${name} typeof ${typeof arg} is not a number`);
}
if (!Number.isSafeInteger(arg)) {
throw new RangeError(`${pkg}: ${name} value ${arg} is not a safe integer`);
}
if (arg < 0) {
throw new RangeError(`${pkg}: ${name} value ${arg} is a negative integer`);
}
};
const validateCallback = (name, arg) => {
const type = typeof arg;
if (type !== 'function') {
throw new TypeError(`${pkg}: ${name} typeof ${type} is not a function`);
}
};
// Compare items in two sequences to find a longest common subsequence.
// Given lengths of sequences and input function to compare items at indexes,
// return by output function the number of adjacent items and starting indexes
// of each common subsequence.
function diffSequence(aLength, bLength, isCommon, foundSubsequence) {
validateLength('aLength', aLength);
validateLength('bLength', bLength);
validateCallback('isCommon', isCommon);
validateCallback('foundSubsequence', foundSubsequence);
// Count common items from the start in the forward direction.
const nCommonF = countCommonItemsF(0, aLength, 0, bLength, isCommon);
if (nCommonF !== 0) {
foundSubsequence(nCommonF, 0, 0);
}
// Unless both sequences consist of common items only,
// find common items in the half-trimmed index intervals.
if (aLength !== nCommonF || bLength !== nCommonF) {
// Invariant: intervals do not have common items at the start.
// The start of an index interval is closed like array slice method.
const aStart = nCommonF;
const bStart = nCommonF;
// Count common items from the end in the reverse direction.
const nCommonR = countCommonItemsR(
aStart,
aLength - 1,
bStart,
bLength - 1,
isCommon
);
// Invariant: intervals do not have common items at the end.
// The end of an index interval is open like array slice method.
const aEnd = aLength - nCommonR;
const bEnd = bLength - nCommonR;
// Unless one sequence consists of common items only,
// therefore the other trimmed index interval consists of changes only,
// find common items in the trimmed index intervals.
const nCommonFR = nCommonF + nCommonR;
if (aLength !== nCommonFR && bLength !== nCommonFR) {
const nChange = 0; // number of change items is not yet known
const transposed = false; // call the original unwrapped functions
const callbacks = [
{
foundSubsequence,
isCommon
}
];
// Indexes in sequence a of last points in furthest reaching paths
// from outside the start at top left in the forward direction:
const aIndexesF = [NOT_YET_SET];
// from the end at bottom right in the reverse direction:
const aIndexesR = [NOT_YET_SET];
// Initialize one object as output of all calls to divide function.
const division = {
aCommonFollowing: NOT_YET_SET,
aCommonPreceding: NOT_YET_SET,
aEndPreceding: NOT_YET_SET,
aStartFollowing: NOT_YET_SET,
bCommonFollowing: NOT_YET_SET,
bCommonPreceding: NOT_YET_SET,
bEndPreceding: NOT_YET_SET,
bStartFollowing: NOT_YET_SET,
nChangeFollowing: NOT_YET_SET,
nChangePreceding: NOT_YET_SET,
nCommonFollowing: NOT_YET_SET,
nCommonPreceding: NOT_YET_SET
};
// Find and return common subsequences in the trimmed index intervals.
findSubsequences(
nChange,
aStart,
aEnd,
bStart,
bEnd,
transposed,
callbacks,
aIndexesF,
aIndexesR,
division
);
}
if (nCommonR !== 0) {
foundSubsequence(nCommonR, aEnd, bEnd);
}
}
}
return build;
}
var buildExports = requireBuild();
var diffSequences = /*@__PURE__*/getDefaultExportFromCjs(buildExports);
function formatTrailingSpaces(line, trailingSpaceFormatter) {
return line.replace(/\s+$/, (match) => trailingSpaceFormatter(match));
}
function printDiffLine(line, isFirstOrLast, color, indicator, trailingSpaceFormatter, emptyFirstOrLastLinePlaceholder) {
return line.length !== 0 ? color(`${indicator} ${formatTrailingSpaces(line, trailingSpaceFormatter)}`) : indicator !== " " ? color(indicator) : isFirstOrLast && emptyFirstOrLastLinePlaceholder.length !== 0 ? color(`${indicator} ${emptyFirstOrLastLinePlaceholder}`) : "";
}
function printDeleteLine(line, isFirstOrLast, { aColor, aIndicator, changeLineTrailingSpaceColor, emptyFirstOrLastLinePlaceholder }) {
return printDiffLine(line, isFirstOrLast, aColor, aIndicator, changeLineTrailingSpaceColor, emptyFirstOrLastLinePlaceholder);
}
function printInsertLine(line, isFirstOrLast, { bColor, bIndicator, changeLineTrailingSpaceColor, emptyFirstOrLastLinePlaceholder }) {
return printDiffLine(line, isFirstOrLast, bColor, bIndicator, changeLineTrailingSpaceColor, emptyFirstOrLastLinePlaceholder);
}
function printCommonLine(line, isFirstOrLast, { commonColor, commonIndicator, commonLineTrailingSpaceColor, emptyFirstOrLastLinePlaceholder }) {
return printDiffLine(line, isFirstOrLast, commonColor, commonIndicator, commonLineTrailingSpaceColor, emptyFirstOrLastLinePlaceholder);
}
// In GNU diff format, indexes are one-based instead of zero-based.
function createPatchMark(aStart, aEnd, bStart, bEnd, { patchColor }) {
return patchColor(`@@ -${aStart + 1},${aEnd - aStart} +${bStart + 1},${bEnd - bStart} @@`);
}
// jest --no-expand
//
// Given array of aligned strings with inverse highlight formatting,
// return joined lines with diff formatting (and patch marks, if needed).
function joinAlignedDiffsNoExpand(diffs, options) {
const iLength = diffs.length;
const nContextLines = options.contextLines;
const nContextLines2 = nContextLines + nContextLines;
// First pass: count output lines and see if it has patches.
let jLength = iLength;
let hasExcessAtStartOrEnd = false;
let nExcessesBetweenChanges = 0;
let i = 0;
while (i !== iLength) {
const iStart = i;
while (i !== iLength && diffs[i][0] === DIFF_EQUAL) {
i += 1;
}
if (iStart !== i) {
if (iStart === 0) {
// at start
if (i > nContextLines) {
jLength -= i - nContextLines;
hasExcessAtStartOrEnd = true;
}
} else if (i === iLength) {
// at end
const n = i - iStart;
if (n > nContextLines) {
jLength -= n - nContextLines;
hasExcessAtStartOrEnd = true;
}
} else {
// between changes
const n = i - iStart;
if (n > nContextLines2) {
jLength -= n - nContextLines2;
nExcessesBetweenChanges += 1;
}
}
}
while (i !== iLength && diffs[i][0] !== DIFF_EQUAL) {
i += 1;
}
}
const hasPatch = nExcessesBetweenChanges !== 0 || hasExcessAtStartOrEnd;
if (nExcessesBetweenChanges !== 0) {
jLength += nExcessesBetweenChanges + 1;
} else if (hasExcessAtStartOrEnd) {
jLength += 1;
}
const jLast = jLength - 1;
const lines = [];
let jPatchMark = 0;
if (hasPatch) {
lines.push("");
}
// Indexes of expected or received lines in current patch:
let aStart = 0;
let bStart = 0;
let aEnd = 0;
let bEnd = 0;
const pushCommonLine = (line) => {
const j = lines.length;
lines.push(printCommonLine(line, j === 0 || j === jLast, options));
aEnd += 1;
bEnd += 1;
};
const pushDeleteLine = (line) => {
const j = lines.length;
lines.push(printDeleteLine(line, j === 0 || j === jLast, options));
aEnd += 1;
};
const pushInsertLine = (line) => {
const j = lines.length;
lines.push(printInsertLine(line, j === 0 || j === jLast, options));
bEnd += 1;
};
// Second pass: push lines with diff formatting (and patch marks, if needed).
i = 0;
while (i !== iLength) {
let iStart = i;
while (i !== iLength && diffs[i][0] === DIFF_EQUAL) {
i += 1;
}
if (iStart !== i) {
if (iStart === 0) {
// at beginning
if (i > nContextLines) {
iStart = i - nContextLines;
aStart = iStart;
bStart = iStart;
aEnd = aStart;
bEnd = bStart;
}
for (let iCommon = iStart; iCommon !== i; iCommon += 1) {
pushCommonLine(diffs[iCommon][1]);
}
} else if (i === iLength) {
// at end
const iEnd = i - iStart > nContextLines ? iStart + nContextLines : i;
for (let iCommon = iStart; iCommon !== iEnd; iCommon += 1) {
pushCommonLine(diffs[iCommon][1]);
}
} else {
// between changes
const nCommon = i - iStart;
if (nCommon > nContextLines2) {
const iEnd = iStart + nContextLines;
for (let iCommon = iStart; iCommon !== iEnd; iCommon += 1) {
pushCommonLine(diffs[iCommon][1]);
}
lines[jPatchMark] = createPatchMark(aStart, aEnd, bStart, bEnd, options);
jPatchMark = lines.length;
lines.push("");
const nOmit = nCommon - nContextLines2;
aStart = aEnd + nOmit;
bStart = bEnd + nOmit;
aEnd = aStart;
bEnd = bStart;
for (let iCommon = i - nContextLines; iCommon !== i; iCommon += 1) {
pushCommonLine(diffs[iCommon][1]);
}
} else {
for (let iCommon = iStart; iCommon !== i; iCommon += 1) {
pushCommonLine(diffs[iCommon][1]);
}
}
}
}
while (i !== iLength && diffs[i][0] === DIFF_DELETE) {
pushDeleteLine(diffs[i][1]);
i += 1;
}
while (i !== iLength && diffs[i][0] === DIFF_INSERT) {
pushInsertLine(diffs[i][1]);
i += 1;
}
}
if (hasPatch) {
lines[jPatchMark] = createPatchMark(aStart, aEnd, bStart, bEnd, options);
}
return lines.join("\n");
}
// jest --expand
//
// Given array of aligned strings with inverse highlight formatting,
// return joined lines with diff formatting.
function joinAlignedDiffsExpand(diffs, options) {
return diffs.map((diff, i, diffs) => {
const line = diff[1];
const isFirstOrLast = i === 0 || i === diffs.length - 1;
switch (diff[0]) {
case DIFF_DELETE: return printDeleteLine(line, isFirstOrLast, options);
case DIFF_INSERT: return printInsertLine(line, isFirstOrLast, options);
default: return printCommonLine(line, isFirstOrLast, options);
}
}).join("\n");
}
const noColor = (string) => string;
const DIFF_CONTEXT_DEFAULT = 5;
const DIFF_TRUNCATE_THRESHOLD_DEFAULT = 0;
function getDefaultOptions() {
return {
aAnnotation: "Expected",
aColor: c.green,
aIndicator: "-",
bAnnotation: "Received",
bColor: c.red,
bIndicator: "+",
changeColor: c.inverse,
changeLineTrailingSpaceColor: noColor,
commonColor: c.dim,
commonIndicator: " ",
commonLineTrailingSpaceColor: noColor,
compareKeys: undefined,
contextLines: DIFF_CONTEXT_DEFAULT,
emptyFirstOrLastLinePlaceholder: "",
expand: false,
includeChangeCounts: false,
omitAnnotationLines: false,
patchColor: c.yellow,
printBasicPrototype: false,
truncateThreshold: DIFF_TRUNCATE_THRESHOLD_DEFAULT,
truncateAnnotation: "... Diff result is truncated",
truncateAnnotationColor: noColor
};
}
function getCompareKeys(compareKeys) {
return compareKeys && typeof compareKeys === "function" ? compareKeys : undefined;
}
function getContextLines(contextLines) {
return typeof contextLines === "number" && Number.isSafeInteger(contextLines) && contextLines >= 0 ? contextLines : DIFF_CONTEXT_DEFAULT;
}
// Pure function returns options with all properties.
function normalizeDiffOptions(options = {}) {
return {
...getDefaultOptions(),
...options,
compareKeys: getCompareKeys(options.compareKeys),
contextLines: getContextLines(options.contextLines)
};
}
function isEmptyString(lines) {
return lines.length === 1 && lines[0].length === 0;
}
function countChanges(diffs) {
let a = 0;
let b = 0;
diffs.forEach((diff) => {
switch (diff[0]) {
case DIFF_DELETE:
a += 1;
break;
case DIFF_INSERT:
b += 1;
break;
}
});
return {
a,
b
};
}
function printAnnotation({ aAnnotation, aColor, aIndicator, bAnnotation, bColor, bIndicator, includeChangeCounts, omitAnnotationLines }, changeCounts) {
if (omitAnnotationLines) {
return "";
}
let aRest = "";
let bRest = "";
if (includeChangeCounts) {
const aCount = String(changeCounts.a);
const bCount = String(changeCounts.b);
// Padding right aligns the ends of the annotations.
const baAnnotationLengthDiff = bAnnotation.length - aAnnotation.length;
const aAnnotationPadding = " ".repeat(Math.max(0, baAnnotationLengthDiff));
const bAnnotationPadding = " ".repeat(Math.max(0, -baAnnotationLengthDiff));
// Padding left aligns the ends of the counts.
const baCountLengthDiff = bCount.length - aCount.length;
const aCountPadding = " ".repeat(Math.max(0, baCountLengthDiff));
const bCountPadding = " ".repeat(Math.max(0, -baCountLengthDiff));
aRest = `${aAnnotationPadding} ${aIndicator} ${aCountPadding}${aCount}`;
bRest = `${bAnnotationPadding} ${bIndicator} ${bCountPadding}${bCount}`;
}
const a = `${aIndicator} ${aAnnotation}${aRest}`;
const b = `${bIndicator} ${bAnnotation}${bRest}`;
return `${aColor(a)}\n${bColor(b)}\n\n`;
}
function printDiffLines(diffs, truncated, options) {
return printAnnotation(options, countChanges(diffs)) + (options.expand ? joinAlignedDiffsExpand(diffs, options) : joinAlignedDiffsNoExpand(diffs, options)) + (truncated ? options.truncateAnnotationColor(`\n${options.truncateAnnotation}`) : "");
}
// Compare two arrays of strings line-by-line. Format as comparison lines.
function diffLinesUnified(aLines, bLines, options) {
const normalizedOptions = normalizeDiffOptions(options);
const [diffs, truncated] = diffLinesRaw(isEmptyString(aLines) ? [] : aLines, isEmptyString(bLines) ? [] : bLines, normalizedOptions);
return printDiffLines(diffs, truncated, normalizedOptions);
}
// Given two pairs of arrays of strings:
// Compare the pair of comparison arrays line-by-line.
// Format the corresponding lines in the pair of displayable arrays.
function diffLinesUnified2(aLinesDisplay, bLinesDisplay, aLinesCompare, bLinesCompare, options) {
if (isEmptyString(aLinesDisplay) && isEmptyString(aLinesCompare)) {
aLinesDisplay = [];
aLinesCompare = [];
}
if (isEmptyString(bLinesDisplay) && isEmptyString(bLinesCompare)) {
bLinesDisplay = [];
bLinesCompare = [];
}
if (aLinesDisplay.length !== aLinesCompare.length || bLinesDisplay.length !== bLinesCompare.length) {
// Fall back to diff of display lines.
return diffLinesUnified(aLinesDisplay, bLinesDisplay, options);
}
const [diffs, truncated] = diffLinesRaw(aLinesCompare, bLinesCompare, options);
// Replace comparison lines with displayable lines.
let aIndex = 0;
let bIndex = 0;
diffs.forEach((diff) => {
switch (diff[0]) {
case DIFF_DELETE:
diff[1] = aLinesDisplay[aIndex];
aIndex += 1;
break;
case DIFF_INSERT:
diff[1] = bLinesDisplay[bIndex];
bIndex += 1;
break;
default:
diff[1] = bLinesDisplay[bIndex];
aIndex += 1;
bIndex += 1;
}
});
return printDiffLines(diffs, truncated, normalizeDiffOptions(options));
}
// Compare two arrays of strings line-by-line.
function diffLinesRaw(aLines, bLines, options) {
const truncate = (options === null || options === void 0 ? void 0 : options.truncateThreshold) ?? false;
const truncateThreshold = Math.max(Math.floor((options === null || options === void 0 ? void 0 : options.truncateThreshold) ?? 0), 0);
const aLength = truncate ? Math.min(aLines.length, truncateThreshold) : aLines.length;
const bLength = truncate ? Math.min(bLines.length, truncateThreshold) : bLines.length;
const truncated = aLength !== aLines.length || bLength !== bLines.length;
const isCommon = (aIndex, bIndex) => aLines[aIndex] === bLines[bIndex];
const diffs = [];
let aIndex = 0;
let bIndex = 0;
const foundSubsequence = (nCommon, aCommon, bCommon) => {
for (; aIndex !== aCommon; aIndex += 1) {
diffs.push(new Diff(DIFF_DELETE, aLines[aIndex]));
}
for (; bIndex !== bCommon; bIndex += 1) {
diffs.push(new Diff(DIFF_INSERT, bLines[bIndex]));
}
for (; nCommon !== 0; nCommon -= 1, aIndex += 1, bIndex += 1) {
diffs.push(new Diff(DIFF_EQUAL, bLines[bIndex]));
}
};
diffSequences(aLength, bLength, isCommon, foundSubsequence);
// After the last common subsequence, push remaining change items.
for (; aIndex !== aLength; aIndex += 1) {
diffs.push(new Diff(DIFF_DELETE, aLines[aIndex]));
}
for (; bIndex !== bLength; bIndex += 1) {
diffs.push(new Diff(DIFF_INSERT, bLines[bIndex]));
}
return [diffs, truncated];
}
// get the type of a value with handling the edge cases like `typeof []`
// and `typeof null`
function getType(value) {
if (value === undefined) {
return "undefined";
} else if (value === null) {
return "null";
} else if (Array.isArray(value)) {
return "array";
} else if (typeof value === "boolean") {
return "boolean";
} else if (typeof value === "function") {
return "function";
} else if (typeof value === "number") {
return "number";
} else if (typeof value === "string") {
return "string";
} else if (typeof value === "bigint") {
return "bigint";
} else if (typeof value === "object") {
if (value != null) {
if (value.constructor === RegExp) {
return "regexp";
} else if (value.constructor === Map) {
return "map";
} else if (value.constructor === Set) {
return "set";
} else if (value.constructor === Date) {
return "date";
}
}
return "object";
} else if (typeof value === "symbol") {
return "symbol";
}
throw new Error(`value of unknown type: ${value}`);
}
// platforms compatible
function getNewLineSymbol(string) {
return string.includes("\r\n") ? "\r\n" : "\n";
}
function diffStrings(a, b, options) {
const truncate = (options === null || options === void 0 ? void 0 : options.truncateThreshold) ?? false;
const truncateThreshold = Math.max(Math.floor((options === null || options === void 0 ? void 0 : options.truncateThreshold) ?? 0), 0);
let aLength = a.length;
let bLength = b.length;
if (truncate) {
const aMultipleLines = a.includes("\n");
const bMultipleLines = b.includes("\n");
const aNewLineSymbol = getNewLineSymbol(a);
const bNewLineSymbol = getNewLineSymbol(b);
// multiple-lines string expects a newline to be appended at the end
const _a = aMultipleLines ? `${a.split(aNewLineSymbol, truncateThreshold).join(aNewLineSymbol)}\n` : a;
const _b = bMultipleLines ? `${b.split(bNewLineSymbol, truncateThreshold).join(bNewLineSymbol)}\n` : b;
aLength = _a.length;
bLength = _b.length;
}
const truncated = aLength !== a.length || bLength !== b.length;
const isCommon = (aIndex, bIndex) => a[aIndex] === b[bIndex];
let aIndex = 0;
let bIndex = 0;
const diffs = [];
const foundSubsequence = (nCommon, aCommon, bCommon) => {
if (aIndex !== aCommon) {
diffs.push(new Diff(DIFF_DELETE, a.slice(aIndex, aCommon)));
}
if (bIndex !== bCommon) {
diffs.push(new Diff(DIFF_INSERT, b.slice(bIndex, bCommon)));
}
aIndex = aCommon + nCommon;
bIndex = bCommon + nCommon;
diffs.push(new Diff(DIFF_EQUAL, b.slice(bCommon, bIndex)));
};
diffSequences(aLength, bLength, isCommon, foundSubsequence);
// After the last common subsequence, push remaining change items.
if (aIndex !== aLength) {
diffs.push(new Diff(DIFF_DELETE, a.slice(aIndex)));
}
if (bIndex !== bLength) {
diffs.push(new Diff(DIFF_INSERT, b.slice(bIndex)));
}
return [diffs, truncated];
}
// Given change op and array of diffs, return concatenated string:
// * include common strings
// * include change strings which have argument op with changeColor
// * exclude change strings which have opposite op
function concatenateRelevantDiffs(op, diffs, changeColor) {
return diffs.reduce((reduced, diff) => reduced + (diff[0] === DIFF_EQUAL ? diff[1] : diff[0] === op && diff[1].length !== 0 ? changeColor(diff[1]) : ""), "");
}
// Encapsulate change lines until either a common newline or the end.
class ChangeBuffer {
op;
line;
lines;
changeColor;
constructor(op, changeColor) {
this.op = op;
this.line = [];
this.lines = [];
this.changeColor = changeColor;
}
pushSubstring(substring) {
this.pushDiff(new Diff(this.op, substring));
}
pushLine() {
// Assume call only if line has at least one diff,
// therefore an empty line must have a diff which has an empty string.
// If line has multiple diffs, then assume it has a common diff,
// therefore change diffs have change color;
// otherwise then it has line color only.
this.lines.push(this.line.length !== 1 ? new Diff(this.op, concatenateRelevantDiffs(this.op, this.line, this.changeColor)) : this.line[0][0] === this.op ? this.line[0] : new Diff(this.op, this.line[0][1]));
this.line.length = 0;
}
isLineEmpty() {
return this.line.length === 0;
}
// Minor input to buffer.
pushDiff(diff) {
this.line.push(diff);
}
// Main input to buffer.
align(diff) {
const string = diff[1];
if (string.includes("\n")) {
const substrings = string.split("\n");
const iLast = substrings.length - 1;
substrings.forEach((substring, i) => {
if (i < iLast) {
// The first substring completes the current change line.
// A middle substring is a change line.
this.pushSubstring(substring);
this.pushLine();
} else if (substring.length !== 0) {
// The last substring starts a change line, if it is not empty.
// Important: This non-empty condition also automatically omits
// the newline appended to the end of expected and received strings.
this.pushSubstring(substring);
}
});
} else {
// Append non-multiline string to current change line.
this.pushDiff(diff);
}
}
// Output from buffer.
moveLinesTo(lines) {
if (!this.isLineEmpty()) {
this.pushLine();
}
lines.push(...this.lines);
this.lines.length = 0;
}
}
// Encapsulate common and change lines.
class CommonBuffer {
deleteBuffer;
insertBuffer;
lines;
constructor(deleteBuffer, insertBuffer) {
this.deleteBuffer = deleteBuffer;
this.insertBuffer = insertBuffer;
this.lines = [];
}
pushDiffCommonLine(diff) {
this.lines.push(diff);
}
pushDiffChangeLines(diff) {
const isDiffEmpty = diff[1].length === 0;
// An empty diff string is redundant, unless a change line is empty.
if (!isDiffEmpty || this.deleteBuffer.isLineEmpty()) {
this.deleteBuffer.pushDiff(diff);
}
if (!isDiffEmpty || this.insertBuffer.isLineEmpty()) {
this.insertBuffer.pushDiff(diff);
}
}
flushChangeLines() {
this.deleteBuffer.moveLinesTo(this.lines);
this.insertBuffer.moveLinesTo(this.lines);
}
// Input to buffer.
align(diff) {
const op = diff[0];
const string = diff[1];
if (string.includes("\n")) {
const substrings = string.split("\n");
const iLast = substrings.length - 1;
substrings.forEach((substring, i) => {
if (i === 0) {
const subdiff = new Diff(op, substring);
if (this.deleteBuffer.isLineEmpty() && this.insertBuffer.isLineEmpty()) {
// If both current change lines are empty,
// then the first substring is a common line.
this.flushChangeLines();
this.pushDiffCommonLine(subdiff);
} else {
// If either current change line is non-empty,
// then the first substring completes the change lines.
this.pushDiffChangeLines(subdiff);
this.flushChangeLines();
}
} else if (i < iLast) {
// A middle substring is a common line.
this.pushDiffCommonLine(new Diff(op, substring));
} else if (substring.length !== 0) {
// The last substring starts a change line, if it is not empty.
// Important: This non-empty condition also automatically omits
// the newline appended to the end of expected and received strings.
this.pushDiffChangeLines(new Diff(op, substring));
}
});
} else {
// Append non-multiline string to current change lines.
// Important: It cannot be at the end following empty change lines,
// because newline appended to the end of expected and received strings.
this.pushDiffChangeLines(diff);
}
}
// Output from buffer.
getLines() {
this.flushChangeLines();
return this.lines;
}
}
// Given diffs from expected and received strings,
// return new array of diffs split or joined into lines.
//
// To correctly align a change line at the end, the algorithm:
// * assumes that a newline was appended to the strings
// * omits the last newline from the output array
//
// Assume the function is not called:
// * if either expected or received is empty string
// * if neither expected nor received is multiline string
function getAlignedDiffs(diffs, changeColor) {
const deleteBuffer = new ChangeBuffer(DIFF_DELETE, changeColor);
const insertBuffer = new ChangeBuffer(DIFF_INSERT, changeColor);
const commonBuffer = new CommonBuffer(deleteBuffer, insertBuffer);
diffs.forEach((diff) => {
switch (diff[0]) {
case DIFF_DELETE:
deleteBuffer.align(diff);
break;
case DIFF_INSERT:
insertBuffer.align(diff);
break;
default: commonBuffer.align(diff);
}
});
return commonBuffer.getLines();
}
function hasCommonDiff(diffs, isMultiline) {
if (isMultiline) {
// Important: Ignore common newline that was appended to multiline strings!
const iLast = diffs.length - 1;
return diffs.some((diff, i) => diff[0] === DIFF_EQUAL && (i !== iLast || diff[1] !== "\n"));
}
return diffs.some((diff) => diff[0] === DIFF_EQUAL);
}
// Compare two strings character-by-character.
// Format as comparison lines in which changed substrings have inverse colors.
function diffStringsUnified(a, b, options) {
if (a !== b && a.length !== 0 && b.length !== 0) {
const isMultiline = a.includes("\n") || b.includes("\n");
// getAlignedDiffs assumes that a newline was appended to the strings.
const [diffs, truncated] = diffStringsRaw(isMultiline ? `${a}\n` : a, isMultiline ? `${b}\n` : b, true, options);
if (hasCommonDiff(diffs, isMultiline)) {
const optionsNormalized = normalizeDiffOptions(options);
const lines = getAlignedDiffs(diffs, optionsNormalized.changeColor);
return printDiffLines(lines, truncated, optionsNormalized);
}
}
// Fall back to line-by-line diff.
return diffLinesUnified(a.split("\n"), b.split("\n"), options);
}
// Compare two strings character-by-character.
// Optionally clean up small common substrings, also known as chaff.
function diffStringsRaw(a, b, cleanup, options) {
const [diffs, truncated] = diffStrings(a, b, options);
if (cleanup) {
diff_cleanupSemantic(diffs);
}
return [diffs, truncated];
}
function getCommonMessage(message, options) {
const { commonColor } = normalizeDiffOptions(options);
return commonColor(message);
}
const { AsymmetricMatcher, DOMCollection, DOMElement, Immutable, ReactElement, ReactTestComponent } = plugins;
const PLUGINS = [
ReactTestComponent,
ReactElement,
DOMElement,
DOMCollection,
Immutable,
AsymmetricMatcher,
plugins.Error
];
const FORMAT_OPTIONS = {
maxDepth: 20,
plugins: PLUGINS
};
const FALLBACK_FORMAT_OPTIONS = {
callToJSON: false,
maxDepth: 8,
plugins: PLUGINS
};
// Generate a string that will highlight the difference between two values
// with green and red. (similar to how github does code diffing)
/**
* @param a Expected value
* @param b Received value
* @param options Diff options
* @returns {string | null} a string diff
*/
function diff(a, b, options) {
if (Object.is(a, b)) {
return "";
}
const aType = getType(a);
let expectedType = aType;
let omitDifference = false;
if (aType === "object" && typeof a.asymmetricMatch === "function") {
if (a.$$typeof !== Symbol.for("jest.asymmetricMatcher")) {
// Do not know expected type of user-defined asymmetric matcher.
return undefined;
}
if (typeof a.getExpectedType !== "function") {
// For example, expect.anything() matches either null or undefined
return undefined;
}
expectedType = a.getExpectedType();
// Primitive types boolean and number omit difference below.
// For example, omit difference for expect.stringMatching(regexp)
omitDifference = expectedType === "string";
}
if (expectedType !== getType(b)) {
const { aAnnotation, aColor, aIndicator, bAnnotation, bColor, bIndicator } = normalizeDiffOptions(options);
const formatOptions = getFormatOptions(FALLBACK_FORMAT_OPTIONS, options);
let aDisplay = format(a, formatOptions);
let bDisplay = format(b, formatOptions);
// even if prettyFormat prints successfully big objects,
// large string can choke later on (concatenation? RPC?),
// so truncate it to a reasonable length here.
// (For example, playwright's ElementHandle can become about 200_000_000 length string)
const MAX_LENGTH = 1e5;
function truncate(s) {
return s.length <= MAX_LENGTH ? s : `${s.slice(0, MAX_LENGTH)}...`;
}
aDisplay = truncate(aDisplay);
bDisplay = truncate(bDisplay);
const aDiff = `${aColor(`${aIndicator} ${aAnnotation}:`)} \n${aDisplay}`;
const bDiff = `${bColor(`${bIndicator} ${bAnnotation}:`)} \n${bDisplay}`;
return `${aDiff}\n\n${bDiff}`;
}
if (omitDifference) {
return undefined;
}
switch (aType) {
case "string": return diffLinesUnified(a.split("\n"), b.split("\n"), options);
case "boolean":
case "number": return comparePrimitive(a, b, options);
case "map": return compareObjects(sortMap(a), sortMap(b), options);
case "set": return compareObjects(sortSet(a), sortSet(b), options);
default: return compareObjects(a, b, options);
}
}
function comparePrimitive(a, b, options) {
const aFormat = format(a, FORMAT_OPTIONS);
const bFormat = format(b, FORMAT_OPTIONS);
return aFormat === bFormat ? "" : diffLinesUnified(aFormat.split("\n"), bFormat.split("\n"), options);
}
function sortMap(map) {
return new Map(Array.from(map.entries()).sort());
}
function sortSet(set) {
return new Set(Array.from(set.values()).sort());
}
function compareObjects(a, b, options) {
let difference;
let hasThrown = false;
try {
const formatOptions = getFormatOptions(FORMAT_OPTIONS, options);
difference = getObjectsDifference(a, b, formatOptions, options);
} catch {
hasThrown = true;
}
const noDiffMessage = getCommonMessage(NO_DIFF_MESSAGE, options);
// If the comparison yields no results, compare again but this time
// without calling `toJSON`. It's also possible that toJSON might throw.
if (difference === undefined || difference === noDiffMessage) {
const formatOptions = getFormatOptions(FALLBACK_FORMAT_OPTIONS, options);
difference = getObjectsDifference(a, b, formatOptions, options);
if (difference !== noDiffMessage && !hasThrown) {
difference = `${getCommonMessage(SIMILAR_MESSAGE, options)}\n\n${difference}`;
}
}
return difference;
}
function getFormatOptions(formatOptions, options) {
const { compareKeys, printBasicPrototype, maxDepth } = normalizeDiffOptions(options);
return {
...formatOptions,
compareKeys,
printBasicPrototype,
maxDepth: maxDepth ?? formatOptions.maxDepth
};
}
function getObjectsDifference(a, b, formatOptions, options) {
const formatOptionsZeroIndent = {
...formatOptions,
indent: 0
};
const aCompare = format(a, formatOptionsZeroIndent);
const bCompare = format(b, formatOptionsZeroIndent);
if (aCompare === bCompare) {
return getCommonMessage(NO_DIFF_MESSAGE, options);
} else {
const aDisplay = format(a, formatOptions);
const bDisplay = format(b, formatOptions);
return diffLinesUnified2(aDisplay.split("\n"), bDisplay.split("\n"), aCompare.split("\n"), bCompare.split("\n"), options);
}
}
const MAX_DIFF_STRING_LENGTH = 2e4;
function isAsymmetricMatcher(data) {
const type = getType$1(data);
return type === "Object" && typeof data.asymmetricMatch === "function";
}
function isReplaceable(obj1, obj2) {
const obj1Type = getType$1(obj1);
const obj2Type = getType$1(obj2);
return obj1Type === obj2Type && (obj1Type === "Object" || obj1Type === "Array");
}
function printDiffOrStringify(received, expected, options) {
const { aAnnotation, bAnnotation } = normalizeDiffOptions(options);
if (typeof expected === "string" && typeof received === "string" && expected.length > 0 && received.length > 0 && expected.length <= MAX_DIFF_STRING_LENGTH && received.length <= MAX_DIFF_STRING_LENGTH && expected !== received) {
if (expected.includes("\n") || received.includes("\n")) {
return diffStringsUnified(expected, received, options);
}
const [diffs] = diffStringsRaw(expected, received, true);
const hasCommonDiff = diffs.some((diff) => diff[0] === DIFF_EQUAL);
const printLabel = getLabelPrinter(aAnnotation, bAnnotation);
const expectedLine = printLabel(aAnnotation) + printExpected(getCommonAndChangedSubstrings(diffs, DIFF_DELETE, hasCommonDiff));
const receivedLine = printLabel(bAnnotation) + printReceived(getCommonAndChangedSubstrings(diffs, DIFF_INSERT, hasCommonDiff));
return `${expectedLine}\n${receivedLine}`;
}
// if (isLineDiffable(expected, received)) {
const clonedExpected = deepClone(expected, { forceWritable: true });
const clonedReceived = deepClone(received, { forceWritable: true });
const { replacedExpected, replacedActual } = replaceAsymmetricMatcher(clonedReceived, clonedExpected);
const difference = diff(replacedExpected, replacedActual, options);
return difference;
// }
// const printLabel = getLabelPrinter(aAnnotation, bAnnotation)
// const expectedLine = printLabel(aAnnotation) + printExpected(expected)
// const receivedLine
// = printLabel(bAnnotation)
// + (stringify(expected) === stringify(received)
// ? 'serializes to the same string'
// : printReceived(received))
// return `${expectedLine}\n${receivedLine}`
}
function replaceAsymmetricMatcher(actual, expected, actualReplaced = new WeakSet(), expectedReplaced = new WeakSet()) {
// handle asymmetric Error.cause diff
if (actual instanceof Error && expected instanceof Error && typeof actual.cause !== "undefined" && typeof expected.cause === "undefined") {
delete actual.cause;
return {
replacedActual: actual,
replacedExpected: expected
};
}
if (!isReplaceable(actual, expected)) {
return {
replacedActual: actual,
replacedExpected: expected
};
}
if (actualReplaced.has(actual) || expectedReplaced.has(expected)) {
return {
replacedActual: actual,
replacedExpected: expected
};
}
actualReplaced.add(actual);
expectedReplaced.add(expected);
getOwnProperties(expected).forEach((key) => {
const expectedValue = expected[key];
const actualValue = actual[key];
if (isAsymmetricMatcher(expectedValue)) {
if (expectedValue.asymmetricMatch(actualValue)) {
actual[key] = expectedValue;
}
} else if (isAsymmetricMatcher(actualValue)) {
if (actualValue.asymmetricMatch(expectedValue)) {
expected[key] = actualValue;
}
} else if (isReplaceable(actualValue, expectedValue)) {
const replaced = replaceAsymmetricMatcher(actualValue, expectedValue, actualReplaced, expectedReplaced);
actual[key] = replaced.replacedActual;
expected[key] = replaced.replacedExpected;
}
});
return {
replacedActual: actual,
replacedExpected: expected
};
}
function getLabelPrinter(...strings) {
const maxLength = strings.reduce((max, string) => string.length > max ? string.length : max, 0);
return (string) => `${string}: ${" ".repeat(maxLength - string.length)}`;
}
const SPACE_SYMBOL = "·";
function replaceTrailingSpaces(text) {
return text.replace(/\s+$/gm, (spaces) => SPACE_SYMBOL.repeat(spaces.length));
}
function printReceived(object) {
return c.red(replaceTrailingSpaces(stringify(object)));
}
function printExpected(value) {
return c.green(replaceTrailingSpaces(stringify(value)));
}
function getCommonAndChangedSubstrings(diffs, op, hasCommonDiff) {
return diffs.reduce((reduced, diff) => reduced + (diff[0] === DIFF_EQUAL ? diff[1] : diff[0] === op ? hasCommonDiff ? c.inverse(diff[1]) : diff[1] : ""), "");
}
export { DIFF_DELETE, DIFF_EQUAL, DIFF_INSERT, Diff, diff, diffLinesRaw, diffLinesUnified, diffLinesUnified2, diffStringsRaw, diffStringsUnified, getLabelPrinter, printDiffOrStringify, replaceAsymmetricMatcher };